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difference equation of the form
A(rn Ay + PaXak)) + anfx,) =0,

where x: Ny — R, a:Ny — R, p,r:Ng — R\ {0}, f : R — R is a continuous function,
and k is a given positive integer. Sufficient conditions for the existence of a bounded
solution of this equation are obtained. Also, stability and asymptotic stability of this
equation are studied. Additionally, the Emden-Fowler difference equation is
considered as a special case of the above equation. The obtained results are
illustrated by examples.

MSC: 39A10; 39A22; 39A30

Keywords: difference equation; measures of noncompactness; Darbo's fixed point
theorem; boundedness; stability; Emden-Fowler equation

1 Introduction

In presented paper we study a nonlinear second-order difference equation of the form
A(ruA&n + PuXni)) + anf (x2) = 0, 1)

wherex:Nyg — R,a:Ng — R, p,r: No — R\ {0}, and f : R — R is a continuous function.
Here Ny :={0,1,2,...}, Ny := {k,k + 1,k + 2,...}, where k is a given positive integer and R
is a set of all real numbers. By a solution of equation (1), we mean a sequence x: Ng - R
which satisfies (1) for every n € Ny.

Putting f(x) = x”, where y <1 is a quotient of two odd integers, r, =1 and p, =p €
(0,00), p #1 in equation (1), we get an Emden-Fowler difference equation of the form

A% (%, + pxni) + anxl, = 0. 2)

In the last years many authors have been interested in studying the asymptotic behavior
of solutions of difference equations, in particular, second-order difference equations (see,
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for example, papers of Medina and Pinto [1], Migda [2], Migda and Migda [3], Migda et
al. [4], Musielak and Popenda [5], Popenda and Werbowski [6], Schmeidel [7], Schmeidel
and Zbgszyniak [8] and Thandapani et al. [9]).

Neutral difference equations were studied in many other papers by Grace and Lalli [10]
and [11], Lalli and Zhang [12], Migda and Migda [13], Luo and Bainov [14], and Luo and
Yu [15].

Some relevant results related to this topic can be found in papers by Bastinec et al. [16],
Bastinec et al. [17], Berezansky et al. [18], Diblik and Hlavic¢kova [19], and Diblik et al. [20].

For the reader’s convenience, we note that the background for difference equations the-
ory can be found, e.g, in the well-known monograph by Agarwal [21] as well as in those
by Elaydi [22], Koci¢ and Ladas [23], or Kelley and Peterson [24].

The theory of measures of noncompactness can be found in the book of Akhmerov et
al. [25] and in the book of Banas and Goebel [26]. In our paper, we used axiomatically
defined measures of noncompactness as presented in paper [27] by Bana$ and Rzepka.

2 Measures of noncompactness and Darbo’s fixed point theorem

Let (E, || - ||) be an infinite-dimensional Banach space. If X is a subset of E, then X, Conv X
denote the closure and the convex closure of X, respectively. Moreover, we denote by Mg
the family of all nonempty and bounded subsets of E and by N the subfamily consisting
of all relatively compact sets.

Definition 1 A mapping u : Mg — [0,00) is called a measure of noncompactness in E if
it satisfies the following conditions:

1° kerp ={X € Mg:u(X)=0}#9¥ and ker u C Nz,

2° XCY= uX) <u),

3° u(X) = u(X) = u(ConvX),

4° paX+0-a)Y)<apuX)+ (1 -a)u(Y)for0<a <1,

5° if X, € Mg, X1 C Xy X = X, for n =1,2,3,... and lim,_ o u(X,) = 0, then
Mo Xn # 9.

The following Darbo’s fixed point theorem given in [27] is used in the proof of the main
result.

Theorem 1 Let M be a nonempty, bounded, convex, and closed subset of the space E, and
let T : M — M be a continuous operator such that (T (X)) < ku(X) for all nonempty subset
X of M, where k € [0,1) is a constant. Then T has a fixed point in the subset M.

We consider the Banach space [ of all real bounded sequences x : Ng — R equipped
with the standard supremum norm, i.e.,

llx|l = sup |x,| forxel®™.
neNg

Let X be a nonempty, bounded subset of [*°, X, = {x, : x € X} (it means X, is a set of nth
terms of any sequence belonging to X), and let

diam X, = sup{|x,, —Yul 1%,y eX}.
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We use the following measure of noncompactness in the space [*° (see [26]):

w(X) =limsup diam X,.

n—00

3 Main result

In this section, sufficient conditions for the existence of a bounded solution of equation
(1) are derived. Further, stable solutions of (1) are studied. We start with the following
theorem.

