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Abstract

Background: Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders.
Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between
alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using
bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common
biological pathways for smoking, alcohol, and opioid addiction.

Results: Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core
Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across
all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks.
Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic
variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network
involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling,
2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling.

Conlusions: Cancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse
and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which
may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow
physicians to make more informed decisions when treating cancer pain with opioid analgesics.

Keywords: Pain, Opioid, Smoking, Alcohol, Addiction, Genes, Inflammation, Cancer
Background
Pain is a debilitating problem that cancer patients face,
impairing their quality of life. Pain may be related to
multiple factors, including radiotherapy, chemotherapy,
surgery, and cancer progression. In order to mitigate
therapy-related pain or cancer-related pain, physicians
often prescribe opioid analgesics to cancer patients [1, 2].
The prescription of opioids for pain carries risk for opioid
abuse and addiction. Because of the increased survival rate
in cancer patients, their exposure to prescriptions of
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opioids are also prolonged, further increasing their risk for
opioid abuse and addiction [3–5].
Studies showed that opioid abuse was associated with

past histories of drug and alcohol abuse in patients treated
for cancer-related pain with opioid analgesics [6, 7].
Several clinical trials also found that patients with a his-
tory of cigarette smoking and illicit drug abuse had a sig-
nificantly higher risk for opioid addiction than those
without the history [8–11]. Taken together, these studies
suggest that past addictive behaviors to various substances
may predict opioid addiction in cancer patients with opi-
oid prescriptions for pain. However, very few studies have
explored whether there exists a genetic basis and common
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pathways to the relationship between smoking, alcohol,
and opioid addiction.
Bioinformatics uses methods and software tools to

organize and analyze biological data [12]. Specifically,
gene network analyses have been used frequently to
identify genes associated with drug abuse and addiction
[13–15]. However, there has been limited application of
bioinformatics in understanding multiple addiction phe-
notypes, specifically, smoking, alcohol and opioid ad-
diction. We hypothesize that the associations between
alcohol, smoking, and opioid addiction observed in the
clinical setting have a genetic basis.
The goal of the current study is to use bioinformatics

tools to determine whether there exists a genetic basis
and common pathways to the relationship between
smoking, alcohol, and opioid addiction and identify new
candidate target genes. Understanding the genetic bases
of addiction will underscore the importance of integra-
ting genetic studies into the process of drug administra-
tion, as well as allow clinicians to more accurately tailor
a patient’s drugs and dosage based on medical history
and genetic risk factors [16].

Methods
With the goal of identifying commonly shared genes for
alcohol, smoking and opioid addiction we conducted a
literature search as described below. Subsequently, using
Fig. 1 Literature search flowchart. *Subset after using the following Exclusi
other mental disorders, recovery/withdrawal, unrelated to phenotype, gene
study. **Some overlaps between phenotypes for articles and genes
genes pooled from literature as a starting point, we per-
formed gene network analyses: a) specific to each phe-
notype (Phenotype Specific Biological Network) and b)
commonly shared between alcohol, smoking and opioid
addiction (Common Biological Network). Finally, we used
the Connect function from IPA My Pathway toolbox to
connect the commonly shared genes of the three phe-
notypes to the signaling network involved in neuronal
adaptation/plasticity in substance addiction [17, 18].

Literature search
Each substance of abuse was searched on the PubMed
database using the keywords “addiction” and “SNPs” in
July 2014. Specifically, we used the term “alcohol addic-
tion SNPs” for alcohol addiction, “smoking/nicotine/
tobacco addiction SNPs” for smoking addiction, and
“opioid addiction SNPs” for opioid addiction (Fig. 1). No
limitations were placed on the year of publication. Non-
human trials, literature reviews, and meta-analyses were
excluded. Articles about treatment of drug addiction and
drug addiction in patients with mental illnesses were
also excluded. The genes reported in the literature to be
statistically significantly associated with one of the addic-
tion phenotypes were included in the pathway analysis
and are called focus genes. The genes that were not rep-
licated in an independent study were excluded. Figure 1
shows the criteria of the literature search.
on criteria: Literature review/meta-analysis, non-human experiments,
s that were not replicated in or confirmed by at least one independent



