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Abstract
In this paper, the existence of local and global Hopf bifurcation for a delay commodity
market model is studied in detail. As time delay increases, the commodity price will
fluctuate periodically. Furthermore, such fluctuations will occur even if the time delay
is sufficiently large.

MSC: 91B55; 34K18

Keywords: commodity market model; stability; global Hopf bifurcation

1 Introduction
In most economic and financial processes, mathematical modeling leads to nonlinear de-
layed dynamical systems, and the interplay of delayed and nonlinear effects is important
for many reasons. Capturing the price behavior of commodity and forecasting future de-
velopments are essential in commodity management and international policy. Given this,
fluctuations in commodity price have long been, and will continue to be, one of the dom-
inant topics in mathematical economics due to its universal existence and importance.
Based on some mathematical assumptions, various price adjustment models have been de-
veloped to analyze the problems in economics, see [–] and the references cited therein.

One of the representative models was introduced by Mackey [, ], who considered a
price adjustment model for a single commodity market with state dependent production
and storage delays in the following form:

P′(t)
P(t)

= D
(
P(t)

)
– S

(
Ps(t)

)
. ()

Here P(t) is the market price of a particular commodity at time t, and D and S refer to
demand and supply functions, respectively. It is assumed that the consumers base their
buying decisions on current market prices. For most commodities, there is a finite time τ

that elapses before a change in production occurs. Assuming that only the market price at
time t – τ has an effect on the current supply price Ps(t), we get Ps(t) = P(t – τ ) (see [] for
more details). Farahani and Grove [] considered the following special case:

P′(t)
P(t)

=
a

b + Pn(t)
–

cPm(t – τ )
d + Pm(t – τ )

, ()
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where a, b, c, d, m, τ > , and n ≥ . For system (), global convergence of the positive equi-
librium was investigated in [, ], global attractivity of solutions was discussed in [].
In addition, the existence of almost periodic solutions for an impulsive delay model was
established in [, ].

However, the dynamic behaviors of system () still need further investigation. In this
paper, we are trying to improve the understanding of the complex dynamics induced by
time delay. Motivated by the conjecture on global bifurcation results in [], we shall focus
on the global continuation of a local Hopf bifurcation. In the following sections, the sta-
bility of a unique positive equilibrium and a local Hopf bifurcation analysis for system ()
are presented. After that, the global existence of bifurcating periodic solutions is explored
with the assistance of global Hopf bifurcation theory developed by Wu [], and related
applications can be found in [–]. Finally, some numerical simulations are performed
to illustrate the theoretical results.

2 Local Hopf bifurcation analysis
In light of the monotonicity of demand and supply functions, system () has a unique
positive equilibrium P∗ such that a/(b + Pn∗) = cPm∗ /(d + Pm∗ ). Based on Taylor’s formula,
the linearized system of () at P∗ is as follows:

dP
dt

= –αP(t) – βP(t – τ ), ()

where α = anPn∗/(b + Pn∗) >  and β = cdmPm∗ /(d + Pm∗ ) > . When we define that P(t) = eλt

and substitute it into (), we can get the following first order transcendental characteristic
equation:

λ + α + βe–λτ = . ()

It is evident that the characteristic root is λ = –(α + β) <  when τ = . On the other hand,
equation () has infinitely many roots as τ > , and these roots vary with τ . According
to Corollary . in [], the sum of characteristic roots in the open right half-plane can
change only if a root appears on or crosses the imaginary axis. In order to establish the
number of roots with positive real parts, we assume that λ = iω (ω > ) is a root of (). Then

iω + α + β(cosωτ – i sinωτ ) = .

By separating the real and imaginary parts, we get the following:
{

α + β cosωτ = ,
ω – β sinωτ = .

Adding the squares of both equations together gives the following:

ω = β – α.

