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Abstract
We investigate multiple solutions for the perturbation of a singular potential
biharmonic problem with fixed energy. We get a theorem that shows the existence of
at least one nontrivial weak solution under some conditions and fixed energy on
which the corresponding functional of the equation satisfies the Palais-Smale
condition. We obtain this result by variational method and critical point theory.
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1 Introduction and statement of main result
Let � be a simply connected bounded domain of Rn with smooth boundary ∂�, n ≥ . Let
C be a closed interval containing  in R, and D = R+\C be the complement of C in R+. Let χ

be any curve in �, x : S → � ⊂ Rn be a C curve such that x(t) ∈ χ ⊂ �, and u◦x : S → R
be the composition function of u and x such that (u ◦ x)(t) = u(x(t)) ∈ D = R+\C for all
t ∈ S. Then u ◦ x is a C function. Let c ∈ R, � be the elliptic operator, and � be the
biharmonic operator. Let us introduce the following subset of Lq(S, R):

H =
{

u ◦ x ∈ Lq(S, R
) | ((�u

(
x(t)

)
+ c�u

(
x(t)

)) · u
(
x(t)

)) 
 ∈ Lq(S, R

)
,

u
(
x(t)

) ∈ D = R+\C,∀x(t) ∈ χ ⊂ �,∀t ∈ S}.

Then H is the loop space on D. Let us endow H with the norm

‖u‖
H =

(∫ π



∣∣(�u
(
x(t)

)
+ c�u

(
x(t)

)) · u
(
x(t)

)∣∣qx′(t) dt
) 

q
for all q ≥ .

Then H is a Hilbert space. In this paper, we investigate the existence and multiplicity of
weak solutions u ◦ x ∈ H for the perturbation of the biharmonic equation with singular
potential

�(u ◦ x) + c�(u ◦ x) = �(u ◦ x) + |u ◦ x|q– +


|u ◦ x|p+ , (.)
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where �, p, and q are real constants such that  < q < p and q < n
n– . Throughout this paper,

we deal with (.) with fixed energy

�u +

q
|u|q –


p


|u|p = h,

where h is a positive constant.
We assume that:
(A) (fixed energy) there exists a positive constant h >  such that

�u
(
x(t)

)
+


q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

= h, u
(
x(t)

) ∈ D = R+\C, x(t) ∈ χ ⊂ �,∀t ∈ S;

(A) there exists a neighborhood Z of C in R such that, for some constant A > ,

–


�u

(
x(t)

) –

q
∣∣u

(
x(t)

)∣∣q +

p


|u(x(t))|p ≥ A

d(u(x(t)), C)

for u(x(t)) ∈ Z, x(t) ∈ χ ⊂ �, ∀t ∈ S.
Our problems are characterized as singular biharmonic problems with singularity at

{u = }. We recommend the book [] for the singular elliptic problems. Many authors
considered the biharmonic boundary value problem or the fourth-order elliptic boundary
value problems. In particular, Choi and Jung [] showed that the problem

�u + c�u = bu+ + s in �,

u = , �u =  on ∂�,
(.)

has at least two nontrivial solutions when c < λ, λ(λ – c) < b < λ(λ – c), and s <  or
when λ < c < λ, b < λ(λ –c), and s > . We obtained these results by using the variational
reduction method. In [], by using degree theory we also proved that when c < λ, λ(λ –
c) < b < λ(λ –c), and s < , problem (.) has at least three nontrivial solutions. Tarantello
[] also studied the problem

�u + c�u = b
(
(u + )+ – 

)
,

u = , �u =  on ∂�.
(.)

She showed that if c < λ and b ≥ λ(λ – c), then problem (.) has a negative solution.
She obtained this result by degree theory. Micheletti and Pistoia [] also proved that if
c < λ and b ≥ λ(λ – c), then problem (.) has at least three solutions by variational
linking theorem and Leray-Schauder degree theory. In this paper, we essentially work with
variational techniques: We first prove that the associated functional of (.) satisfies the
Palais-Smale condition, and then we use critical point theory.

Let λ < λ ≤ · · · ≤ λk ≤ · · · be the eigenvalues of the eigenvalue problem –�u = λu in
�, u =  on ∂�, and let φk be eigenfunctions corresponding to the eigenvalues λk , k ≥ ,
suitably normalized with respect to the L(�) inner product, where each eigenvalue λk
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is repeated with its multiplicity. We note that φ(x) >  for x ∈ �. Then the eigenvalue
problem

