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Abstract

Background: Thousands of biological and biomedical investigators study of the functional role of single genes and
their protein products in normal physiology and in disease. The findings from these studies are reported in research
articles that stimulate new research. It is now established that a complex regulatory networks's is controlling human
cellular fate, and this community of researchers are continually unraveling this network topology. Attempts to
integrate results from such accumulated knowledge resulted in literature-based protein-protein interaction networks
(PPINs) and pathway databases. These databases are widely used by the community to analyze new data collected
from emerging genome-wide studies with the assumption that the data within these literature-based databases is
the ground truth and contain no biases. While suspicion for research focus biases is growing, a concrete proof for it
is still missing. It is difficult to prove because the real PPINs are mostly unknown.

Results: Here we analyzed the longitudinal discovery process of literature-based mammalian and yeast PPINs to observe
that these networks are discovered non-uniformly. The pattern of discovery is related to a theoretical concept proposed
by Kauffman called “expanding the adjacent possible”. We introduce a network discovery model which explicitly includes
the space of possibilities in the form of a true underlying PPIN.

Conclusions: Our model strongly suggests that research focus biases exist in the observed discovery dynamics of these
networks. In summary, more care should be placed when using PPIN databases for analysis of newly acquired data, and
when considering prior knowledge when designing new experiments.
Background
Protein-protein interaction networks (PPINs) are an
abstract representation of the body of knowledge about
the known physical interactions between proteins within
cells of an organism. In these networks, proteins are the
nodes and their known physical interactions (PPIs) are
the links. Literature-based PPINs and pathway databases
are central in computational systems biology since they
summarize accumulated knowledge and are reused for vari-
ous types of analyses. For example, PPINs can be used to
predict disease genes and identify disease related pathways
or modules [1–5], applied to predict gene/protein function
[6, 7] and predict undiscovered PPIs [8]. Commonly, lists of
genes and proteins identified experimentally by high
* Correspondence: avi.maayan@mssm.edu
†Equal contributors
1Department of Pharmacology and Systems Therapeutics, Icahn School of
Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, NY
10029, USA
2BD2K-LINCS Data Coordination and Integration Center, New York, USA
Full list of author information is available at the end of the article

© 2015 Wang et al. This is an Open Access art
(http://creativecommons.org/licenses/by/4.0),
provided the original work is properly credited
creativecommons.org/publicdomain/zero/1.0/
content profiling methods use literature curated PPINs
and pathway databases for enrichment analyses [9], or
such lists are seeded within PPINs to identify functional
subnetworks, and this helps to provide global biological
context to the identified gene lists [10, 11]. Inclusion of
PPINs was shown to improve the quality of inferred
co-expression networks and the prioritization of genes
that harbor mutations and copy number variations to
better correlate these with disease [12–14].
There are several reasons to suspect that literature-

based PPINs and pathway databases contain research
focus biases. For instance, the uneven availability of tools
such as mouse models or quality antibodies enable the
study of some genes and proteins over others [15]. How-
ever, so far, concrete proof that such discovery bias really
exists has not been reported. It is difficult to prove that
such bias exists because the real PPINs are mostly un-
known. One null model for the discovery of any network
is a uniformly even, uncorrelated exploration of all links and
nodes without bias. An alternative model can simulate the
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network discovery process whereby the discovery in one
region of the network will predispose the expansion of
related discoveries. Such models can be compared to
empirical observations. Tria et al. [16] empirically ob-
served that with open data resources, such as online
music catalogues and Wikipedia pages, one discovery
spurs another. They then quantified their observation
with the theoretical concept of “the adjacent possible”
proposed by Kaufman [17]. This concept was first pro-
posed in the context of biological evolution and techno-
logical evolution [18, 19]. Tria et al. were able to observe
counterparts of Heap’s law, whereby the number of
discoveries made increases sub-linearly, and Zipf ’s law
whereby the rank distribution of the frequencies of the
discovered elements follow a power-law [16]. These
observations were illuminated with a model based on
Polya’s urn [20–22] which was able to unify Heap’s and
Zipf ’s laws and capture the correlations in the discoveries
without explicit reference to the unknown space of possibil-
ities to which the concept of “the adjacent possible” refers.
Here we used the PubMed IDs associated with protein-