Reyes-Gibby et al. BMC Systems Biology  (2015) 9:25 Page 3 of 15
Ingenuity pathway analysis
Ingenuity Pathway Analysis (IPA) was used to produce a
comprehensive analysis of the genes commonly shared
in these addiction pathways. IPA is a software used to
connect molecules based on the Ingenuity Knowledge
Base, its database of information on biomolecules and
their relationships [19]. The Core Analysis function was
used to compare genes pooled from literature for each
phenotype of addiction with the genes and other mole-
cules in IPA’s database and generates gene networks
based on their interactions.
We first designated a set of criteria for the molecules

included in the Core Analysis. The following criteria
were used: genes and endogenous chemicals, maximum
molecules per network (140) and networks per analysis
(25), humans, tissues and primary cells. Figure 2 illus-
trates the steps of the network generation process [20].
The resulting networks are then scored based on the
negative base 10 logarithm of the p-value obtained using
the Fisher’s exact test (i.e., -log10(p-value)), with the null
hypothesis being that the molecules within the networks
were connected based on chance.

Phenotype specific biological network
Gene networks were created for each addiction pheno-
type. Only the networks with a p-score of 5 or higher
were considered significant (i.e., p-value ≤ 10−5), a nom-
inal significance used in previous studies [21]. The genes
in each network were ranked based on number of edges,
or interactions with other genes in the network.

Common biological network
In order to identify the shared genes, the opioid addic-
tion network was compared with alcohol and smoking
addiction networks. In addition, another network was
generated by combining all 56 focus genes for all three
addiction phenotypes (Fig. 3). In these analyses, only the
network with a score ≥ 5 was considered significant [21].
Fig. 2 IPA network generation process
Supplementary to the gene network, IPA also provides a
list of top canonical pathways associated with the focus
genes, along with a Fisher’s exact test p-value and the ra-
tio between the number of focus genes in the canonical
pathway and the total number of molecules in the ca-
nonical pathway. In this study, we also reported the top
canonical pathways associated with all 56 focus genes
for all three addiction phenotypes.
Finally, in order to understand the biological context

of the gene network (association of genetic variations
with addiction to opioids, alcohol and nicotine), we used
the Connect function from IPA My Pathway toolbox to
connect the commonly shared genes of three phe-
notypes to the signaling network involved in neuronal
adaptation/plasticity in substance addiction [17, 18].
The Connect function adds specific interactions bet-
ween molecules. While performing this analysis, we
limited the interactions from only human studies. All
results were generated through the use of Ingenuity®
iReport [19].

Results
Literature search
A total of 73 unique articles were extracted based on the
PubMed search for a thorough review. Figure 1 illus-
trates how the PubMed search produced this final list of
articles for literature review. The articles associated with
the corresponding type of addiction were summarized in
tabular format (Tables 1, 2, 3). This resulted in a list of
56 focus genes total (Fig. 1), and each of these genes was
used in the IPA Core Analysis. Opioid receptor genes
[22] were frequently studied for alcohol and opioid ad-
diction [22–28]. Nicotinic acetylcholine receptor genes
were widely explored for alcohol and nicotine addiction
[29–46]. Dopamine receptor genes were frequently ex-
plored in all three phenotypes [5, 27, 47–53]. Several
overlapping focus genes across the three addiction phe-
notypes were observed, including DRD2 and CRHR1 for
all three phenotypes, OPRM1 for alcohol and opioid ad-
diction network, and BDNF and CNR1 for nicotine and
opioid addiction network (Table 4). The 56 focus genes
were subsequently used as seed genes in Ingenuity Path-
way Analysis.

IPA – Phenotype-specific biological network
Individual gene networks were generated through IPA’s
Core Analysis for each addiction phenotype (Additional
file 1: Figures S1-S3). TNF, NF-κB, and ERK1/2 were
present as highly interconnected genes for alcohol addic-
tion (103, 86, and 62 edges, respectively). For nicotine
addiction, TNF, ERK1/2 and Akt had the most edges
(85, 76, and 53, respectively). NF-κB, RELA, and ERK1/2
were most interconnected for opioid addiction (112, 92,
and 74 edges respectively).