Theorem 2 Let
f:R — R be a continuous function, (3)
and let there exist constants L and M such that for all x € R,
()] < Ml + L, )
the sequence p : Ny — R\ {0} satisfies the following condition:

-1 <liminfp, <limsupp, <1, (5)
n—00 n—00

sequences a: Ny — R, r: Ny — R\ {0} are such that

oo 1 o0
Z — Z|a,~| < 00. (6)
pred L0 een

Then there exists a bounded solution x : Ng — R of equation (1).
Proof Condition (5) implies that there exist #; € Ny and a constant P € [0,1) such that
lpnl <P<1 forn>mn. (7)

The remainder of a series is the difference between the nth partial sum and the sum of a
series. Let us denote by a,, the remainder of series ) -, |i| > lai| so that

a-Y

o0
j=n

1
Tj

(e @]
> lail. 8)
i)
From (6), the remainder «,, tends to zero. Therefore, we can denote

lim a, = 0. 9)
H—0Q
Let us denote that C is a given positive constant. Condition (6) implies that there exists a
positive integer 7, such that

1-P

=CyeriD (10)

oy

for n > n,.
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We define a set B as follows:
B:= {(x,,)ff;o x| < Cforme N,,S}, (11)

where N,,, := {n3,n3 + 1,13 + 2,...} and n3 = max{n, ny}.
It is not difficult to prove that B is a nonempty, bounded, convex, and closed subset [*°.
Let us define a mapping T : B — [*° as follows:

(Tx)n=—pnxnk—z Zaﬂxl (12)
jon 1T

for any n € N,,.
We will prove that the mapping T has a fixed point in B.
Firstly, we show that T'(B) C B. Indeed, if x € B, then by (12), (7), (11), and (10), we have

| lf(xi) ’

’(Tx)n| < |pull®n-k| + -

Iﬂl (Mlx;| +L)
i=j

<CP+(MC+L)Z

] n

Z |ail

§CP+(CM+L)an:C%§C forne N,

Next, we prove that T is continuous. Let x%) be a sequence in B such that [|x® — x| — 0
as p — oo. Because of (3), we have ||f(x?)) — f(x)|| — 0. Since B is closed, x € B. Now,
utilizing (12), we get

(139), ~ (1), < I 52, 5, )~

Hence, by (7) and (8),
Tx® —(Tx), §Px(pj — Xy_k| + Oy SUP x@ —fx)|, meNg.
n n—-k i i
Therefore, by (10),
1-P
(») _ (») _ (A .

|70 7] = P 2] + C Ll () ] 0
and

lim || *® Tx” =0

p—>00

This means that 7 is continuous.

Page 4 of 9
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Now, we need to compare a measure of noncompactness of any subset X of B and T(X).
Let us take a nonempty set X C B. For any sequences x,y € X, we get

[(T%)n = (TY)n| < Plan = yul + CMaty, 1 €N,y
Hence, we obtain

diam(7'(X)),, < kdiamX,, + CMa,,.
This yields

lim sup diam(T(X))n < klimsup diam X,.
n—0o0 n— 00
From the above, for any X C B, we have u(7(X)) < ku(X), where k = % €[0,1).
By virtue of Theorem 1, we conclude that 7 has a fixed point in the set B. It means that
there exists x € B such that x,, = (Tx),,. Thus

oo 1 oo
B = —putict ) — D aif @), meNy, (13)

jen s

for any n € N,,;. To show that there exists a connection between the fixed point x € B and
the existence of a solution of equation (1), we use the operator A for both sides of the
following equation:

oo 1 oo
X+ Pubnkc = Y - > af @),

jen )iz

which is obtained from (13). We find that

oo

L Zaf(x,-), neN,,.

A(xn +ann—k) =—-—
I'n

Using again the operator A for both sides of the above equation, we get equation (1) for
n € N,,. The sequence x, which is a fixed point of the mapping 7, is a bounded sequence
which fulfills equation (1) for large n. If n3 < k, the proof is ended. If n3 > k, then we find
previous ns — k + 1 terms of the sequence x by the formula

1 gy P
Kpksl = — | —Xper + Z — Zaj(xi) , wherele{0,1,2,...,k-1},
Prnsl et 5

the results of which follow directly from (1). It means that equation (1) has at least one
bounded solution x : Ny — R.
This completes the proof. O

Example 1 Let us consider the equation

_1\n+1 1
A((—D"A(xn + (% . 2i>x2)> )
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All the assumptions of Theorem 2 are fulfilled. Then there exists a bounded solution x of
the above equation. So, the sequence x,, = (-1)" is such a solution.

