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Abstract
In the present paper, we study Newton’s method on Lie groups (independent of
affine connections) for finding zeros of a mapping f from a Lie group to its Lie
algebra. Under a generalized L-average Lipschitz condition of the differential of f , we
establish a unified convergence criterion of Newton’s method. As applications, we get
the convergence criteria under the Kantorovich’s condition and the γ -condition,
respectively. Moreover, applications to optimization problems are also provided.
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1 Introduction
Newton’s method is one of the most important methods for finding the approximation
solution of the equation f (x) = , where f is an operator from some domain D in a real or
complex Banach space X to another Y . As is well known, one of the most important re-
sults onNewton’s method is Kantorovich’s theorem (cf. []). Under themild condition that
the second Fréchet derivative of F is bounded (or more general, the first derivative is Lip-
schitz continuous) on a proper openmetric ball of the initial point x, Kantorovich’s theo-
rem provides a simple and clear criterion ensuring the quadratic convergence of Newton’s
method. Another important result on Newton’s method is Smale’s point estimate theory
(i.e., α-theory and γ -theory) in [], where the notions of approximate zeros were intro-
duced and the rules to judge an initial point x to be an approximate zero were established,
depending on the information of the analytic nonlinear operator at this initial point and at
a solution x∗, respectively. There are a lot of works on the weakness and/or the extension
of the Lipschitz continuity made on the mappings; see, for example, [–] and references
therein. In particular, Zabrejko-Nguen parametrized in [] the classical Lipschitz conti-
nuity. Wang introduced in [] the notion of Lipschitz conditions with L-average to unify
both Kantorovich’s and Smale’s criteria.
In a Riemannianmanifold framework, an analogue of thewell-knownKantorovich’s the-

orem was given in [] for Newton’s method for vector fields on Riemannian manifolds
while the extensions of the famous Smale’s α-theory and γ -theory in [] to analytic vec-
tor fields and analytic mappings on Riemannian manifolds were done in []. In the re-
cent paper [], the convergence criteria in [] were improved by using the notion of the
γ -condition for the vector fields and mappings on Riemannian manifolds. The radii of
uniqueness balls of singular points of vector fields satisfying the γ -conditions were esti-
mated in [], while the local behavior of Newton’s method on Riemannian manifolds was
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studied in [, ]. Furthermore, in [], Li andWang extended the generalized L-average
Lipschitz condition (introduced in []) to Riemannianmanifolds and established a unified
convergence criterion of Newton’s method on Riemannian manifolds. Similarly, inspired
by previous work of Zabrejko and Nguen in [] on Kantorovich’s majorant method, Al-
varez et al. introduced in [] a Lipschitz-type radial function for the covariant derivative
of vector fields and mappings on Riemannian manifolds and established a unified conver-
gence criterion of Newton’s method on Riemannian manifolds.
Note also that Mahony used one-parameter subgroups of a Lie group to develop a ver-

sion of Newton’s method on an arbitrary Lie group in [], where the algorithm presented
is independent of affine connections on the Lie group. This means that Newton’s method
on Lie groups is different from the one defined on Riemannian manifolds. On the other
hand, motivated by looking for approaches to solving ordinary differential equations on
Lie groups, Owren and Welfert also studied in [] Newton’s method, independent of
affine connections on the Lie group, and showed the local quadratical convergence. Re-
cently, Wang and Li [] established Kantorovich’s theorem (independent of the connec-
tion) for Newton’s method on the Lie group. More precisely, under the assumption that
the differential of f satisfies the Lipschitz condition around the initial point (which is in
terms of one-parameter semigroups and independent of the metric), the convergence cri-
terion of Newton’s method is presented. Extensions of Smale’s point estimate theory for
Newton’s method on Lie groups were given in [].
The purpose of the present paper is to establish a unified convergence criterion for

Newton’s method (independent of the connection) on Lie groups under a generalized
L-average Lipschitz condition. As applications, we get the convergence criteria under the
Kantorovich’s condition and the γ -condition, respectively. Hence, our results extend the
corresponding results in [] and [], respectively. Moreover, applications to optimiza-
tion problems are also provided.
The remainder of the paper is organized as follows. Some preliminary results and no-

tions are given in Section , while the main results about a unified convergence criterion
are presented in Section . In Section , applications to optimization problems are ex-
plored. Theorems under the Kantorovich’s condition and the γ -condition are provided in
the final section.