      Focus genes associated with alcohol addiction 
      Focus genes associated with nicotine addiction 
      Focus genes associated with opioid addiction 
      Focus genes associated with both alcohol and nicotine addiction  
      Focus genes associated with both nicotine and opioid addiction   
      Focus genes associated with both alcohol and opioid addiction 
      Focus genes associated with alcohol, nicotine and opioid addiction  

Fig. 3 Network generated by pooling all 56 focus genes for alcohol, nicotine and opioid addiction (p-score = 45)

Reyes-Gibby et al. BMC Systems Biology  (2015) 9:25 Page 4 of 15
IPA – Common biological network
Table 4 lists overlapping genes for alcohol and opioids (A),
smoking and opioids (B), and all three addiction pheno-
types (C). Genes were ranked by the number of edges
within the opioid network. The network for opioid addic-
tion was found to have the most number of genes that
overlap with the network for alcohol addiction relative to
the smoking addiction genes. ERK1/2 was found to be
very strongly interconnected across all three addiction
networks with 74 edges in opioid network, 62 edges in
alcohol network and 76 edges in nicotine network (Table 4,
panel C). ERK1/2 also shows with highest number of
edges in opioid and nicotine network (Table 4, panel B)
and second highest edges in opioid and alcohol network
(Table 4, panel A). We also noticed that some commonly
shared genes are involved in the immune response. Spe-
cifically, the immune response genes that were common
in the three networks (panel C) were: corticotropin-
releasing hormone receptor 1 (CRHR1), chemokine ligand
21 (CCL21), chemokine ligand 3 (CXCL3), chemokine lig-
and 5 (CXCL5) and toll-like receptor 6 (TLR6). In
addition to the above genes, the following immune re-
sponse genes were also found in opioid and alcohol genes
networks (panel A): beta-defensin 103 (DEFB103A/
DEFB103B), beta-defensin 2 (DEFB4A/DEFB4B), elastase
neutrophil expressed (ELANE), protease activated recep-
tor 2 (F2RL1), lactoferrin (LTF), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kappa B),
toll-like receptor 1 (TLR1), TSC22 domain family protein
3 (TSC22D3), chemokine ligand 22 (CCL22), chemokine
ligand 2 (CXCL2), interleukin 1 receptor type 1 (IL1R1),
tumor necrosis factor ligand superfamily member 11 and
15 (TNFSF11 and TNFSF15).
By pooling all 56 focus genes from three addiction phe-

notypes, a total of 8 networks were generated by using
IPA Core Analysis. Figure 3 shows the network with the
highest statistical significance (p-value = 10−45). Figure 4
shows the top canonical pathways for the combined focus
genes, including calcium signaling, GPCR signaling,
cAMP-mediated signaling, GABA receptor signaling, and
Gαi signaling (p-values = 1.26E-12, 4.45E-12, 1.71E-11,
6.3E-10, 4.29E-8).



Table 1 Summary of literature search - alcohol addiction

Author Ethnicity Sample size Phenotype Salient gene(s) Salient SNP(s) Statistical analysis

Batel et al. [47] EA 134 Alcohol dependence DRD1 rs686 P = 0.0008

Bierut et al. [77] EA, AA 5632 Increased aversion
from alcohol

ADH1B rs1229984 OR = 0.34 P = 6.6E-10

Cao et al. [78] Han Chinese 603 Alcohol addiction 5-HTR rs6313 OR = 0.71 P = 0.001

Chen et al. [79] EA, AA 3627 Alcohol addiction PKNOX2 rs1426153 rs11220015
rs11602925 rs750338
rs12273605 rs10893365
rs10893366 rs12284594

P = 5.75E-5, 6.86E-5, 4.24E-5,
4.26E-5, 3.0E-4, 1.72E-5,
1.37E-5, 1.97E-6

Deb et al. [25] South Asian 144 Alcohol addiction OPRM1 rs1799971 P = 0.02

Desrivieres et al. [80] E 145 Drinking behavior P13K rs2302975 rs1043526 P = 0.0019, 0.0379

Enoch et al. [81] AA 360 Alcohol addiction HTR3B rs1176744 P = 0.002

Ehringer et al. [35] EA, Hisp, AA 108 Alcohol response CHRNB2 rs2072658

Haller et al. [37] EA, AA 1315 Alcohol addiction CHRNB3 rs149775276 P = 2.6E-4 for EA, P = 0.006 for AA

