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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H and f be a bifunc-

tion from C x C to R. We consider the following equilibrium problems (shortly EP(f,
0)):
Find x* € C such that f(x*,y) > 0 forally € C.

The set of solutions of Problem EP(f, C) is denoted by Sol(f, C). These problems
apprear frequently in many practical problems arising, for instance, physics, engineer-
ing, game theory, transportation, economics and network, and become an attractive
field for many researchers both theory and applications (see [1-6]). The bifunction f'is
called

» monotone if
fley)+f(rx) <0, VxyeC
« pseudomonotone if
fley)=20=f(y.x) <0, VxyeC

o Lipschitz-type continuous with constants ¢; >0 and ¢, >0 if

2
’

fy) +f(n2) = frz) —afx—y|* —cally—2|®, vayec

It is clear that every monotone bifunction fis pseudomonotone.
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Let C be a nonempty closed convex subset of 4. A self-mapping S : C — C is called
a strict pseudocontraction if there exists a constant 0 < L < 1 such that

[S@) = SW)|” < Jx =y + LI = )(x) — 1 = $)¥)

2
’

Vx,y € C,

where [ is the identity mapping on C. The set of fixed points of S is denoted by Fix
(S). The following proposition lists some useful properties for strict
pseudocontractions.

Proposition 1.1 [7]Let C be a nonempty closed convex subset of a real Hilbert space
H, S: C— C be a L-strict pseudocontraction and for each i =1, .., p, S;: C—> Cisa
L;-strict pseudocontraction for some 0 < L; <1. Then,

(a) S satisfies the Lipschitz condition

IS(x) =S| < liL lx=y|. vxyeC
1-L

(b) I - S is demiclosed at 0. That is, if {x"} is a sequence in C such that x"* — xand (I
-8 (") = 0, then (I — S)(x) = 0;

(c) the fixed point set Fix(S) is closed and convex;

(d) if 2; > 0 and Zle Ai =1, then Zle AiSiis a [-strict pseudocontraction with
L=max{L;: 1 <i<L}

(e) if A; is given as in (d) and {S; : i = 1, ..., p} has a common fixed point, then

p
Fix (Z xis,-) = NP Fix(S)).
i=1

For finding a common fixed point of p strict pseudocontractions {S,'}le, Mastroeni

[5] introduced an iterative algorithm in a real Hilbert space. Let sequences {x"} be
defined by

p
X = o (1= o) Y AniSi"),
i=1

Under appropriate assumptions on the sequence {1, ;, the authors showed that the
sequence {x"} converges weakly to the same point x ﬂf=1FiX(S,-).

For obtaining a common element of set of solutions of Problem EP(f, C) and the set
of fixed points of a nonexpansive mapping S in a real Hilbert space #, Takahashi and
Takahashi [8] first introduced an iterative scheme by the viscosity approximation
method. The sequence {x"} is defined by

X0 e H,
fw )+ y—u"u"—x") >0, VyeC,
1 = @pg(x") + (1 — a,)T(u"), VYn>O0.

The authors showed that under certain conditions over {¢,,} and {r,}, sequences {x"}
and {#"} converge strongly to z = Prey(nnsolc) (€(2)), where Prc is denoted the projec-
tion on C and g : C — C is contractive, i.e., ||g(x) - gO)|| < J||x - y|| for all x, y € C.

Recently, for finding a common element of the set of common fixed points of a strict
pseudocontraction sequence {§;} and the set of solutions of Problem EP (f, C), Chen et

al. [9] proposed new iterative scheme in a real Hilbert space. Let sequences {x"}, {y"}
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and {Z"} be defined by

%0 e C,

Y=o + (1 — an)sn(x"),

f@y)+ =22 —y) =0, VyeC,
Co={veC: |lz2'—v|| < [Ix" =1},
1™t = Pre, (x9).

Then, they showed that under certain appropriate conditions imposed on {¢,} and
{r,}, the sequences {x"}, {y"} and {z"} converge strongly to PrFix(s)nSOI(ﬁc)(xO), where S is
a mapping of C into itself defined by S(x) = JLIEIO Su(x) for all x e C.