protein interactions (PPIs) as a time-stamp to temporally
resolve the discovery dynamics of mammalian and yeast
PPINs extracted manually from low-content published
studies. We observe the counterparts of Heap’s and Zipf ’s
laws in the discovery of these mammalian and yeast PPINs.
Furthermore, we identify individual proteins which exhibit
accelerated or decelerated discovery process rates. We then
propose an original model which is related to Polya’s
urn. The model features “reinforcement”, rich-get-richer
Table 1 Mammalian PPINs resources

PPI databases PMID Publication cov

BIND 12519993 10069

BioCarta NA 1

BioGrid 16381927 22277

DIP 10592249 491

Ewing et al. 17353931 1

HPRD 14681466 18515

InnateDB 18766178 3028

IntAct 14681455 3300

KEA 19176546 6790

KEGG 18077471 1

MINT 17135203 1265

MIPS 14681354 170

PDZBase 15513994 141

PPID 21516116 1980

SNAVI 16099987 1059

Stelzl et al. 16169070 1

Rual et al. 16189514 1

Total NA 37015
type dynamics with “triggering” whereby novel discoveries
trigger the possibility for a subset of new discoveries. Our
model is the first network discovery model to explicitly
incorporate a space of possibilities, which are the basis of
Kaufman’s “adjacent possible”, in the form of an under-
lying network. Our model captures the observed dynamics
of PPIN discovery, and provides strong suggestive evi-
dence that research-focus biases exist within the patterned
discovery of the yeast and mammalian PPINs.

Methods
Construction of the mammalian PPIN
18 different mammalian PPIN datasets and databases were
combined (Table 1). To consolidate interactions, mouse
identifiers were converted to their human orthologs using
Homologene. Interactions without PMIDs and unary in-
teractions were dropped. 134,590 PPIs from publications
that reported more than 10 interactions were also ex-
cluded from most analyses. Collectively, the mammalian
PPIN consists of 50,478 PPIs covering 9384 proteins, ex-
tracted from 34,853 publications with a range of discovery
time spanning from April 1967 to October 2013. The
yeast (Saccharomyces cerevisiae) PPIN was downloaded
from iRefWeb 4.1 [23] by including only experimental
physical interactions, filtering out unary interactions, and
excluding from most analyses 82,391 PPIs from publica-
tions associated with more than 10 interactions. The yeast
PPIN has 9678 PPIs between 3154 proteins, extracted
from 6208 publications with a range of discovery time
spanning from June 1946 to November 2011.
erage PPIs Latest publication time

15895 2010 Aug.

189 1994 Jun

131438 2013 Nov.

873 2004 Feb.

3585 2007 Jan.

35433 2010 Aug.

6052 2011 Jun.

54248 2013 Jun.

16193 2010 Jun.

7207 2000 Jan.

11750 2009 Oct.

323 2004 Jan.

234 2003 Jul.

2904 2003 May

1156 2006 Jan.

1560 2005 Sep.

4225 2005 Oct.

185068 2013 Nov.
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Entropy calculation
We define the entropy of a sequence of discovery times for

PPIs involving a given protein, i with known degree ~k i by:

S ~k i
� � ¼ −

X~k i

j¼1

f j
~k i
log

f j
~k i

ð1Þ

Where fi is the number of discovered PPIs involving
protein i in the jth interval of time, where the time inter-
vals are defined by taking the time at which protein i
was first observed until the final observation in the

whole dataset, and dividing into ~k i equal-sized bins. This
entropy measure was also normalized by dividing by the

maximum possible entropy log ~k i
� �

.

Random data permutations
In order to compare the entropy and interval distributions
to a null distribution based on uniform randomization of the
data, we destroyed the original data order while preserving
the frequency distributions by employing random permuta-
tions. The first reshuffling method acts globally in time by
randomly reassigning the time index to PPI discoveries.
The second reshuffling method is local in that it only
randomly reassigns time indices from the first appearance
of the protein under consideration.