Hill et al. [82] EA 1000 Alcohol dependence KIAA0040 rs2269650 rs2861158
rs1008459 rs2272785
rs10912899 rs3753555

P = 0.033, 0.037, 0.014, 0.062,
0.035, 0.020

Kalsi et al. [83] EA, AA 847 Alcohol addiction DKK2 rs427983 rs419558
rs399087

P = 0.007

Kumar et al. [26] Bengali/Hindu 310 Alcohol addiction OPRM1 rs16918875 rs702764
rs963549

P = 0.0364

Kuo et al. [84] E 1238 Initial sensitivity
to alcohol

GAD P = 0.002

London et al. [85] EA Risk for alcohol
addiction

ANKK1 rs1800497 P = 0.001

Mignini et al. [51] E 560 Dopaminergic system;
alcohol dependence

DRD2/ANKK1 rs1800497 P = 0.023

Munoz et al. [86] E 1533 Number of drinks
per day

ADH1B, ADH6 rs1229984 in ADH1B
rs3857224 in ADH6

rs1229984: OR = 0.19, P = 4.77E-10
for men, OR = 0.48, P = 0.0067 for
women; rs38572: OR = 1.61,
P = 1.01E-3 for women, NS for men

Novo-Veleiro et al. [87] E 457 Risk for alcohol addiction miR-146a rs2910164 OR = 1.615 P = 0.023

Preuss et al. [88] E (German & Polish) 3091 Alcoholism ADH4 rs1800759 rs1042364 rs1800759: OR = 0.88 rs1042364:
OR = 0.87

Ray et al. [89] CA, As, Latino, NA, AA 124 Level of response
to alcohol/drinking
problems

GABRG1 rs1497571 P < 0.01

Samochowiec et al. [90] EA 275 Alcohol dependence MMP-9 rs3918242 P < 0.01
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Table 1 Summary of literature search - alcohol addiction (Continued)

Schumann et al. [91] E 1544 Alcohol dependence NR2A, MGLUR OR = 2.35, 1.69

Treutlein et al. [92] E 296 Potential alcohol
dependence

CRHR1

Wang et al. [42] EA, AA 2309 Alcohol dependence CHRNA5 rs680244 P = 0.003

Wang et al. [93] EA 2010 Alcohol dependence C15orf53 rs12903120 rs12912251 rs12903120: P = 5.45E − 8

Xuei et al. [94] EA 1923 Risk for alcohol addiction GABRR1,
GABRR2

rs17504587 rs282129
rs13211104 rs9451191
rs2821211 rs6942204

P = 0.04. 0.03, 0.03, 0.021, 0.025, 0.04

Yang et al. [95] EA, AA 3564 Alcohol dependence HTR3B rs3891484 rs375898 D’ > 7
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Table 2 Summary of literature search - smoking addiction

Author Ethnicity Sample size Phenotype Salient gene(s) Salient SNP(s) Statistical analysis

Agrawal et al. [96] EA 1929 Nicotine dependence GABRA4, GABRA2,
GABRE

P = 0.030

Agrawal et al. [97] EA 1921 Nicotine dependence GABRA4, GABRA2 P = 0.002

Anney et al. [98] E 815 Cigarette dose CHRM5 rs7162140 P = 0.01

Baker et al. [31] EA 886 Nicotine dependence CHRNA5-A3-B4 P = 0.04

Berrettini et al. [99] EA 1276 Nicotine addiction CYP2A6 rs410514431 P = 1.0E-12

Beuten et al. [100] EA, AA 2037 Nicotine dependence BDNF rs6484320 rs988748
rs2030324 rs7934165

P = 0.002

Beuten et al. [101] EA, AA Nicotine dependence GABAB2 rs2491397 rs2184026
rs3750344 rs1435252
rs378042 rs2779562
rs3750344

P = 0.003

Beuten et al. [102] EA, AA Nicotine dependence COMT rs933271 rs4680
rs174699

P = 0.0005

Broms et al. [32] E 1428 Nicotine dependence CHRNA5, CHRNA3,
CHRNB4

rs2036527 rs578776
rs11636753 rs11634351
rs1948 rs2036527

P = 0.000009, 0.0001, 0.0059,
0.0069, 0.0071, 0.0003

Chen et al. [103] 688 Nicotine dependence CNR1 rs2023239 rs12720071
rs806368

P < 0.001

Chen et al. [79] EA, AA 3627 Nicotine addiction PKNOX2 rs1426153 rs11220015
rs11602925 rs750338
rs12273605 rs10893365
rs10893366 rs12284594