2 Notions and preliminaries
Most of the notions and notations which are used in the present paper are standard; see,
for example, [, ]. The Lie group (G, ·) is a Hausdorff topological group with countable
bases which also has the structure of an analytic manifold such that the group product and
the inversion are analytic operations in the differentiable structure given on the manifold.
The dimension of a Lie group is that of the underlying manifold, and we shall always as-
sume that it is m-dimensional. The symbol e designates the identity element of G. Let G
be the Lie algebra of the Lie group G which is the tangent space TeG of G at e, equipped
with Lie bracket [·, ·] : G × G → G .
In the sequel we make use of the left translation of the Lie group G. We define, for each

y ∈ G, the left translation Ly :G →G by

Ly(z) = y · z for each z ∈G. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/293
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The differential of Ly at z is denoted by (L′
y)z, which clearly determines a linear isomor-

phism from TzG to the tangent space T(y·z)G. In particular, the differential (L′
y)e of Ly at e

determines a linear isomorphism from G to the tangent space TyG. The exponential map
exp : G → G is certainly the most important construction associated to G and G , and is
defined as follows. Given u ∈ G , let σu : R → G be a one-parameter subgroup of G deter-
mined by the left invariant vector field Xu : y �→ (L′

y)e(u); i.e., σu satisfies that

σu() = e and σ ′
u(t) = Xu

(
σu(t)

)
=

(
L′

σu(t)
)
e(u) for each t ∈R. (.)

The value of the exponential map exp at u is then defined by

exp(u) = σu().

Moreover, we have that

exp(tu) = σtu() = σu(t) for each t ∈R and u ∈ G (.)

and

exp(t + s)u = exp(tu) · exp(su) for any t, s ∈R and u ∈ G. (.)

Note that the exponential map is not surjective in general. However, the exponential map
is a diffeomorphism on an open neighborhood of  ∈ G . In the case when G is Abelian,
exp is also a homomorphism from G to G, i.e.,

exp(u + v) = exp(u) · exp(v) for all u, v ∈ G. (.)

In the non-abelian case, exp is not a homomorphism and, by the Baker-Campbell-
Hausdorff (BCH) formula (cf. [, p.]), (.) must be replaced by

exp(w) = exp(u) · exp(v) (.)

for all u, v in a neighborhood of  ∈ G , where w is defined by

w := u + v +


[u, v] +




([
u, [u, v]

]
+

[
v, [v,u]

])
+ · · · . (.)

Let f : G → G be a C-map and let x ∈ G. We use f ′
x to denote the differential of f at x.

Then, by [, p.] (the proof given there for a smooth mapping still works for a C-map),
for each�x ∈ TxG and any nontrivial smooth curve c : (–ε, ε) →Gwith c() = x and c′() =
�x, one has that

f ′
x�x =

(
d
dt

(f ◦ c)(t)
)
t=

. (.)

In particular,

f ′
x�x =

(
d
dt

f
(
x · exp(t(L′

x–
)
x�x

)))
t=

for each �x ∈ TxG. (.)
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Define the linear map dfx : G → G by

dfxu =
(
d
dt

f
(
x · exp(tu)))

t=
for each u ∈ G. (.)

Then, by (.),

dfx = f ′
x ◦ (

L′
x
)
e. (.)