Generation of artificial networks for the network discovery
model
Underlying networks for the PPI discovery model were
generated by five different algorithms which resulted in
networks with various global properties. In order to
approximate the size of the true underlying mammalian
PPIN, we constructed artificial networks with 25,000
nodes and tuned the parameters of the different net-
work construction models to produce networks that
have ~650,000 links. These numbers agree with a
recent estimate of the size of the human PPIN [24].
For creating these background networks, 1) the Barabási-

Albert (BA) scale-free network was created using the
Barabási-Albert preferential attachment model [25]; 2)
the BA cluster network was created using Holme and Kim
algorithm [26], which adds an extra step to the Barabási-
Albert preferential attachment model, a probability of
0.995 was used to add a link to a node neighbor, so that
Table 2 Properties of the artificial network models

Networks Nodes Edges Clustering c

BA graph 25000 649324 0.011

BA cluster graph 25000 649304 0.182

Duplication-Divergence 25000 655271 0

Erdős-Rényi 25000 650069 0.002

Complete graph 1000 499500 1
the average clustering coefficient is close to the observed
for the mammalian LC-PPIN; the 3) duplication-divergence
(DD) network was generated using the algorithm by
Ispolatov et al. [27] with the link retention probability of
0.6473; the 4) Erdős-Rényi random network was created
using the algorithm by Batagelj and Brandes [28] with
the probability of link creation of 0.00208. The global
properties of the underlying networks are summarized
in Table 2.

A model of protein-protein interaction network discovery
The true underlying PPIN is represented by the graph
G(V, E) where the vertices V correspond to the set of all
proteins and the edges E correspond to the set of all true
PPIs. We examine five different network structures in
order to study their effect on network discovery dynamics as
described above. For a given PPIN, edges are “discovered” by
a random choice. At a given time step, the probability of
discovering the true link between vertices i and j is given by,

μij∝ μ (~k i; ~k j ), where ~kx is the currently known degree of
vertex x. The form of the function μ determines the nature
of the discovery process in this model, for example,

mu ki; kjð Þ∝Constant ð2Þ
corresponds to a uniform unbiased discovery of the net-
work in which all true edges are equally likely to be dis-
covered. A biased PPIN discovery process can be
modeled simply by:

mu ki; kjð Þ∝1þ ~k i þ ~k j ð3Þ

In this case there is a process of reinforcement whereby
proteins which have many discovered interactions are more
likely to be examined for more interactions. Furthermore,
we can enhance, what is referred to in Tria et al. [16] as
“triggering”, whereby a new discovery triggers adjacent
possibilities for subsequent discovery, simply by setting,

mu ki; kjð Þ∝~k i þ ~k j ð4Þ

In this case only links which are connected to at least
one previously discovered protein can possibly become
discovered.
In the unbiased case, at times which are far from

saturation we expect that the known degree of each protein
oefficient Power-law exponent Connected components

1.9 1

2 1

1.7 1

NA 1

NA 1
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will increase linearly at a rate which is proportional to
its true degree:

~k i tð Þ ¼ di

2
X

i
di

t ð5Þ

Where di is the true of degree i, and the factor of 2 arises
because each link is shared by two nodes. In this case
we do not expect any significant acceleration of growth
for the nodes, i.e., we expect to discover interactions
involving any given protein at a roughly constant rate.

Community structure analysis
The community structure detection algorithm used is
based on modularity optimization [29]. The modularity
of a partition of community structures measures the
density of links inside the communities as compared to
links between communities and is defined as [30]:

Q ¼ 1
2m

X
i; j

aij−
didj

2m

� �
δ ci; ; cj
� � ð6Þ

Where ci is the community to which node i is assigned,

m ¼ 1
2

X
ij

aij , and δ-function δ(u, v) is 1 if u = v and 0

otherwise, aij denote the element of the symmetric adja-
cency matrix A of the graph G, and di, dj are the degrees
of node i, j, respectively. This unsupervised algorithm
involves modularity optimization by local changes to com-
munities and aggregation of communities to build new
communities. As a result, the algorithm generates a
hierarchy of community structures. In practice, a Python
implementation named “python-louvain” of this algorithm
was applied.