�u + c�u = νu in �,

u = , �u =  on ∂�,

has infinitely many eigenvalues

ν = λ(λ – c) < ν = λ(λ – c) ≤ · · · ≤ νk = λk(λk – c) ≤ · · ·

and eigenfunctions φk corresponding to the eigenvalues νk = λk(λk – c), k ≥ , suitably
normalized with respect to the L(�) inner product. We note that there exists a constant
D >  such that ‖u‖Lq(S,R) ≤ D‖u‖H for q ≥  because λi(λi – c) → ∞ as i → ∞. In this
paper we are trying to find weak solutions of equation (.) in H . The weak solutions of
(.) in H satisfy

∫ π



[(
�u

(
x(t)

)
+ c�u

(
x(t)

)) · v
(
x(t)

)
– �u

(
x(t)

)
v
(
x(t)

)

–
∣∣u

(
x(t)

)∣∣q–v
(
x(t)

)
–


|u(x(t))|p+ v

(
x(t)

)]
dx =  (.)

for all v ◦ x ∈ H . We shall show in Section  that there exists a one-to-one correspon-
dence between weak solutions of (.) and critical points of the continuous and Frechét-
differentiable functional

J(u ◦ x) ∈ C(H , R),

J(u ◦ x) = A
(
u
(
x(t)

))
–

∫ π



[


�

(
u
(
x(t)

)) +

q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

]
x′(t) dt,

(.)

where

A
(
u
(
x(t)

))
=




∫ π



[∣∣�u
(
x(t)

)∣∣ – c
∣∣∇u

(
x(t)

)∣∣]x′(t) dt.

The Euler equation for J is (.).
Our main result is as follows.

Theorem . (Fixed energy problem) Assume that λk < c < λk+,  < q < p, q < n
n– ,

λk+m(λk+m – c) < � < λk+m+(λk+m+ – c), k ≥ , m ≥ , and conditions (A) and (A) hold.
Then (.) has at least one nontrivial weak solution u(x) such that

u(x) = .

For the proof of Theorem ., we apply the variational technique. Under the assumptions
of Theorem ., we show that the functional J(u ◦ x) satisfies the Palais-Smale condition,
so that we can use the variational linking method in critical point theory. The outline of
the proof of Theorem . is as follows. In Section , we introduce the eigenvalues and
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eigenfunctions of the eigenvalue problem �u + c�u – �u = �ku in �, u = , �u = 
on ∂�, introduce the eigenspaces spanned by the eigenfunctions of �k = λk(λk – c) – �,
investigate the properties of eigenspaces and prove that the functional J(u ◦ x) satisfies
the Palais-Smale condition. In Section , we divide the whole space H into two subspaces
H+(S, R) and H–(S, R), find some inequalities of J(u ◦ x) on two linked sublevel sets, and
prove Theorem ..

2 Eigenspace and Palais-Smale condition
Let us consider the eigenvalue problem

�u + c�u – �u = �iu in �,

u = , �u =  on ∂�.
(.)

Let �i, i ≥ , be eigenvalues of the eigenvalue problem (.), that is,

�i = λi(λi – c) – �.

If λk+m(λk+m – c) < � < λk+m+(λk+m+ – c), then

� < � < · · · < �k+m <  < �k+m+ < �k+m+ < · · · , ∀k ≥ , m ≥ 

and

lim
i→∞

�i

λi(λi – c)
= .

Let cλi(λi–c) be eigenvectors of λ(λ – c) – � corresponding to the eigenvalues �i. Let us set

Wλi(λi–c) = span
{
φi | (� + c�

)
φi = λi(λi – c)φi

}
,

Hλi(λi–c)
(
S, R

)
=

{
cλi(λi–c)(φ ◦ x) ∈ H

(
S, R

) | c ∈ R,φ ∈ Wλi(λi–c),

cλi(λi–c)φ
(
x(t)

) ∈ D = R+\C, x(t) ∈ χ ⊂ �,∀t ∈ S}.

Then

H =
⊕

�i≥�

Hλi(λi–c)
(
S, R

)
. (.)

Lemma . Assume that λk < c < λk+,  < q < p, q < n
n– , λk+m(λk+m – c) < � <

λk+m+(λk+m+ –c), k ≥ , m ≥ , and that conditions (A) and (A) hold. Let u◦x ∈ Lq(S, R)
and �(u ◦ x) + |u ◦ x|q– + 

|u◦x|p+ ∈ Lq(S, R). Then all the solutions of

�(u ◦ x) + c�(u ◦ x) = �(u ◦ x) + |u ◦ x|q– +


|u ◦ x|p+

belong to H .
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Proof Equation (.) can be rewritten as

u ◦ x =
(
� + c�

)–
(

�(u ◦ x) + |u ◦ x|q– +


|u ◦ x|p+

)
.