P = 0.0159, 0.0163, 0.0136,
0.0491, 0.0921, 0.0411,
0.0621, 0.0239

Conlon et al. [33] EA 1122 Nicotine dependence CHRNA5, CHRNA3,
AGPHD1

rs16969968 rs578776
rs8034191

OR = 3.2, 2.8, 0.3

Culverhouse et al. [34] AA, EA 18500 Nicotine dependence CHRNB3, CHRNA7 rs13273442 P = 0.00058 for EA, 0.05 for AA

Docampo et al. [104] E 752 Lower risk for smoking
behavior

NRXN3 rs1424850 rs221497
rs221473

rs1424850: OR = 0.55, P = 0.0002

rs221497: OR = 0.47, P = 0.0020

rs221473: OR = 0.54, P = 0.0009

Ehringer et al. [35] EA, Hisp, AA 108 Nicotine response CHRNB2 rs2072658

Ella et al. [105] Japanese 2521 Nicotine addiction DBH rs5320 P = 0.030

Gabrielsen et al. [36] Norwegian 155941 Smoking status(cigarettes
per day, duration, packs
per year)

CHRNA5/A3/B4 rs16969968 P = 3.15E-25, 1.11E-6, 3.01E-23
(respectively for phenotypes)

Huang et al. [106] EA, AA 3403 Nicotine dependence ANKK1 rs2734849 P = 0.0026

Lang et al. [107] E 320 Smoking behavior BDNF P = 0.045

Li et al. [38] EA, AA 2037 Nicotine dependence CHRNA4 rs2273504 rs1044396
rs3787137 rs2236196
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Table 2 Summary of literature search - smoking addiction (Continued)

Liu et al. [108] EA, AA 2091 Smoking behavior IL15 rs4956302 P = 8.8E-8

Ma et al. [109] EA, AA 2037 Nicotine dependence DDC rs3735273 rs1451371
rs3757472 rs3735273
rs1451371 rs2060762

P = 0.005, 0.006

Mobascher et al. [110] German 5500 smoking behavior/
nicotine addiction

CHRM2 rs324650 OR = 1.17

Nees et al. [39] E, EA 965 Nicotine dependence CHRNA5/A3/B4 rs578776 P < 0.05

Sherva et al. [40] EA, AA 435 Smoking CHRNA5 rs16969968 P = 0.0001

Rice et al. [29] EA, AA 3365 Nicotine dependence CHRNB3 rs1451240 P = 2.4E-8

Sarginson et al. [30] EA, Asian, AA, Hispanic 577 Smoking behavior CHRNA5/A3/B4 rs16969968 rs1051730 P < 0.0001

Sorice et al. [41] E 2272 Smoking behavior CHRNA5-A3-B4 rs1051730 P = 0.0151, 0.022, 0.22
for three populations

Voisey et al. [52] EA 378 Nicotine dependence DRD2 rs1800497 P = 0.0003

Wang et al. [43] EA, AA 3622 ND (smoking quantity
and FTND)

CHRNA2, CHRNA6 EA: rs3735757 rs2472553 EA: P = 0.0068 for FTND,
AA: P = 0.0043 for SQ and
0.00086 for FTND

Wassenaar et al. [44] E 860 Nicotine dependence CYP2A6 and
CHRNA5-A3-B4

rs1051730 P =0.036

Weiss et al. [45] E 2827 Nicotine dependence CHRNA5-A3-B4 rs17486278 P = 0.0005

Zeiger et al. [46] EA, Hisp 1056 Response to smoking CHRNA6, CHRNB3 rs4950 rs13280604
rs2304297

P = 0.043, 0.011, 0.053
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Table 3 Summary of literature search - opioid addiction

Author Ethnicity Sample size Phenotype Salient gene(s) Salient SNP(s) Statistical analysis

Beer et al. [22] E 284 Opioid dependence GAL, OPRD1 rs948854 rs2236861 P = 0.001

Bunten et al. [23] 184 Opioid addiction OPRM1 rs1799971 P = 0.0046

Compton et al. [24] EA 109 Opioid addiction OPRM1 rs1799971

Clarke et al. [111] Han Chinese 858 Opioid dependence PDYN rs1997794 rs1022563 P = 0.019, 0.006