Clearly, equation () has a pair of purely imaginary roots ±iω when β > α and τ = τk

(k = , , , . . .), where

ω =
√

β – α, τk =


ω

{
arccos

–α

β
+ kπ

}
.
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Then we verify the transversality condition. Let λk = ηk(τ ) + iωk(τ ) denote a root of ()
near τ = τk such that ηk(τk) = , ωk(τk) = ω. Substituting λk into () and differentiating
with respect to τ , we get

dλ

dτ
– βe–λτ

(
λ + τ

dλ

dτ

)
= ,

thus

dλ

dτ

∣∣
∣∣
λ=iω,τ=τk

=
βλe–λτ

 – βτe–λτ

∣∣
∣∣
λ=iω,τ=τk

=
iβω(cosωτk – i sinωτk)

 – βτk cosωτk + iβτk sinωτk

=
ω

 – iαω

 + ατk – iωτk
,

and

d
dτ

Re
(
λ(τk)

)
=

ω
( + ατk) – ω

ατk

( + ατk) + (ωτk)

=
ω


( + ατk) + (ωτk)

> .

Due to the above inequality, we can deduce that the number of characteristic roots with
positive real parts will increase by two when time delay τ passes the critical values τk each
time.

Through the above analysis, we can determine the distribution of roots of () as follows.

Lemma  For equation (), the following claims are true:
(i) If β ≤ α, then all roots of () have negative real parts for any τ ≥ .

(ii) If β > α, then () has a pair of imaginary roots ±iω when τ = τk (k = , , , . . .).
(iii) If β > α, then all roots of () have negative real parts only when τ ∈ [, τ). Equation

() has (k + ) roots with positive real parts when τ ∈ (τk , τk+].

According to the results regarding the stability of equilibrium in [], we have the follow-
ing theorem about the stability of positive equilibrium and the existence of a local Hopf
bifurcation.

Theorem  For system (), we have:
(i) if β ≤ α, then the positive equilibrium P∗ is asymptotically stable;

(ii) if β > α, then the positive equilibrium P∗ is stable when τ < τ and unstable when
τ > τ. Moreover, a Hopf bifurcation occurs at the critical value τk , and periodic
solutions will bifurcate from P∗.

By using the normal form theory and the center manifold theorem developed by Hassard
[] and the calculation methods in [], we can determine the direction of the Hopf bi-
furcation and the stability of the bifurcating periodic solutions. Next, we shall briefly give
the formulae for determining the bifurcation properties at the first bifurcation value τ.
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For convenience, we rewrite some notations as follows:

D
(
P(t)

)
=

a
b + Pn(t)

, S
(
P(t – τ )

)
=

cPm(t – τ )
d + Pm(t – τ )

.

Following the algorithms in [, ], we can obtain the crucial coefficients which will be
used in determining the bifurcation properties:

g = Dτ
[
D′(P∗) + P∗D′′(P∗) + P∗S′′(P∗)e–iωτ

]
,

g = Dτ
[
D′(P∗) + P∗D′′(P∗) + P∗S′′(P∗)

]
,

g = Dτ
[
D′(P∗) + P∗D′′(P∗) + P∗S′′(P∗)eiωτ

]
,

g = Dτ
{[

D′(P∗) + P∗D′′(P∗)
]
W() + D′′(P∗) + P∗D′′′(P∗)

+
[
D′(P∗) + P∗D′′(P∗)

]
W() + P∗S′′(P∗)eiωτ W(–)

+ P∗S′′(P∗)e–iωτ W(–) + P∗S′′′(P∗)e–iωτ
}

,

where

D =


 – τα – iωτ
,

W(θ ) = –
g

iωτ
eiωτθ –

g
iωτ

e–iωτθ + Eeiωτθ ,

W =
g

iωτ
eiωτθ –

g
iωτ

e–iωτθ + E,

and

E =
D′(P∗) + P∗D′′(P∗) + P∗S′′(P∗)e–iωτ

iω + α + βe–iωτθ
,

E =
D′(P∗) + P∗D′′(P∗) + P∗S′′(P∗)

α + β
.

Consequently, we can calculate the following quantities:

c() =
i

ωτ

(
gg – |g| –

|g|


)
+

g


,

μ = –
Re(c())
Re(λ′(τ))

,

β =  Re
(
c()

)
,

T = –
Im(c()) + μ Im(λ′(τ))

ωτ
.