There exist some another solution methods for finding a common element of the set
of solutions of Problem EP(f, C) and ﬂilFix(Si) (see [3,10-19]). Most of these algo-
rithms are based on solving approximation equilibrium problems for strongly mono-
tone or monotone and Lipschitz-type continuous bifunctions on C. In this article, we
introduce a new iteration method for finding a common element of the set of common
fixed points of p strict pseudocontractions and the set of solutions of equilibrium pro-
blems for pseudomonotone bifunctions. The fundamental difference here is that at
each iteration n, we only solve a strongly convex problem and perform a projection on
C. The iterative process is based on the extragradient method and Armijo-type line-
search techniques. We obtain weak convergence theorems for sequences generated by
this process in a real Hilbert space H.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H. For each point
x € H, there exists the unique nearest point in C, denoted by Pr(x), such that

llx = Pre(x)ll < [lx—yIl. VyeC.

Prc is called the metric projection on C. We know that Prc is a nonexpansive map-
ping on C. It is also known that Prc is characterized by the following properties

Prc(x) € C,  {x — Pre(x), Pre(x) —y) = 0, (2.1)

for all x e H, y € C. In the context of the convex optimization, it is also known that
if g: C — R is convex and subdifferentiable on C, then x is a solution to the following

convex problem
min {g(x) : x € C}

if and only if 0 € 9g (X) + N¢ (x), where N¢ (%) is out normal cone at x on C and 9dg(-)
denotes the subdifferential of g (see [20]).

Now we are in a position to describe the extragradient-Armijo algorithm for finding
a common element of NY_ Fix (S;) N Sol (f, C).

Algorithm 2.1 Given a tolerance ¢ >0. Choose e C k=0, ye (0,1),0 <0 < ‘3
and positive sequences {A,,;} and {o,,} satisfy the conditions:

{an} C [a,b] € (L, 1) where L= max{L;i: 1<i<p},
p

p
> hni=1 forall n>1, lim Api=%;i € (0,1) foralli=1, ..,p,Y_ Ari=1.
i=1 n—0oo i=1
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Step 1. Solve the strongly convex problem

B

5 ly =" :ye C} andsetr (x") = x" — y".

y" = argmin {f (" y) +

If ||rx")|| = O then go to Step 2. Otherwise, set w" = x" and go to Step 3.
Step 2. (Armijo-type linesearch techniques) Find the smallest positive integer number

m,, such that
f =y @), ) = —o (@) (22)
Compute
w" = Prenp, ("),

where 2= X" — y™r(x"), v € dof (¢, 2¥) and
H, ={xeH: (@', x—2z" < 0}, and go to Step 3.
Step 3. Compute

p
= ™ + (1 — ap) mesi (w").
i=1
Increase n by 1 and go back to Step 1.
Remark 2.2 If [|r(x")|| = O then x" is a solution to Problem EP(f, C) but it may be

not a common fixed point of {Si}le.

Indeed, ||r(x")|| = 0, i.e, x” is the unique solution to
. " B 112
min {f (x", y) + 2||y—x |”:yecCy.

Then
0 € dof (x", x") + N¢ (x").
Hence
(", x—x") >0, VrxeC V' edf(x x").
Combining this inequality with f{x", x”) = 0 and the convexity of fx" -), i.e.,
f(&" x) — f(x", x") = (V" x — "), Vx € C, V' € dof (x", &),
we have flx”, x) > 0 for all x € C. It means that x” is a solution to Problem EP(f, C).

3 Convergence results
In this section, we show the convergence of the sequences {x"}, {y"} and {w"} defined
by Algorithm 2.1 is based on the extragradient method and Armijo-type linesearch
techniques which solves the problem of finding a common element of two sets
ﬂle Fix (S;) and Sol (f, C). To prove it’s convergence, we need the following preparatory
result.

Lemma 3.1 [21]Let C be a nonempty closed convex subset of a real Hilbert space H.
Suppose that, for all u € C, the sequence {x"} satisfies

Page 4 of 16
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n+1

—u| < |« —ul|, vn > 0.

&

Then, the sequence {Prc(x")} converges strongly to X € C.

We now state and prove the convergence of the proposed iteration method.