Also, in view of the definition, we have that for all t ≥ ,

d
dt

f
(
x · exp(tu)) = dfx·exp(tu)u for each u ∈ G (.)

and

f
(
x · exp(tu)) – f (x) =

∫ t


dfx·exp(su)uds for each u ∈ G. (.)

For the remainder of the present paper, we always assume that 〈·, ·〉 is an inner product
on G and ‖ · ‖ is the associated norm on G . We now introduce the following distance on
G which plays a key role in the study. Let x, y ∈ G and define

�(x, y) := inf

{ k∑
i=

‖ui‖
∣∣∣∣ there exist k ≥  and u, . . . ,uk ∈ G such that
y = x · expu · . . . · expuk

}
, (.)

where we adapt the convention that inf∅ = +∞. It is easy to verify that �(·, ·) is a distance
on G and the topology induced by this distance is equivalent to the original one on G.
Let x ∈G and r > .We denote the corresponding ball of radius r around x ofG by Cr(x),

that is,

Cr(x) :=
{
y ∈ G|�(x, y) < r

}
.

Let L(G) denote the set of all linear operators on G . Below, we will modify the notion of
the Lipschitz condition with L-average for mappings on Banach spaces to suit sections.
Let L be a positive nondecreasing integrable function on [,R], where R is a positive num-
ber large enough such that

∫ R
 (R – s)L(s) ds ≥ R. The notion of Lipschitz condition in the

inscribed sphere with the L average for operators from Banach spaces to Banach spaces
was first introduced in [] by Wang for the study of Smale’s point estimate theory.

Definition . Let r > , x ∈ G, and let T be a mapping from G to L(G). Then T is said
to satisfy the L-average Lipschitz condition on Cr(x) if

∥∥T(x · expu) – T(x)
∥∥ ≤

∫ ρ(x,x)+‖u‖

ρ(x,x)
L(s) ds (.)

holds for any u,u, . . . ,uk ∈ G and x ∈ Cr(x) such that x = x expu expu · · · expuk and
‖u‖ + ρ(x,x) < r, where ρ(x,x) :=

∑k
i= ‖ui‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/293
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Themajorizing function h defined in the following, whichwas first introduced and stud-
ied by Wang (cf. []), is a powerful tool in our study. Let r >  and b >  be such that∫ r


L(s) ds =  and b =

∫ r


L(s)sds. (.)

For β > , define the majorizing function h by

h(t) = β – t +
∫ t


L(s)(t – s) ds for each  ≤ t ≤ R. (.)

Some useful properties are described in the following propositions, see [].

Proposition . The function h is monotonic decreasing on [, r] andmonotonic increas-
ing on [r,R].Moreover, if β ≤ b, h has a unique zero respectively in [, r] and [r,R],which
are denoted by r and r.

Let {tn} denote the sequence generated by Newton’s method with initial value t =  for
h, that is,

tn+ = tn – h′(tn)–h(tn) for each n = , , . . . . (.)

Proposition . Suppose that β ≤ b. Then the sequence {tn} generated by (.) is mono-
tonic increasing and convergent to r.

The following lemma will be useful in the proof of the main theorem.

Lemma . Let  < r ≤ r and let x ∈ G be such that df –x exists. Suppose that df –x df
satisfies the L-average Lipschitz condition on Cr(x). Let x ∈ Cr(x) be such that there exist
k ≥  and u, . . . ,uk ∈ G satisfying x = x · expu · . . . · expuk and ρ(x,x) :=

∑k
i= ‖ui‖ < r.

Then df –x exists and

∥∥df –x dfx
∥∥ ≤ 

 –
∫ ρ(x,x)
 L(s) ds

. (.)

Proof Write y = x and yi+ = yi · expui for each i = , . . . ,k. Since (.) holds with T =
df –x df , one has that

∥∥df –x (dfyi·expui – dfyi )
∥∥ ≤

∫ ρ(yi+,x)

ρ(yi ,x)
L(s) ds for each  ≤ i≤ k. (.)