It is well known that μ determines the direction of the Hopf bifurcation: the Hopf bifur-
cation is supercritical (subcritical) and the bifurcating periodic solutions exist for τ > τ

(τ < τ) if μ >  (μ < ); β determines the stability of bifurcating periodic solutions:
the bifurcating periodic solutions are orbitally asymptotically stable (unstable) if β < 
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(β > ); T determines the period of the bifurcating periodic solutions: the period in-
creases (decreases) if T >  (T < ).

It is not difficult to find that the derivatives of demand and supply functions at the pos-
itive equilibrium P∗ have significant effects on the properties of a local Hopf bifurcation.

3 Global bifurcation analysis
It is known that periodic solutions through Hopf bifurcation are generally local and only
exist in a small neighborhood of the critical value. Hence it is interesting and significant to
verify the global existence of bifurcating periodic solutions. In this section, we study the
global continuation of periodic solutions bifurcating from the positive equilibrium P∗ of
system ().

Following the work of [], we need to show the uniform boundedness of the periodic
solutions of () and the nonexistence of τ -periodic solutions.

Lemma  If a > bc, and m and n are even integers, then all periodic solutions of () are
uniformly bounded.

Proof Let P(t) be a nonconstant periodic solution of () and define that

A = P(t) = max
{

P(t)
}

, B = P(t) = min
{

P(t)
}

,

and

Ṗ(t) = Ṗ(t) = ,

which is equivalent to

{
a

b+An = cPm(t–τ )
d+Pm(t–τ ) ,

a
b+Bn = cPm(t–τ )

d+Pm(t–τ ) .

From the second equation and the even quality of m and n, we have

a
b + Bn < c and Bn >

a
c

– b.

Thus

B > n

√
a
c

– b.

On the contrary, we have

a
b + An ≥ cBm

d + Bm and
An

a
≤ d + Bm

cBm –
b
a

.

Hence

A ≤ n

√

a
(

d + Bm

cBm –
b
a

)
.

This completes the proof. �
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Lemma  If m and n are even, then system () has no τ -periodic solution.

Proof Assume that system () has a τ -periodic solution, then the following ordinary dif-
ferential equation

dP
dt

= P(t)
(

a
b + Pn(t)

–
cPm(t)

d + Pm(t)

)
()

has a nonconstant periodic solution.
Because m and n are even integers, system () has three steady states P(t) = , P(t) = P∗

and P(t) = –P∗. In system (), Ṗ(t) <  holds when P(t) > P∗ or –P∗ < P(t) < , and Ṗ(t) > 
holds when  < P(t) < P∗ or P(t) < –P∗. Therefore, the ordinary differential equation ()
does not have a nonconstant periodic solution. This implies that system () has no τ -
periodic solution. The proof is complete. �

We then have the following theorem about the global existence of a Hopf bifurcation.

Theorem  Suppose that a > bc, β > α, and m and n are even. Then, for each τ > τk , k =
, , , . . . , system () still has positive periodic solutions.

Proof For the convenience of using the results from [], we rewrite () as the following
functional differential equation:

ẋ(t) = F(xt , τ , p), ()

which satisfies the conditions (A)-(A) in []. Following the notations there, we have the
following:

Δ(x,τ ,p)(λ) = λ + α + βe–λτ .

Here x is the equilibrium of (). It is easy to verify that (x, τk , π/ω) are isolated centers.
Then there exist ε > , δ >  and a smooth function λ : (τj – δ, τj + δ) → C such that

Δ
(
λ(τ )

)
= ,

∣∣λ(τ ) – iω
∣∣ < ε

for any τ ∈ [τk – δ, τk + δ], and

λ(τk) = iω,
d Re(λ(τ ))

dτ
> .

Define that p = π/ω and Ωε,p = {(, p) :  < u < ε, |p – p| < ε}. If |τ – τk| ≤ δ and
(u, p) ∈ ∂Ωε , then Δ(x,τ ,p)(u + π i/p) =  if and only if τ = τk , u = , p = pk . Thus, assump-
tion (A) in [] holds.