Theorem 3.2 Let C be a nonempty closed convex subset of H, S;: C — C be a L;-
Lipschitz pseudocontractions for all i = 1, ..., p and f : C x C — Rsatisfy the following
conditions:

(i) fix, x) = 0 for all x € C, fis pseudomonotone on C,

(ii) f is continuous on C,

(iii) For each x € C, flx, -) is convex and subdifferentiable on C,

(iv) If the sequence{t"} is bounded then {v"} is also bounded, where v" € 0,it", ¢"),

(v) N_ Fix (S;) N Sol (f, C) # &.

Then the sequences {x"}, {y"} and {w"} generated by Algorithm 2.1 converge weakly to
the point x* where x* = Hm Prey i, onsol(r, ©) ("),

Proof. We divide the proof into several steps.

Step 1. If there exists 7y such that x” = y” for all # > n,, then the sequences {x"}, {y'"}
and {w"} generated by Algorithm 2.1 converge weakly to ¥ € N, S; N Sol (f, C)

Indeed, since x” = y” for all n > ny, we have w” = x” and

p
M=+ (1 — ay) ZS,' ("), vn = no.
i=1
This iteration process is originally introduced by Marino and Xu in a real Hilbert
space (see [5]). Under assumptions of Algorithm 2.1 on the sequence {1, ;}, the author
showed that the sequence {x"} converges weakly to the same point x e ﬂ?=1 Fix (S)).
Then, the sequence {x"} converges weakly to x € ﬂil S; N Sol (f, C) in . Conse-
quently, the sequences {y”} and {w"} also converge weakly to ¥ as n — «. In this case,
the sequences {z”} and {v"} might not converge weakly to the point .
Otherwise, we consider the following steps.
Step 2. If ||r(x")|| # O, then there exists the smallest nonnegative integer m, such
that

fE =y ),y < —ofr (@)

For ||r(x")]| = 0 and Y€ (0, 1), we suppose for contradiction that for every nonnega-
tive integer 1, we have

fO =y @), ) + ol ()] > o.
Passing to the limit above inequality as m —> =, by continuity of f, we obtain

f &9 + o (x") ||2 > 0. (3.1)
On the other hand, since y" is the unique solution of the strongly convex problem

B

min{f () + Dy = 017y e
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we have
n B ni2 no.n By n n|2

f"y) + 2||)’—XH > f (" ") + 2||y — "5, vy € C.
With y = x”, the last inequality implies

f" ") + gnr(x”) ||2 < 0. (3.2)
Combining (3.1) with (3.2), we obtain

2 _ B 2

ollr " = 5 Ir &)

Hence it must be either ||r(x")|| =0 or o > g The first case contradicts to ||r(x")||

# 0, while the second one contradicts to the fact o < g
Step 3. We claim that if ||r(x")|| = O then x" ¢ H,.
From z" = x" — y™r (x"), it follows that

1 — ym
Yyt —2" = m)/ (2" — «").
y n
Then using (4.1) and the assumption flx, x) = 0 for all x € C, we have

0> —o|r(@)|’

Z f (Zn, yn)

- f (Z", yn) _f (Zn,zn)
> <vn1yn _ Zn)

_1 ;ni:mn (" =" ).

Hence
(x" — 7zt v") > 0.
This implies that x” ¢ H,,.
Step 4. We claim that if ||r(x")|| = 0 then w" = Prcnp, (7"), where " = Prp, (x").
For K = {xe H : (w,x —x% < 0} and ||w|| # 0, we know that

.0
oy - )

Prc(r) =7 ="

Hence,

V' = Pry, (x")
", x" = 2"
|12

n

n
[lv"
P A AV i € o I
2
flvm ]

Otherwise, for every y € C n H,, there exists A € (0, 1) such that

="+ —A)ye CNaH,,
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where
OH, = {x e H :(v",x —2") = 0}.
From Step 2, it follows that x” € C but & ¢ H,,. Therefore, we have

ly=71* = a-»y -
= & - - a -’
= G- - A -7

(3.3)
R e T [ 3 U ] LYY L,
ol A RS T A
> & - 7%
because y" = Pry, (x"). Also we have
X x”” = 5c—y"+)7"—x"H
o L T O O ey
= & =7+ 7 -
Using w" = Prcnp, (x") and the Pythagorean theorem, we can reduce that
R e e A
o e e A (3.4)
= Jw =7

From (3.3) and (3.4), we have

lw" =3 < |ly=7"], VyeCnH,,

which means
w" = Pl‘cmH,1 ()—/n)

Step 5. We claim that if ||#(x")|| = 0 then Sol(f, C) € C n H,,.
Indeed, suppose x* € Sol(f, C). Using the definition of x*, flx*, x) > 0 for all x € C
and f'is pseudomonotone on C, we get

f(@ x*) <o (3.5)
It follows from v € 9,f (2", Z”) that
FE ) = @)~ f (@)

(v", x* — z"). (3.6)

v

Combining (3.5) and (3.6), we have
(", x* = 2" <o.