Results
The number of unique mammalian PPIs and proteins
discovered each month, as well as the rate of discovery
has few modes (Fig. 1a-d). In order to eliminate extrinsic
factors, such as the changing pace of scientific discovery,
while retaining the intrinsic properties of the PPINs
discovery process, we converted the real-time discovery
of each PPI to a time-ranked order. The discovery
process of unique proteins appears to be sub-linear,
which is analogous to Heap’s law, which states that the
number of unique words increases sub-linearly with the
length of text (Fig. 1e-f ).
In addition to the global properties of the discovered

network, it is also important to examine local dynamical
properties, such as the degree of individual proteins as a
function of time. We observe that most proteins increase
in degree linearly in both mammalian and yeast networks
(Fig. 2a-b). Notably, many proteins are growing in their
degree super-linearly. This super-linearity corresponds to
acceleration in the rate at which publications are reporting
interactions involving the protein. Examples of proteins
with super- and sub- linear degree growth are shown in
Additional file 1: Figure S1.
To examine these possibilities we compared the ob-

served distribution of proteins with accelerated or decel-
erated rates to the distributions observed for random
permutations of the same data (Fig. 2c-f). Similar null
distributions were also examined by Tria et al. [16] in a
completely different context. This analysis shows that
there are significantly more proteins that are growing
super-linearly than would be expected by random chance.
This is indicative of correlations in the discovery process
of PPIs – discoveries involving particular proteins tend to
arrive in bursts with their corresponding short time inter-
vals. To explore whether the correlated discovery of
PPIs is a unique property of the low-content PPINs, we
constructed mammalian and yeast PPINs by increasing
the threshold for the maximum number of PPIs per publi-
cation from 10 to 50, to 100, to 1000 and with no thresh-
old/filter at all. Observing the distribution of the discovery
intervals for PPIs, we see that after including the high con-
tent studies, the distribution of intervals is similar to the
distribution for randomly permuted data (Fig. 2g-h and
Additional file 2: Figure S2). Interestingly, the entropy
measure still shows difference between randomly shuffled
discoveries and networks discovered by low- and high-
content methods combined. We believe that this may be
an artifact of the sparse data from high content PPIs, or a
new type of bias within PPI data collected by high content
methods. For example, PPIs from mass-spectrometry
proteomics are known to be biased in detecting large,
abundant or sticky proteins.
In principle, all parts of a PPIN are discoverable and a

uniform exploration is theoretically possible. However,
in practice, the discovery process appears to be corre-
lated. In order to illuminate the dynamics of PPINs
discovery we introduce a simple model. With reference
to Kaufman’s “expanding the adjacent possible” [17] we
explicitly incorporate the space of possibilities in the
form of an underlying true network. We begin with a
random uniform exploration process, and then by modu-
lating the probability of discovering links based on the
already discovered network, we study the effect research
focus biases can have on the dynamics of the network dis-
covery process. A schematic representation of this model
is shown in Additional file 3: Figure S3. Although, the true
PPIN is unknown, we can examine the effect of global
network properties within this model.
When we examine the distribution of the growth ex-

ponent of the degrees of each node in the model, we see
that highly accelerating nodes only occur in the biased
models, and the effect of including triggering enhances
this effect (Fig. 3). These results are for the scale-free (BA)



Fig. 1 Discovery of the mammalian and yeast LC-PPINs over time. Accumulation of discovered proteins (dotted line) and their interactions (solid line)
and the discovery rate of interactions and proteins in the mammalian (a, b) and yeast (c, d) literature based PPINs. The accumulation of discovered
proteins (red dots) and their interactions (blue dots) are plotted with respect to the ranking index of time for mammalian (e) and yeast (f) PPINs
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clustered artificial network as the underlying network; for
the other artificial network models these results vary
(Additional file 4: Figure S4, Additional file 5: Figure S5,
Additional file 6: Figure S6, Additional file 7: Figure S7).
Furthermore, we notice that accelerating nodes only

occur in the models where the underlying networks have
a power-law degree property (Additional file 8: Figure S8).
This illustrates the relevance of the underlying network
structure. It seems that the topology of the space of possi-
bilities has an impact on the discovery process. We note
that the difference between the biased and unbiased
models is not as marked as the real PPI discovery