Clarke et al. [48] EA, AA 992 Opioid addiction DRD2 rs1076560 OR = 1.29, P = 0.0038

Crist et al. [112] EA, AA 671 Opioid addiction WLS rs3748705 (AA) rs983034
rs1036066 (EA)

AA: P = 0.025
EA: P = 0.043, 0.045

de Cid et al. [113] E 91 Opioid Addiction BDNF

Doehring et al. [49] CA 184 Opioid addiction DRD2 rs1076560 rs1799978 rs6277
rs12364283 rs1799732
rs6468317 rs6275
rs1800498 rs1800497

P = 0.022, 0.048

Gelernter et al. [114] EA, AA 8246 Opioid dependence KCNG2 rs62103177 P = 3.60E-10

Herman et al. [115] EA, AA 1367 Opioid dependence CNR1 rs6928499 rs806379
rs1535255 rs2023239

Ho et al. [50] Chinese 252 Opioid dependence DRD4 P = 0.041

Kumar et al. [116] South Asian 260 Opioid dependence CREBBP rs3025684 P < 0.0001

Kumar et al. [26] Bengali/Hindu 330 Opioid addiction OPRM1 rs16918875 rs702764
rs963549

P = 0.0264

Levran et al. [117] 74 Opioid addiction CYP2B6

Liu et al. [118] African 3627 Opioid addiction NCK2 rs2377339 P = 1.33E-11

Nagaya et al. [28] Asian 160 Opioid addiction OPRM1 rs1799972 OR = 1.77, P < 0.0001

Zhu et al. [53] Chinese 939 Opioid dependence/
addiction

DRD1 rs686 P = 0.0003
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Biological context
Finally, we used the “Connect” function from IPA My
Pathway toolbox to connect the commonly shared genes
(i.e., overlapping genes) related to addiction to opioids,
alcohol and nicotine (Table 4, panel C) to the signaling
network involved in neuronal adaptation/plasticity in
substance addiction (Fig. 5) [17, 18]. Particularly, DRD2
is the gene common to both the list of genetic variations
associated with substance addiction and the components
of the brain neuronal signaling network involved in sub-
stance addiction. IPA identified multiple links between
components of these 2 lists of genes. ERK1/2 was di-
rectly connected to DRD1 and indirectly connected to
RAC1, FOS, ERK, Creb, PI3K, BDNF and Pka in the sig-
naling network in neuronal adaptation/plasticity in sub-
stance addiction (i.e., reward circuit). All the commonly
shared immune response genes for the three addiction
phenotypes, including TLR6, CXCL5, CXCL3, CRHR1
and CCL21, were indirectly linked to NFkB in the re-
ward circuit. Gene CCL21 was also indirectly linked to
Akt and ERK in the reward circuit.

Discussion
One of the most challenging areas of oncologic medicine
is the management and treatment of severe, chronic pain
that arises from cancer therapies, including surgery,
chemotherapy, and radiation, as well as cancer itself.
Opioids remain the drugs of choice for cancer pain man-
agement [54], however, the use of opioids for treatment
of chronic pain in cancer patients remains debatable. An
increasing concern is the potential rise in aberrant drug-
taking behaviors of cancer patients undergoing treat-
ment for chronic pain [3, 55]. Given that addictions to
alcohol and tobacco are known risk factors for cancer,
exploring genetic markers of risk for these addiction
phenotypes in cancer patients may help in risk stratifica-
tion. Indeed, studies have begun to show that genetic
vulnerability to different substances of addiction may
partly overlap [56]. The primary aims of this study were
to determine whether there exists a genetic basis to the
relationship between smoking, alcohol, and opioid addic-
tion, and to identify candidate genes associated with the
three phenotypes for further study.
We used IPA, a bioinformatics tool, to identify com-

monly shared genes for alcohol, smoking, and opioid ad-
diction. Of the 20 genes commonly shared across the
alcohol, smoking and opioid addiction phenotypes,
extracellular-signal-regulated kinases 1 and 2 (ERK1/2) was
found to have the most interconnections across all three
addiction networks as indicated by the number of edges