By the definition of H,, we have x* € H,. Thus Sol(f, C) € Cn H,,.
Step 6. We claim that if ||(x”)|| = 0 and the sequence {v"} is uniformly bounded by M >0
then the sequence {||x” - x*||} is nonincreasing and hence convergent. Moreover, we have
my 2
ot = x < = = e =P -0 (U7 @l
e o= D) [ )

(3.7)

Page 7 of 16
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where " = Pry, (x"), S, := Zil AniSiand x* € ﬁf=1 Fix (S;) N Sol (f, Q).

In the case ||r(x")|| = 0, by Step 4, we have w" = Prcnp, (") ie.
" —uw", z—w") <0, Vze€ CNH,,
where y" = Pry, (x") . Substituting z = x* € Sol(f, C) € C n H, by Step 5, then we

have

=n

(y _wnl x*_wn>Soﬁ(yn_wn’x*_)—/n_k}—}n_wn)SO’

which implies that

”wn _ )—/n”2 < <wn _ )—/nl K )—/n)

Hence
Jw" =2 )* = w ="+ 7" =
= [ =7+ |7 =) 2 =)
<=y =)+ | -2 Hz +2(w" =" 7" —x*) (3.8)
_ H)—}n —x*”2 + (wn — 7" —x*)
S e A
Since z" = x* — y™r (x") and

", X" — 2"

P e () == T T
we have
7" =
At R T e

= ||xn e ”2 (Vm" (Vnrr(xn»)z _ 2y™ (", T (x™)) (v" X" _x*)
o llom? '
ST (y’"" <v",r<x")>)2
ol
YT M) e (Y™ T M)
2( e X ) ( Il ) )
= |- 2 (y’"" <v",r(x")>)2 (39)
il
2yM W T () o n s o (1 (0
- ”1/"”2 (<U X —x)—y (I/,T(x )))

w2 (Y™ @)
= [ =" -

o™l

2y™ @, r (x™))
-7 2 M, =t = ymor ()
2 (YT 2y (0, ()
==+ _< Il ) T e A

It follows from v" € 0,(z", 2") that

f@y) —f@2") = y—-2"), ¥VyeC (3.10)
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Replacing y by »” and combining with assumptions f(z”, z”) = 0 and
2= 4 — )/m”T (xn),

we have

f (zn’yn) > (vn’yn _ zn)

=—(1—y™) (", r(x")).
Combining this inequality with (4.1) and assumption y € (0, 1), we obtain

o

I T @11

Substituting y = x* into (3.10) and using f{z”, ") = 0, we have

f@x) = (V' x* = 2"). (3.12)
Since f'is pseudomonotone on C and flx*, x) > 0, Vx € C, we have

f(@ x*) <o
Combining this with (3.12), we get

0> (v", x* - z"). (3.13)

Using (3.9), (3.11) and (3.13), we have

My 40 n 2
T e A

ol
n %2 ana 2 n\ |4
<=5 = () I

Combining (3.8) with (3.14), we obtain

(3.14)

m 2
no_ox|2 no_ .2 _ no_ =n||?2 _ yoo ny |14 1
= < = =t = = (T ) I 319

Using S, := Y0, AniSis (3.15), #™1 = au + (1 — &) Y AniSi (w") and the
equality

fox + (@ = 2y = AP+ =2 [y =2 =2 |x —y|> VA e [0, 11, xy € R", (3.16)

we have

et =

= o + (1 = ) 85 (w") =2

= flom (" = %) + (1 — o) (Su (w") —x*)

= oy " = x[* + (1= o) [ S (") = S () ” = @ (1 = ) | S0 (w") = "]*

< e =P+ (@ = (Ju =P+ 1[0 =5) @) - (-8) ) (519
— ey (1= ) |85 (") — "]