Noting that yk+ = x, we have that

∥∥df –x dfx – IG
∥∥ =

∥∥df –x (dfyk ·expuk – dfx )
∥∥

≤
k∑
i=

∥∥df –x (dfyi·expui – dfyi )
∥∥

=
∫ ρ(x,x)


L(s) ds

http://www.fixedpointtheoryandapplications.com/content/2013/1/293
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<
∫ r


L(s) ds

= .

Thus the conclusion follows from the Banach lemma and the proof is complete. �

3 Convergence criteria
Following [], we define Newton’s method with initial point x for f on a Lie group as
follows:

xn+ = xn · exp(–df –xn f (xn)
)

for each n = , , . . . . (.)

Recall that f :G → G is aC-mapping. In the remainder of this section,we always assume
that x ∈ G is such that df –x exists and set β := ‖df –x f (x)‖. Let r and b given by (.),
and r be given by Proposition ..

Theorem . Suppose that df –x df satisfies the L-average Lipschitz condition on Cr (x)
and that

β =
∥∥df –x f (x)

∥∥ ≤ b. (.)

Then the sequence {xn} generated by Newton’s method (.) with initial point x is well
defined and converges to a zero x∗ of f . Moreover, the following assertions hold for each
n = , , . . . :

�(xn+,xn) ≤
∥∥df –xn f (xn)

∥∥ ≤ tn+ – tn; (.)

�
(
xn,x∗) ≤ r – tn. (.)

Proof Write vn = –df –xn f (xn) for each n = , , . . . . Below we shall show that each vn is well
defined and

�(xn+,xn) ≤ ‖vn‖ ≤ tn+ – tn (.)

holds for each n = , , . . . . Granting this, one sees that the sequence {xn} generated by
Newton’s method (.) with initial point x is well defined and converges to a zero x∗ of f ,
because, by (.),

xn+ = xn · exp vn for each n = , , . . . .

Furthermore, assertions (.) and (.) hold for each n and the proof of the theorem is
completed.
Note that v is well defined by assumption and x = x · exp v. Hence, �(x,x) ≤ ‖v‖.

Since ‖v‖ = ‖–df –x (f (x))‖ = β = t – t, it follows that (.) is true for n = . We now
proceed by mathematical induction on n. For this purpose, assume that vn is well defined
and (.) holds for each n ≤ k – . Then

k–∑
i=

‖vi‖ ≤ tk – t = tk < r and xk = x · exp v · . . . · exp vk–. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/293
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Thus, we use Lemma . to conclude that df –xk exists and

∥∥df –xk dfx
∥∥ ≤ 

 –
∫ tk
 L(s) ds

= –h′(tk)–. (.)

Therefore, vk is well defined. Observe that

f (xk) = f (xk) – f (xk–) – dfxk–vk–

=
∫ 


dfxk–·exp(tvk–)vk– dt – dfxk–vk–

=
∫ 


[dfxk–·exp(tvk–) – dfxk– ]vk– dt,

where the second equality is valid because of (.). Therefore, applying (.), one has
that

∥∥df –x f (xk)
∥∥ ≤

∫ 



∥∥df –x [dfxk–·exp(tvk–) – dfxk– ]
∥∥‖vk–‖dt

≤
∫ 



∫ ρ(xk–,x)+t‖vk–‖

ρ(xk–,x)
L(s) ds‖vk–‖dt

≤
∫ 



∫ tk–+t(tk–tk–)

tk–
L(s) ds(tk – tk–) dt

=
∫ tk

tk–
L(s)(tk – s) ds

= h(tk) – h(tk–) – h′(tk–)(tk – tk–)

= h(tk), (.)

where the first equality holds because h(tk–) + h′(tk–)(tk – tk–) = . Combining this with
(.) yields that

‖vk‖ =
∥∥–df –xk f (xk)

∥∥
≤ ∥∥df –xk dfx

∥∥∥∥df –x f (xk)
∥∥

≤ –h′(tk)–h(tk)

= tk+ – tk . (.)