Remark 1 Assume that

pn=p€(0,1) (14)

and

DD lail<oo (15)

n=0 i=n

in an Emden-Fowler difference equation of the form (2). Then there exists a bounded
solution of equation (2).

Proof Here all the assumptions of Theorem 2 are satisfied, e.g,, the function f : R — R
given by formula f(x) = x” is a continuous function, and |[f(x)| = [#”| < y|x| + 1 - y. So,
taking M = y and L = 1 — y, we obtain condition (4). The thesis follows directly from
Theorem 2. d

Finally, sufficient conditions for the existence of an asymptotically stable solution of
equation (1) will be presented. We recall the following definition which can be found
in [27].

Definition 2 Let x be a real function defined, bounded, and continuous on [0, 00). The

function x is an asymptotically stable solution of the equation
x = Fx. (16)

It means that for any ¢ > 0, there exists 7' > 0 such that for every £ > T and for every other
solution y of equation (16), the following inequality holds:

’x(t) —y(t)’ <e.
Theorem 3 Assume that there exists a positive constant D such that
|f®) ~f ()| = Dlx -yl (17)

for any x,y € R, and conditions (3)-(6) hold. Then equation (1) has at least one asymptoti-
cally stable solution x : Ny — R.

Proof From Theorem 2, equation (1) has at least one bounded solution x : Ny — R which
can be rewritten in the form

Xy = (Tx)m (18)

where a mapping T is defined by (12).
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Because of Definition 2, the sequence x is an asymptotically stable solution of the equa-
tion x, = (Tx),, which means that for any ¢ > 0, there exists ns € Ny such that for every
n > ny and for every other solution y of equation (1), the following inequality holds:

[ —yul < e. (19)

From (12), by (7), we have

o0
|(Tx)n - (Ty)n{ < Plxy i _yn—k| + Z
j=n

rl’ Z i [f (%) = £ ()|
] i=j

for n > n3. The above and (17) yield

(o]

1
> laillx: - yil

[e¢]
|(T)n = (T9)u| < Plotnk = ynkl +D Y| =
] i=j

jn

for n > ns = max{ns, ns}. Hence, by (8) and (19), we obtain

|(Tx)n = (T9)n| < Pl%n-kc = Yuic| + Dsup |x; — yilety

i>n

for n > ns. Thus, linking the above inequality and (18), we have

|xn_yn| §P|xn—k_yn—k| +Dsup|xi_yi|an' (20)

i>n

Let us denote

limsup |x, — y,| = 1.
n—0o0

Because of

limsup |x,, — ¥, | = limsup |%,—x — Vu-k|,

n—0o0 n—00

and (20), we get

l(l—P—D lim an) <o0.

n—00

From the above and (9), we obtain
I1-P)<0 forenough large n.

Suppose to the contrary that / > 0. Thus, we obtain a contradiction with the fact that 0 <
P < 1. Therefore we get limsup,,_, . [%, — ¥,| = 0. This completes the proof. O

Remark 2 Under conditions (3)-(6) and (17), any bounded solution of equation (1) is
asymptotically stable.

Page 7 of 9
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Proof If boundedness of a solution of equation (1) is assumed, then by virtue of the same
arguments as in Theorem 3, the thesis of the above remark is obtained. O

Example 2 Let us consider equation (1) with f(x) =x, a, = A’p, and Y 2o 37 |a;| < 0c.
Such an equation has infinitely many solutions of the form x, = ¢, where c is a real con-
stant. All the assumptions of Theorem 3 are fulfilled, then each of such solutions is asymp-
totically stable.

Theorem 4 Assume that L = 0 in (4). Under conditions (3)-(6) and (17), if there exists a
zero solution of equation (1), then it is asymptotically stable.

Proof 1f L = 0, then condition (4) takes the form |f(x)| < M|x|. This implies that f(0) = 0.
Hence, the sequence x = 0 is a bounded solution of equation (1). By Remark 2, the zero
solution is asymptotically stable. O
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