= " =2+ (1 =) (L~ ) |5 () = |

m 2
n * n on y "o n
< =x )t = - w7 ||2—<1—an)(”vn”(1_ymn)> Ir )

2
H

= (1= ) (o = L) |0 (w") = |,
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In the case [|r(x")|| = 0, by Algorithm 2.1 and (3.16), we have w” = x” and

ot = = ena” + (1 — e 8, (%) — 2
= o (37 = ") + (1 = ) (S (") = Su ()
= e =P+ (= e 5 () = 8 ()|
— o (1) [(1=5,) (") = (1= 5) ()]
<o x|’ +<1—an>(||x —x P L) (1= 80) () = (1= 8) () )
(

— o (1= ) [ (1= 8,) (") = (1= $) ()]
=||”x —x ||”—(1—an>(an—L IIS ( —

Combining this and (3.17), we get

||x”+1 — x*|| < ||x” —x*||, Yn > 0.

So the sequence {||x” - x*||} is nonincreasing and hence convergent. Since (3.17) and
the sequence {v"} is uniformly bounded by M >0, i.e.,

[ <M, vn >0,
we obtain (3.7).
Step 7. We claim that there exists ¢ = lim [Ix" — x*[| = lim [w" — x*| where
n—oo n— 00

x* e NP Fix (S;) N Sol (f, C). Consequently, the sequences {x"}, {y"}, {z"}, {+"} and {w"}
are bounded.
By Step 6, there exists

¢ = lim [« — x| (3.18)

From w" = x™if ||r (x") H = 0, w" = Prcnp, (x") if ||r (x”)H # 0 and Step 6, it follows

that
Ju - ] <
Hence
Tim [ — ¢ < Jim |~ 2] = c .19

Using ™! = a,w" + (1 — a,) Sy (w"), we have
Lt = e + (1 — ) Sy (W) — 2%
= e (" =) + (1 = ) (S (w") =) [°
= o w = x|+ (=) S (") = 8 ()7
Q n Q x\ |2
—on (1 —ay) [[(I=Sn) (") = (I = Sn) (") |
< e =5 + (1 = a) (" x|+ L[S, () =)
Q n Q x\ |2
—on (1 —an) [[(I = Sn) (W") = (I = Sn) (") |
= " =¥ [* = (@ = @) (ot = L) S0 (w") = w"|?

< Jw" =]

|«

(3.20)
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Hence
. no_ L%
c < ,}L“é‘o Jw" — x*|. (3.21)
From (3.21) and (3.19), it follows that

¢ = lim |w" — .

n—oo

Since y” is the unique solution to
min {f(x”, y) + '2”)/ — x|y e C},

we have

B
2

B
2

||y — x"”2 > f(x", y") + ||y" — x" 2, vy € C.

f (x", y) +
With y = x” € C and fix”", x) = 0, we have

02 f@ )+ bl — 2 (3.22)

Since f (x", -) is convex and subdifferentiable on C, i.e.,
fOmy) —f("x") = 'y — ") VyeC,
where u” € 9, f (x”, x”). Using y = ¥", we have
fOt ") = (Wl y" =),
Combining this and (3.22), we obtain
B

Wy =)+ =R < 0,
Hence
1
=yt + ﬁu" < 5 IFu™ | . (3.23)

From the assumption (iv) and (3.18), it implies that the sequence {#"} is bounded.
Then, it follows from (3.23) that {y""} is bounded and hence 2" = x" — y™ (x" — y") is
also bounded. Also the sequences {v"} and {w"} are bounded.

Step 8. We claim that there exists a subsequence of the sequence {x”} which con-

verges weakly to x € ﬂf;lFix (S9) Sol (f, C) and hence the whole sequence {x"} converges

weakly to x.
Suppose that {x"} is a subsequence of {x"} such that

[ r(x™) Il # 0.