Since xk+ = xk · exp vk , we have �(xk+,xk)≤ ‖vk‖. This together with (.) gives that (.)
holds for n = k, which completes the proof of the theorem. �

4 Applications to optimization problems
Let φ :G →R be a C-map. Consider the following optimization problem:

min
x∈G φ(x). (.)

Newton’s method for solving (.) was presented in [], where local quadratical conver-
gence result was established for a smooth function φ.

http://www.fixedpointtheoryandapplications.com/content/2013/1/293
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Let X ∈ G . Following [], we use X̃ to denote the left invariant vector field associated
with X defined by

X̃(x) =
(
L′
x
)
eX for each x ∈G,

and X̃φ the Lie derivative of φ with respect to the left invariant vector field X̃, that is, for
each x ∈ G,

(X̃φ)(x) =
d
dt

∣∣∣
t=

φ(x · exp tX). (.)

Let {X, . . . ,Xn} be an orthonormal basis of G . According to [, p.] (see also []),
gradφ is a vector field on G defined by

gradφ(x) = (X̃, . . . , X̃n)
(
X̃φ(x), . . . , X̃nφ(x)

)T =
n∑
j=

X̃jφ(x)X̃j for each x ∈G. (.)

Then Newton’s method with initial point x ∈ G considered in [] can be written in a
coordinate-free form as follows.

Algorithm . Find Xk ∈ G such that X̃k = (L′
x)eXk and

gradφ(xk) + grad
(
X̃kφ

)
(xk) = ;

Set xk+ = xk · expXk ;
Set k ← k +  and repeat.

Let f :G → G be a mapping defined by

f (x) =
(
L′
x
)–
e gradφ(x) for each x ∈G. (.)

Define the linear operator Hxφ : G → G for each x ∈ G by

(Hxφ)X =
(
L′
x
)–
e grad(X̃φ)(x) for each X ∈ G. (.)

Then H(·)φ defines a mapping from G to L(G). The following proposition gives the equiv-
alence between dfx and Hxφ. The following proposition was given in [].

Proposition . Let f (·) and H(·)φ be defined respectively by (.) and (.). Then

dfx =Hxφ for each x ∈G. (.)

Remark . One can easily see from Proposition . that, with the same initial point, the
sequence generated by Algorithm . for φ coincides with the one generated by Newton’s
method (.) for f defined by (.).

Let x ∈ G be such that (Hxφ)– exists, and let βφ := ‖(Hxφ)–(L′
x )

–
e gradφ(x)‖. Recall

that r and b are given by (.), and r is given by Proposition .. Then themain theorem
of this section is as follows.

http://www.fixedpointtheoryandapplications.com/content/2013/1/293
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Theorem . Suppose that

βφ =
∥∥(Hxφ)

–(L′
x

)–
e gradφ(x)

∥∥ ≤ b, (.)

and that (Hxφ)–(H(·)φ) satisfies the L-average Lipschitz condition on Cr (x). Then the
sequence generated by Algorithm . with initial point x is well defined and converges to
a critical point x∗ of φ: gradφ(x∗) = .
Furthermore, if Hxφ is additionally positive definite and the following Lipschitz condi-

tion is satisfied:∥∥(Hxφ)
–∥∥‖Hx·expuφ –Hxφ‖

≤
∫ ρ(x,x)+‖u‖

ρ(x,x)
L(s) ds for x ∈G and u ∈ G with ρ(x,x) + ‖u‖ < r. (.)

Then x∗ is a local solution of (.).