Table 4 Overlapping genes for networks of nicotine, alcohol and opioid addiction; focus genes from literature are bolded

A: Opioids ∩ Alcohol B: Opioids ∩ Nicotine C: Opioids ∩ Alcohol ∩ Nicotine

Molecule Edges in opioid network/
edges in alcohol network

Molecule Edges in opioid network/
edges in nicotine network

Molecule Edges in opioid network/
edges in alcohol network/
edges in nicotine network

NFkB (complex) 112/86 ERK1/2 74/76 ERK1/2 74/62/76

ERK1/2 74/62 ARRB2 8/3 DRD2 6/3/4

IL1R1 7/4 DRD2 6/4 TAP1 5/5/3

IL1 6/8 HSPD1 5/4 SAA 4/3/4

DEFB4A/DEFB4B 6/4 TAP1 5/3 PSMB9 4/3/3

DRD2 6/3 SAA 4/4 TAPBP 4/3/3

ELANE 5/6 PSMB9 4/3 ELF3 4/3/2

F2RL1 5/6 TAPBP 4/3 TAC1 4/3/2

TAP1 5/5 ELF3 4/2 CLEC11A 3/4/2

F2R 5/3 TAC1 4/2 SMPD2 3/3/3

ADRBK1 5/2 PSMB10 3/3 CXCL3 3/3/2

Ikb 4/4 SMPD2 3/3 P2RY6 3/3/2

CXCL2 4/3 AKAP13 3/2 PSMB10 3/2/3

ELF3 4/3 CLEC11A 3/2 AKAP13 3/2/2

FPR2 4/3 CXCL3 3/2 TLR6 3/2/2

PSMB9 4/3 P2RY6 3/2 CRHR1 2/4/3

SAA 4/3 TLR6 3/2 CD244 2/3/3

TAC1 4/3 CD244 2/3 CXCL5 2/3/2

TAPBP 4/3 CRHR1 2/3 CCL21 2/2/2

DEFB103A/DEFB103B 4/2 CCL21 2/2 GMFG 2/2/2

LTF 3/5 CNR1 2/2

TNFSF11 3/5 CXCL5 2/2

TNFSF15 3/5 GMFG 2/2

CLEC11A 3/4 GPRASP1 2/2

TLR1 3/4 BDNF 2/1

CXCL3 3/3

KLF6 3/3

P2RY6 3/3

SMPD2 3/3

AKAP13 3/2

ARF6 3/2

IER3 3/2

PSMB10 3/2

TLR6 3/2

TRPC6 3/2

CRHR1 2/4

CCL22 2/3

CD244 2/3

CXCL5 2/3

CC2D1A 2/2

CCL21 2/2
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Table 4 Overlapping genes for networks of nicotine, alcohol and opioid addiction; focus genes from literature are bolded
(Continued)

GMFG 2/2

SH3GLB2 2/2

STAB2 2/2

TSC22D3 2/2

OPRM1 1/2
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(biological interactions; Table 4). Recent studies suggest
the relevance of ERK pathway in drug addiction. Several
studies have cited the role of ERK in brain’s response to
drugs of abuse [57–59]. Specifically, Valjent et al. [59] de-
monstrated that multiple drugs of abuse increased ac-
tivation of ERK1/2. Molecular mechanisms underlying
ERK1/2 activation by drugs of abuse and the role of ERK1/
2 signaling in long-term neuronal plasticity in the striatum
may provide novel targets for therapeutic intervention in
addiction [60]. Moreover, studies exploiting ERK activation
for cancer therapy have been promising, including the use
of MEK inhibitors to block ERK activation in acute lym-
phoblastic leukemia for instance [61]. Future studies are
needed to assess the potential clinical relevance of ERK1/2
for addiction, e.g., to genotype ERK1/2 and stratify patients
for prompt intervention, or to determine appropriate dos-
age of opioid analgesics to patients with specific genotypes.
Of note, the identified shared genes for the three addic-