Fig. 2 The dynamics of individual proteins in the discovery of mammalian and yeast LC - and combined PPINs. a-b The distribution of growth
exponents of the degrees of individual proteins; super-linear growth corresponds to an acceleration in the rate of discovery of PPIs involving the
protein in question. c-d The normalized entropy plotted against the mean degree of the actual PPI discovery for the real network and also for
reshuffled versions. e-h The distribution of time intervals between PPI discoveries involving each protein for the real PPI discovery process and
also randomly reshuffled data in LC-PPINs (e-f) and combined PPINs made from both high-content and low-content studies (g-h)
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Fig. 3 Three model realizations with the scale-free (BA) clustered underlying artificial PPIN. a Distribution of degree growth exponents; (b) distribution of
time intervals between PPI discoveries involving each protein; (c) the normalized entropy of PPI discoveries for each protein averaged over each degree
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(Additional file 8: Figure S8). However, it is clear that
network discovery of the real networks must contain
biases.
Our ability to mark individual proteins as either accel-

erating or decelerating in their discovery rates can be
used to identify hot and cold discovery regions within
the mammalian PPIN. For identifying such regions, we
applied a network clustering algorithm to decompose
the networks into clusters, and then computed the aver-
age discovery rate within each cluster (Fig. 4). As ex-
pected, out of 102 clusters identified, several clusters are
enriched for rapidly accelerated or decelerated proteins
within each cluster. Each cluster with significant enrich-
ment for accelerating or decelerating rates is labeled by its
most significant gene ontology enriched term (Fig. 4d). The
network contains two notable clusters with decelerating
discovery rates: TGF beta signaling (Fig. 4e) and aminoacyl
tRNA biosynthesis (Fig. 4f).
Discussion
By time-resolving the mammalian and yeast literature-
based PPINs we identified a clear pattern in the PPI
discovery process. This pattern is consistent with a
biased discovery process which exhibits properties of
reinforcement, whereby commonly studied proteins
are more likely to be further studied in the near future,
and with triggering, whereby discoveries spur related
discoveries in the PPI network neighborhood. We in-
troduced a model of PPI network discovery which sup-
ports the idea that research focus bias is relevant in the
discovery process of mammalian and yeast PPIs. The model
demonstrates that network discovery can explain the exist-
ence of many more proteins whose degree is accelerating
compared with the number of such proteins in more ran-
dom discovery processes. Such trends should be considered
when reusing PPI data for interpretation of new results for
drawing conclusions about the underlying biology, and



Fig. 4 Relationship between community structure and PPI discovery rates in PPINs. a Connected components; (b) Communities; (c) modularity,
which a quantity that measures the strength of community partition compared to random [30]. d Clusters with significant over-representation of
proteins with accelerating or decelerating PPI discovery rates. e, f Subnetworks connecting proteins from two representative cold clusters where
proteins are connected through their known interactions with other members of the cluster
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for making decisions about the next set of experiments. A
recent publication by Schnoes et al. [31] suggested that
there exist significant biases in the discovery of gene func-
tional annotations, and this has a significant effect on their
interpretation and application to biological investigations,
here we extended this observation to the discovery of PPIs.
Our model of PPI network discovery also revealed that