Proof Recall that f is defined by (.). Then by Proposition ., dfx =Hxφ for each x ∈ G.
Hence, by assumptions, df –x df satisfies the L-average Lipschitz condition on Cr (x) and
condition (.) is satisfied because βφ ≤ b. Thus, Theorem . is applicable; hence the se-
quence generated by Newton’s method for f with initial point x is well defined and con-
verges to a zero x∗ of f . Consequently, by Remark ., one sees that the first assertion holds.
To prove the second assertion, we assume thatHxφ is additionally positive definite and

the Lipschitz condition (.) is satisfied. It is sufficient to prove that Hx∗φ is positive def-
inite. Let λ∗ and λ be the minimum eigenvalues of Hx∗φ and Hxφ, respectively. Then
λ > . We have to show that λ∗ > . To do this, let {xn} be the sequence generated by
Algorithm . and write vn = df –xn f (xn) for each n = , , . . . . Then, by Remark .,

xn+ = xn · exp(–vn) for each n = , , . . . , (.)

and by Theorem .,

‖vn‖ ≤ tn+ – tn for each n = , , . . . . (.)

Therefore, for each n = , , . . . ,∥∥Hxφ
–∥∥∥∥(Hxn+φ –Hxφ)

∥∥ =
∥∥Hxφ

–∥∥∥∥(Hxn·exp(–vn)φ –Hxφ)
∥∥

=
n∑
j=

∥∥Hxφ
–∥∥‖Hxj·exp(–vn)φ –Hxjφ‖

≤
n∑
j=

∫ ρ(xj ,x)+‖vn‖

ρ(xj ,x)
L(s) ds

≤
∫ tk


L(s) ds

<
∫ r


L(s) ds

=  (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/293
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thanks to (.)-(.). Since∣∣∣∣λ∗

λ – 
∣∣∣∣ = 

λ

∣∣∣ min
v∈G,‖v‖=

〈
(Hx∗φ)v, v

〉
– min

v∈G,‖v‖=
〈
(Hxφ)v, v

〉∣∣∣
≤ ∥∥Hxφ

–∥∥‖Hx∗φ –Hxφ‖,

it follows that∣∣∣∣λ∗

λ – 
∣∣∣∣ ≤ lim

n→∞
∥∥Hxφ

–∥∥‖Hxn+φ –Hxφ‖ < 

thanks to (.). This implies that λ∗ >  and completes the proof. �

5 Theorems under the Kantorovich’s condition and the γ -condition
If L(·) is a constant, then the L-average Lipschitz condition is reduced to the classical Lip-
schitz condition.
Let r > , x ∈G, and let T be a mapping from G to L(G). Then T is said to satisfy the L

Lipschitz condition on Cr(x) if∥∥T(x · expu) – T(x)
∥∥ ≤ L‖u‖

holds for any u,u, . . . ,uk ∈ G and x ∈ Cr(x) such that x = x expu expu · · · expuk and
‖u‖ + ρ(x,x) < r, where ρ(x,x) =

∑k
i= ‖ui‖.

Let β >  and L > . The quadratic majorizing function h is reduced to

h(t) =
L

t – t + β for each t ≥ .

Let {tn} denote the sequence generated by Newton’s method with initial value t =  for h,
that is,

tn+ = tn – h′(tn)–h(tn) for each n = , , . . . .

Assume that λ := Lβ ≤ 
 . Then h has two zeros r and r:

r =
 –

√
 – λ
L

and r =
 +

√
 – λ
L

; (.)

moreover, {tn} is monotonic increasing and convergent to r, and satisfies that

r – tn =
qn–∑n–
j= qj

r for each n = , , . . . ,

where

q =
 –

√
 – λ

 +
√
 – λ

.

Recall that f :G → G is aC-mapping. As in the previous section, we always assume that
x ∈ G is such that df –x exists and set β := ‖df –x f (x)‖. Then, by Theorem ., we obtain
the following results, which were given in [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/293
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Theorem . Suppose that df –x df satisfies the L-Lipschitz condition on Cr (x) and that
λ = Lβ ≤ 

 . Then the sequence {xn} generated by Newton’s method (.) with initial point
x is well defined and converges to a zero x∗ of f .Moreover, the following assertions hold for
each n = , , . . . :

�(xn+,xn) ≤
∥∥df –xn f (xn)

∥∥ ≤ tn+ – tn;

�
(
xn,x∗) ≤ qn–∑n–

j= qj
r.