By Step 7 and the assumption (iv), the sequence {v"} is bounded by M >0. We show
that

Page 11 of 16
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e =P <l = = (1= ) w7

—b(a—L) || Spp(w?) — w"P|?

m 2
y ne+p oy
—(1 = Me+p 4/
( b)(M(l_ymnkﬂ,)) )

(3.24)

where P =ty — g — 17" = Pryy, (¥%7), 1+ e Al Fix(S;) N Sol(f,C) and
Sy = Zle AniSi- Indeed, if 74,1 = np + 1 then it is clear from Step 6. Otherwise, we
suppose that there exists a positive integer p such that n; + p + 1 = ng,;. Note that
| r(x™*) |]= 0 for all i = 0, 1, .., p - 1. Using r(x"*) # 0, (3.17) and Step 6, we have

” xnkd _ x*||2 =” xn;l+p+1 _ x*||2
2 = 2
<[P — x| = (1 = apyp) || W™ =P

)/m"’l+pO'

2
— _ ne+py (14
(1 ank*’ﬂ) ( ” l)"k'*‘ﬂ ” (1 _ ym"k*p)) ” T(x )”

— (1 = anap) (nap — I:) l Snk+ﬂ(wnk+p) - LU"hw”2

<l =2 = (1= D) W — e

_ b(a _ I:) I Snkw(wn;ﬁp) _ wn;z+P||2

m 2
_ _ Y K np+py 14
( b)(M(l - ymw)) RCRl

This implies (3.24). Then, since {||x” - x*||} is convergent, it is easy to see that
lim y™w || r(x™*) ||= 0.
k— o0

The cases remaining to consider are the following.

Case 1. li;n sup y"™? > 0 This case must follow that likm ilolf [ r(x™*P) || = 0, Since
— 00 —

{x™*P} is bounded, there exists an accumulation point x of {x"*’}. In other words, a
subsequence {x™} converges weakly to some ¥, as j — « such that r(X) = 0. Then by
Remark 2.2, we have % € Sol (f, C).

3 Mp,vp — . . .
Case 2. klggo y e =0, Since {||x™* — x*||} is convergent, there is the subsequence

{x"*PYof {x™*P} which converges weakly to x, as j — «. Since Mn+p is the smallest non-
negative integer, My,+p — 1 does not satisfy (4.1). Hence, we have

f (X"kf —y" T(x"kf),y"kf> > —alr(x")I*.
Passing onto the limit, as j — « and using the continuity of f, we have ™ — jy and

f(x7) = —ollr(®)I1% (3.25)

where r(X) = X — . It follows from (3.2) that
F =y B e <o,
Since f'is continuous and passing onto the limit, as j — «, we obtain

fxy) + gllr(a'c)n2 <o0.
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Combining this with (3.25), we have
=\112 Py B =12
ol r@)I* = —f(xy) = 5 I r(x)1I=

which implies () = 0, and hence X =y € Sol (f, C). Thus every cluster point of the
sequence {x"*P} is a solution to Problem EP(f, C).

Now we show that every cluster point of {x"*F} is a fixed point of p strict pseudo-
contractions {S,-}il. Suppose that there exists a subsequence {x™}of {x"*P} which con-
verges weakly to X, as j — «. By the above proof, we have x € Sol(f, C). Then {y™} and
{w™} converge weakly also to X, as j — «. For each i = 1, ..., p, we suppose that )‘nk’.,i

converges A; as i — « such that

p
Sai=1.
i=1

Then, we have
_ p _
Sy, (%) = S(x) == > AiSi(x) (asj— o0), VxeC.

i=1

For each x* e ﬂilFix(S,') N Sol(f, C), it follows from (3.20) that
(1 =) (an — L) I Su(w") —w> < [ w" —x* || = | ™! —x*||2.

Combining this and Step 6, we get

[ Su(w") —w"|? <

_ wn _x* 2 xn+1 _ x* 2
(1 —a)on -0 1= )

1 no_ k2 n+l %2
=V N Uit el At

— 0 as n — oo.
Then, using (a) of Proposition 1.1, we obtain
2™ = S (") I <l 2™ = w™ ||+ | w" — S (™) 1] + 1| S (") = S, (") |
<UL = = S ) e -

= g Il = S (W) |
— 0as j— oo.

So € Fix (S). Then, it follows from (e) of Proposition 1.1 that X e N?_, Fix(S;). Thus
x € N?_, Fix(S;) N Sol(f, C) letting x* = % and using Step 7, we have

c=lim || " — X ||= lim || x™ — X |= 0.
n—oo j—00

We conclude that the whole sequence {x"} converges weakly to
Xe ﬂ?;lFix(S,-) N Sol(f, C). Consequently, the sequences {y"} and {w"} also converge
weakly to x.