Next introducing a function defined by

H±(x, τk , π/ω)(u, p) = Δ(x,τk±δ,p)(u + π i/p)
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yields the crossing number

γ (x, τj, π/ω) = degB
(
H–(x, τk , π/ω),Ωε,p

)

– degB
(
H+(x, τk , π/ω),Ωε,p

)

= – .

Thus the connected component C(x, τk , π/ω) through (x, τk , π/ω) is nonempty, and

∑

(x,τ ,p)∈C(x,τk ,π/ω)

γ (x, τ , p) < ,

which implies that C(x, τk , π/ω) is unbounded. From Lemmas  and , we know that
the projection of C(x, τk , π/ω) onto the x-space is bounded and that onto the τ -space
is away from zero.

For a contradiction, we suppose that the projection of C(x, τk , π/ω) onto τ -space is
bounded. This means that the projection of C(x, τk , π/ω) onto τ -space is included in
an interval (, τ ∗).

From the definition of τk in Section , we can get that

π


< ωτ < π , and kπ < ωτk < (k + )π < (k + )π , k ≥ .

Hence,

τ <
π

ω
< τ, and

τk

k + 
<

π

ω
<

τk

k
, k ≥ ,

and we have τ < p < τ if (x(t), τ , p) ∈ C(x, τ, π/ω), τ/ < p < τ if (x(t), τ , p) ∈
C(x, τ, π/ω), and τ/ < p < τ/ if (x(t), τ , p) ∈ C(x, τ, π/ω), and so on. This im-
plies that the projection of C(x, τk , π/ω) onto p-space is bounded. As a result, we can
determine that the connected componentC(x, τk , π/ω) is bounded. This leads to a con-
tradiction and the proof is complete. �

4 Numerical examples
To support the theoretical analysis, we consider the following system:

P′(t) = P(t)
(

.
. + P(t)

–
.P(t – τ )

. + P(t – τ )

)
. ()

Through a direct computation, we can determine P∗ = ., α = ., β =
., ω = . and τk = .+kπ

. , τ = ., τ = ., τ = ., τ =
., . . . .

From Figures  and , we can find that a Hopf bifurcation occurs when time delay τ

increases through the first critical value τ. In other words, the positive equilibrium is
asymptotically stable when the time delay is small, and the periodic solution bifurcates
from the positive equilibrium when the time delay is slightly larger than the first critical
value. Because the conditions of Theorem  are satisfied, bifurcating periodic solutions
exist even if the time delay is sufficiently large (see Figures  and ). From these figures,
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Figure 1 The equilibrium P∗ is stable when τ = 0.8 < τ0.

Figure 2 Periodic solution occurs when τ = 2 > τ0.

Figure 3 Periodic solution exists when τ = 10 > τ2.

Figure 4 Periodic solution still exists when τ = 35 > τ9.
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we can see that time delay has a major impact on the dynamics of commodity market
model (). We can also find that the amplitude and period of the periodic solution will
increase gradually as time delay increases.

Thus, our theoretical results and numerical simulations show that the time delay has a
substantial effect on the periodic dynamic behaviors in commodity market model ().

5 Conclusions
This paper presents the results of an investigation into the existence of local and global
Hopf bifurcations for a price adjusting model with time delay. It can be concluded that
time delay may destabilize the equilibrium of that model and induce periodic oscillations.
Moreover, the periodic oscillations will persist even when the delay is sufficiently large,
which indicates the global existence of a Hopf bifurcation in the model. Thus, the results
obtained here can supplement the previous literature and help people to understand price
fluctuation mechanisms.

However, from another perspective, we sometimes need to control commodity price
fluctuations, and one effective method is to shorten the time between the initiation of
changes in production and the final alteration of supply. More specifically, the finite de-
lay τ is the time between production and price changes. As we know, large delay may
induce complex dynamical behaviors, such as drastic periodic fluctuations. Therefore,
timely price adjustments are necessary, which can effectively reduce the time delay. Math-
ematically, we should stabilize the positive equilibrium and control the Hopf bifurcation,
and we will consider this in our work in the near future.
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