tion phenotypes are involved in immune response. This is
consistent with recent research that implicates immune
signaling in drug addiction. Dafney et al. demonstrated
that certain immunosuppressive treatments controlled
Fig. 4 Top canonical pathways obtained by pooling all 56 focus genes for
the canonical pathways. Yellow lines: ratio for each of the canonical pathw
pathway divided by the total number of genes that constitute the canonic
morphine withdrawal in rats [62, 63]. More recent studies
demonstrated that blocking pro-inflammatory glial acti-
vation could block the elevation of dopamine induced by
opioid receptor activity [64, 65]. Hutchinson et al. have
also found evidence that toll-like receptors (TLRs), a class
of innate immune receptors, interact with opioids and
glial cells, contributing to opioid reward behaviors [65].
Our recent studies also showed that cytokine genes are
implicated in pain, depressed mood, and fatigue in cancer
patients [66–68], and these cytokines may serve as bio-
markers of risk for persistent pain in cancer patients.
Furthermore, it is also speculated that synaptic plasti-

city induced by substances of abuse in the neuronal cir-
cuits of reward may underlie behavioral changes that
characterize addiction. Importantly, NF-kappa B may be
the link between inflammation and neuronal/synaptic
plasticity involved in behavioral changes in addiction, as
we have shown that all the commonly shared immune
response genes of three addiction phenotypes were
linked to NF-kappa B in the reward circuit (Fig. 5). NF-
kappa B is one of several transcription factors present at
the synapse, and it is activated by brain-specific
alcohol, nicotine and opioid addiction. Blue bars: p-score for each of
ays, calculated as the number of focus genes included in the canonical
al pathway



      Commonly shared genes for nicotine, alcohol and opioid addiction (Table 4, panel C) 
      Molecules from the signaling network involved in neuronal adaptation/plasticity in substance 
addiction (“reward circuit”) 
      Overlapping molecules from both sets of molecules 

Fig. 5 The links of genes associated with addiction to opioids, tobacco and alcohol to components of the brain “reward circuit”
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activators such as glutamate (via AMPA/KA and NMDA
receptors) and neurotrophins [69]. To date, there are
currently no pharmacotherapies for drug addiction tar-
geting immune signaling.
Our results also showed the top canonical pathways

associated with all the 56 focus genes of three addiction
phenotypes were: 1) calcium signaling, 2) GPCR signaling,
3) cAMP-mediated signaling, 4) GABA receptor signaling,
and 5) Gαi signaling. These pathways have been confirmed
to be associated with substance addiction in the literature
[70–74]. They are the post-receptor signaling pathways for
the glutaminergic, dopaiminergic and GABAergic neurons
involved in the “reward circuitry” in mammalian brains
[75]. Whether these pathways can be used as targets for
drug addiction therapy needs to be explored. Our ap-
proach of identifying genetic variations associated with ad-
diction to multiple substances and linking to known the
neural signaling network involved in substance addiction
in the brain has clarified the functional significance of
many of the genetic associations to substance addiction.
This bioinformatics approach has also identified signaling
pathways that may be targeted by drugs. Promising re-
search has shown that allosteric modulators of GPCRs can
be used to treat addiction by altering the affinity of the
GPCR to its ligand or impacting its downstream signaling
responses [72]. Other studies have also suggested positive
allosteric modulation of GABAB as a therapeutic strategy
for treatment of addiction [71, 76].
Among the limitations of this study is that edges are

simplified in the IPA designates only a single edge bet-
ween each pair of molecules in a network regardless of
the number of interactions the two molecules share.
Furthermore, this bioinformatics analysis is hypothesis-
generating, and the findings must be further investigated
and validated experimentally.

Conclusions
Studying smoking, alcohol, and opioid addiction pheno-
types in conjunction allowed us to identify molecules
and pathways involved in multiple types of drug addic-
tion. IPA is able to use large-scale information to pro-
duce comprehensive networks of genes and underlying
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biological pathways implicated in a phenotype [19]. Most
of the current literature on addiction genes focuses on
genes specific to each type of addiction, while in this
study we studied genes relating to multiple addiction
phenotypes. Our findings show immune signaling and
ERK1/2 as novel genetic markers for multiple addiction
phenotypes including alcohol, smoking and opioid ad-
diction. Future studies are needed to validate our fin-
dings in large cohorts of patients.

Additional files

Additional file 1: Figure S1. Network generated using 25 focus genes
for alcohol addiction (p-score = 16). Figure S2. Network generated using
27 focus genes for nicotine addiction (p-score = 31). Figure S3. Network
generated using 15 focus genes for opioid addiction (p-score = 10).
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