Step 9. We claim that the sequences {x"}, {y"} and {w"} converge weakly to x, where

X= ,}ggo PIry Fix(s)nsol(f.c) (x").

Page 13 of 16
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By Step 8, we suppose that "= Prmlepjx(si)nsol(f,c) (") and x" — X as n — «. Using

the definition of Pr(-), we have
(t" —x" " —x) <0, Vxenl Fix(S;)NSol(f,C). (3.26)
It follows from Step 7 that
[ 4 —x* | < || x" —x* |, Vn>0, x*eni Fix(S;) N Sol(f,C).
By Lemma 3.1, we have
"= Prﬁf:IFix(S;)ﬁSol(f,C)(xn) — x1 € ML, Fix(S;) N Sol(f,C) as n — oo. (3.27)
Pass the limit in (3.26) and combining this with (3.27), we have
(x1 — % x; —x) <0, Vxe N Fix(S;) N Sol(f, C).
This means that X = x; and
X = nll{go Prmﬁ;lFix(si)nsOl(f,C) (x").
It follows from Step 8 that the sequences {x"}, {y"} and {w"} converge weakly to x, where
X= nhfolo PIry Fix(s)nsol(f,c) (x").

The proof is completed.

4 Application to variational inequalities
Let C be a nonempty closed convex subset of 7 and F be a function from C into #. In this

section, we consider the variational inequalitiy problem which is presented as follows

Find x € C such that (F(x),x—x) >0 forallx e C. VI(F,C)

Let f: C x C— R be defined by flx, y) = (F(x), ¥ - x). Then problem P(f, C) can be
written in V I(F, C). The set of solutions of V I(F, C) is denoted by Sol(F, C). Recall
that the function F is called

« monotone on C if

(F(x) =F(y).x=y) =0, VxyeC

« pseudomonotone on C if
(F(y),x—y) > 0= (F(x),x—y) >0, VxyeC

o Lipschitz continuous on C with constants L >0 (shortly, L-Lipschitz continuous) if
I F(x) —F(y) < Llx=yl, VxyeC

Since
¥ = argmin {f(xk,y) + }j Hy—kaZ Sye C}

= argmin{(F(xk),y—xk) + lj ”y—x"’”2 T ye C}

pre (= F ().
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Algorithm 2.1, the convergence algorithm for finding a common element of the set
of common fixed points of p strict pseudocontractions and the set of solutions of equi-
librium problems for pseudomonotone bifunctions is presented as follows:

Algorithm 4.1 Give a tolerance & >0. Choose x° € C, k=0, ye (0,1),0 <o < gand

positive sequences {A,,;} and {a,} satisfy the conditions:
{an) C [a,b] € (L, 1) where L := max{L;: 1 <i<p},

p p
Shni=1forall n>1, lim Ay =2x; € (0,1) foralli=1,...,p,> Ai=1.
i=1 =00 i=1

Step 1. Compute
I3 ke 1 ke n n n
Y* = Prc x—ﬂF(x) and set r(x") = x" — y".

If ||r(x")||= O then go to Step 2. Otherwise, set w" = x" and go to Step 3.
Step 2. (Armijo-type linesearch techniques) Find the smallest positive integer number
m,, such that

(1 —y™)FE" —y™r(x")), r(x")) = ollr(x")] . (4.1)
Compute

w = Pl'CﬂHn (x"),

where 2" = x" — y™r(x")and H, = {x € H : (F(z"),x —2") < 0}, and go to Step 3.
Step 3. Compute

p
X = ™+ (1 — ay) Y AniSi(w™).
i=1
Increase n by 1 and go back to Step 1.
Using Theorem 3.2, we also have the convergence of Algorithm 4.1 as the follows:
Theorem 4.2 Let C be a nonempty closed convex subset of H. Let F: C — Hbe con-
tinuous and pseudomonotone, and S; : C — C be a L-Lipschitz pseudocontractions for
all i = 1, ..., p such that ﬂle Fix (S;) N Sol (f, C) # 0. Then the sequences {x"}, {y"}
and {w"} generated by Algorithm 4.1 converge weakly to the point x*, where

* _ 13 h
X = lim Prey gius, opnsor(e.c) 3.
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