Let x ∈G be such that (Hxφ)– exists, and let βφ = ‖(Hxφ)–(L′
x )

–
e gradφ(x)‖. Recall

that r is defined by (.). Then, by Theorem ., we get the following results, which were
given in [].

Theorem . Suppose that λ = Lβφ ≤ 
 , and that (Hxφ)–(H(·)φ) satisfies the L-Lipschitz

condition on Cr (x). Then the sequence generated by Algorithm . with initial point x is
well defined and converges to a critical point x∗ of φ: gradφ(x∗) = .
Furthermore, if Hxφ is additionally positive definite and the following Lipschitz condi-

tion is satisfied:

∥∥(Hxφ)
–∥∥‖Hx·expuφ –Hxφ‖ ≤ L‖u‖ for x ∈G and u ∈ G with �(x,x) + ‖u‖ < r.

Then x∗ is a local solution of (.).

Let k be a positive integer and assume further that f : G → G is a Ck-map. Define the
map dkfx : Gk → G by

dkfxu · · ·uk =
(

∂k

∂tk · · · ∂t f (x · exp tkuk · · · exp tu)
)
tk=···=t=

for each (u, . . . ,uk) ∈ Gk . In particular,

dkfxuk =
(
dk

dtk
f (x · exp tu)

)
t=

for each u ∈ G.

Let  ≤ i ≤ k. Then, in view of the definition, one has that

dkfxu · · ·uk = dk–i
(
dif·(u · · ·ui)

)
xui+ · · ·uk for each (u, . . . ,uk) ∈ Gk .

In particular, for fixed u, . . . ,ui–,ui+, . . . ,uk ∈ G ,

difxu · · ·ui– = d
(
di–f·(u · · ·ui–)

)
x(·).

This implies that difxu · · ·ui–u is linear with respect to u ∈ G and so is dkfxu · · ·ui– ×
uui+ · · ·uk . Consequently, dkfx is a multilinear map from Gk to G because  ≤ i ≤ k is
arbitrary. Thus we can define the norm of dkfx by

∥∥dkfx∥∥ = sup
{∥∥dkfxuu · · ·uk

∥∥ : (u, . . . ,uk) ∈ Gk with each ‖uj‖ = 
}
.
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For the remainder of the paper, we always assume that f is a C-map fromG to G . Then,
taking i = , we have

dfzvu = d(df·v)zu for any u, v ∈ G and each z ∈G.

Thus, (.) is applied (with df·v in place of f (·) for each v ∈ G) to conclude the following
formula:

dfx·exp(tu) – dfx =
∫ t


dfx·exp(su)uds for each u ∈ G and t ∈R. (.)

The γ -conditions for nonlinear operators in Banach spaces were first introduced and
explored by Wang [, ] to study Smale’s point estimate theory, which was extended
in [] for a map f from a Lie group to its Lie algebra in view of the map df as given in
Definition . below. Let r >  and γ >  be such that γ r ≤ .

Definition . Let x ∈ G be such that df –x exists. f is said to satisfy the γ -condition at
x on Cr(x) if, for any x ∈ Cr(x) with x = x expu expu · · · expuk such that ρ(x,x) :=∑k

i= ‖ui‖ < r,

∥∥df –x dfx
∥∥ ≤ γ

( – γρ(x,x))
.

As shown in Proposition ., if f is analytic at x, then f satisfies the γ -condition at x.
Let γ >  and let L be the function defined by

L(s) =
γ

( – γ s)
for each  < s <


γ
. (.)