an underlying network with the scale-free property is
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also necessary for the appearance of proteins with super-
linear degree growth, which supports the hypothesis that
the topology of the real PPINs is scale free [25, 32, 33].
Interestingly, the local clustering of the underlying net-
work does not seem to play a role in the emergence of
biases during the discovery process. Notably, the ob-
served bias is stronger in mammalian than yeast PPINs in
terms of the ratio of proteins with super-linear degree
growth. One explanation for this is that the discovered
mammalian PPIN is further from saturation compared to
yeast, which is supported by the estimated size of
human and yeast PPINs [24]. To explore whether the
effects of research focus bias introduced in low-content
studies can be reduced, we included PPIs from high-
throughput studies. We observed the overall reinforcement
and triggering effects on the discovery process are miti-
gated. However, those effects can still be revealed on the
discovery of PPIs for many individual proteins (Additional
file 2: Figure S2), suggesting the inclusion of high-content
studies help to some extent to reduce the research focus
bias in LC-PPINs.
Conclusions
Recent studies demonstrate that experimental methods
that identify many reliable PPIs in a single study show
more uniform distribution of PPIs [3, 34]. However,
current high cost, requirement for specific skills, and
years of concentrated efforts, are still great obstacles
toward making such profiling experiments more widely
applied and accepted. In principle, the shift toward
genome-wide system-level biology is expected to correct
and better inform our current understanding of the real
PPINs. In addition, the view of binary PPI is limited. It is
now well established that most proteins within cells work
as a part of macro-molecular complexes, and thus we ex-
pect that the in-silico reconstruction of such complexes will
become more central, while less emphasis will be placed on
the identification and reuse of binary PPIs. Nevertheless,
methods that correct for research focus biases can poten-
tially improve the use of such PPIN and pathway databases
for their various computational applications.
Additional files

Additional file 1: Figure S1. The time-dependence of protein degrees
for (A, C) hub proteins; (B, E) accelerating proteins; and (C,F) decelerating
proteins of mammalian (A-C) and yeast (D-F) LC-PPINs. The degree
growth exponents (slopes) are indicated in the legends.

Additional file 2: Figure S2. The dynamic of network discovery of
mammalian and yeast PPINs made from different PPI per publication
cutoffs. Normalized entropy of PPI discoveries for each protein averaged
over each degree as well as the distribution of the time intervals between
PPI discoveries involving each protein are plotted for each network. The
numbers of PPIs per publication cutoff used for construction of each
network are indicated at the top of each column.
Additional file 3: Figure S3. Schematic of three realizations of the
network discovery model. The same graph serves as the underlying, true
PPI network in each case. Nodes in the graph correspond to proteins and
edges correspond to PPIs. Edges are “discovered” randomly and the
discovery is indicated red. In the unbiased model each edge is equally
likely to be discovered. In the model realization with reinforcement the
probability of discovering an edge is proportional to the sum of the
degrees of the proteins it connects such that edges connecting higher
degree proteins are more likely to be discovered as indicated by the weight
of the edge line. In the last example, the triggering process in involved,
whereby new discoveries open-up the possibility of further discoveries; in
this model only edges which are connected to a discovered protein are
discoverable while also the reinforcement property is maintained.

Additional file 4: Figure S4. Three model realizations with a BA graph
as underlying the PPIN. (A) Distribution of degree growth exponents;
(B) distribution of the time intervals between PPI discoveries involving
each protein; (C) normalized entropy of PPI discoveries for each protein
averaged over each degree.

Additional file 5: Figure S5. Three model realizations with a
duplication-divergence graph as the underlying PPIN. (A) Distribution of
degree growth exponents; (B) Distribution of the time intervals between
PPI discoveries involving each protein; (C) normalized entropy of PPI dis-
coveries for each protein averaged over each degree.

Additional file 6: Figure S6. Three model realizations with a Erdős-Rényi
random graph as the underlying PPIN. (A) Distribution of degree growth
exponents; (B) Distribution of the time intervals between PPI discoveries
involving each protein; (C) normalized entropy of PPI discoveries for each
protein averaged over each degree.

Additional file 7: Figure S7. Three model realizations with a complete
graph as the underlying PPIN. (A) Distribution of degree growth exponents;
(B) Distribution of the time intervals between PPI discoveries involving each
protein; (C) normalized entropy of PPI discoveries for each protein averaged
over each degree.

Additional file 8: Figure S8. Ratios of proteins in actual and model
realizations of PPINs with super-linear and sub-linear growth of PPIs. Each
model realization was performed three times and standard deviations of
the ratios are indicated by the error bars.
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