The following proposition shows that the γ -condition implies the L-average Lipschitz
condition.

Proposition . Suppose that f satisfies the γ -condition at x on Cr(x). Then df –x df
satisfies the L-average Lipschitz condition on Cr(x) with L defined by (.).

Proof Let x ∈ Cr(x) and let u,u, . . . ,uk ∈ G be such that x = x expu expu · · · expuk and∑k
i= ‖ui‖ + ‖u‖ < r. Write ρ(x,x) :=

∑k
i= ‖ui‖. Observe from (.) that

dfx·expu – dfx =
∫ 


dfx·exp(su)uds.

Combining this with the assumption yields that

∥∥df –x (dfx·expu – dfx)
∥∥ ≤

∫ 



∥∥df –x dfx·exp(su)
∥∥‖u‖ds

≤
∫ 



γ
( – γ (ρ(x,x) + s‖u‖)) ‖u‖ds

=
∫ ρ(x,x)+‖u‖

ρ(x,x)

γ
( – γ t)

dt.
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Hence, df –x df satisfies the L-average Lipschitz condition on Cr(x) with L defined by
(.). �

Corresponding to the function L defined by (.), r and b in (.) are r = ( –
√

 ) 

γ

and b = ( – 
√
) 

γ
, and the majorizing function given in (.) reduces to

h(t) = β – t +
γ t

 – γ t
for each ≤ t ≤ R.

Hence the condition β ≤ b is equivalent to α = γβ ≤  – 
√
. Let {tn} denote the se-

quence generated by Newton’s method with the initial value t =  for h. Then the follow-
ing proposition was proved in [], see also [] and [].

Proposition . Assume that α = γβ ≤  – 
√
. Then the zeros of h are

r =
 + α –

√
( + α) – α
γ

, r =
 + α +

√
( + α) – α
γ

and

β ≤ r ≤
(
 +

√


)
β ≤

(
 –

√


)

γ

≤ r ≤ 
γ

.

Moreover, the following assertions hold:

tn+ – tn =
( –μn )

√
( + α) – α

α( – νμn–)( – νμn+–)
νμn–β ≤ μn–β for each n = , , . . . ,

where

μ =
 – α –

√
( + α) – α

 – α +
√
( + α) – α

and ν =
 + α –

√
( + α) – α

 + α +
√
( + α) – α

. (.)

Recall that x ∈G is such that df –x exists, and let β := ‖df –x f (x)‖. Then, by Theorem .
and Proposition ., we get the following results, which were given in [].

Theorem . Suppose that

α := βγ ≤  – 
√


and that f satisfies the γ -condition at x on Cr (x). Then Newton’s method (.) with ini-
tial point x is well defined, and the generated sequence {xn} converges to a zero x∗ of f .
Moreover, if α <  – 

√
, then for each n = , , . . . ,

�(xn+,xn) ≤ νn–β ,

where ν is given by (.).
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Below, we always assume that f is analytic on G. For x ∈ G such that df –x exists, we
define

γx := γ (f ,x) = sup
i≥

∥∥∥∥df –x difx
i!

∥∥∥∥ 
i–
.

Also, we adopt the convention that γ (f ,x) = ∞ if dfx is not invertible. Note that this defi-
nition is justified and, in the case when dfx is invertible, γ (f ,x) is finite by analyticity.
The following proposition is taken from [].

Proposition . Let γx := γ (f ,x) and let r = –
√


γx
. Then f satisfies the γx -condition at

x on Cr(x).

Thus, by Theorem . and Proposition ., we get the following corollary, which was
given in [].

Corollary . Suppose that

α := βγx ≤  – 
√
.

Then Newton’s method (.)with initial point x is well defined and the generated sequence
{xn} converges to a zero x∗ of f .Moreover, if α <  – 

√
, then for each n = , , . . . ,

�(xn+,xn) ≤ νn–β ,

where ν is given by (.).
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