Then there exists a constant D >  such that

‖u ◦ x‖
H =

∥∥∥∥
(
� + c�

)–
(

�(u ◦ x) + |u ◦ x|q– +


|u ◦ x|p+

)∥∥∥∥



H

=
∥∥∥∥
(
� + c�

)(
� + c�

)–
(

�(u ◦ x) + |u ◦ x|q– +


|u ◦ x|p+

)

· (� + c�
)–

(
�(u ◦ x) + |u ◦ x|q– +


|u ◦ x|p+

)∥∥∥∥
Lq(S,R)

=
∥∥∥∥(� – c∇)

(
� + c�

)–
(

�(u ◦ x) + |u ◦ x|q– +


|u ◦ x|p+

)∥∥∥∥



Lq(S,R)

≤ D

∥∥∥∥�(u ◦ x) + |u ◦ x|q– +


|u ◦ x|p+

∥∥∥∥



Lq(S,R)
.

Thus,

‖u ◦ x‖H < ∞,

and the lemma is proved. �

Lemma . Assume that λk < c < λk+,  < q < p, q < n
n– , λk+m(λk+m – c) < � <

λk+m+(λk+m+ – c), k ≥ , m ≥ , and that conditions (A) and (A) hold. Then the func-
tional J(u ◦ x) is continuous and Fréchet differentiable with Fréchet derivative in H ,

DJ(u ◦ x) · (v ◦ x) =
∫ π



[(
�u

(
x(t)

)
+ c�u

(
x(t)

)) · v
(
x(t)

)
– �u

(
x(t)

) · v
(
x(t)

)

–
∣∣u

(
x(t)

)∣∣q– · v
(
x(t)

)
–

v(x(t))
|u(x(t))|p+

]
x′(t) dt, ∀v ◦ x ∈ H .

Moreover DJ ∈ C, that is, J ∈ C.

Proof First, we shall prove that J(u ◦ x) is continuous. Let u ◦ x, v ◦ x ∈ H . Then since
u(x(t)), v(x(t)) ∈ D = R+\C, ∀t ∈ S, it follows that u(x(t)) > , v(x(t)) > , and u(x(t)) +
v(x(t)) > . Thus, 

|u(x(t))|p and 
|u(x(t))+v(x(t))|p are well defined, continuous, and C. Thus, we

have

∣∣J(u ◦ x + v ◦ x) – J(u ◦ x)
∣∣

=
∣∣
∣∣




∫ π



(
�(u

(
x(t)

)
+ v

(
x(t)

))
+ c�

(
u
(
x(t)

)
+ v

(
x(t)

))) · (u
(
x(t)

)
+ v

(
x(t)

))
x′(t) dt

–
∫ π



[


�

(
u
(
x(t)

)
+ v

(
x(t)

)) +

q
∣∣u

(
x(t)

)
+ v

(
x(t)

)∣∣q

–

p


|u(x(t)) + v(x(t))|p

]
x′(t) dt
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–



∫ π



(
�u

(
x(t)

)
+ c�u

(
x(t)

)) · u
(
x(t)

)
x′(t) dt

+
∫ π



[


�u

(
x(t)

) +

q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

]
x′(t) dt

∣∣∣∣.

Thus, we have

∣∣J(u ◦ x + v ◦ x) – J(u ◦ x)
∣∣

=
∣∣∣∣




∫ π



[(
�u

(
x(t)

)
+ c�u

(
x(t)

)) · v
(
x(t)

)
+

(
�v

(
x(t)

)
+ c�v

(
x(t)

)) · u
(
x(t)

)

+
(
�v

(
x(t)

)
+ c�v

(
x(t)

)) · v
(
x(t)

)]
x′(t) dt

–
∫ π



[(


�

(
u
(
x(t)

)
+ v

(
x(t)

)) +

q
∣∣u

(
x(t)

)
+ v

(
x(t)

)∣∣q

–

p


|u(x(t)) + v(x(t))|p

)

–
(



�u

(
x(t)

) +

q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

)]
x′(t) dt

∣∣∣∣

≤
∣∣∣∣




∫ π



[(
�u

(
x(t)

)
+ c�u

(
x(t)

)) · v
(
x(t)

)]
x′(t) dt

∣∣∣∣

+
∣∣∣∣




∫ π



((
�v

(
x(t)

)
+ c�v

(
x(t)

)) · u
(
x(t)

))
x′(t) dt

∣∣∣∣

+
∣∣∣∣




∫ π



((
�v

(
x(t)

)
+ c�v

(
x(t)

)) · v
(
x(t)

))
x′(t) dt

∣∣∣∣

+
∣∣∣∣

∫ π



[(


�

(
u
(
x(t)

)
+ v

(
x(t)

)) +

q
∣∣u

(
x(t)

)
+ v

(
x(t)

)∣∣q

–

p


|u(x(t)) + v(x(t))|p

)

–
(



�u

(
x(t)

) +

q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

)]
x′(t) dt

∣∣∣∣.

Then there exist constants D > , D > , and D >  such that

∣∣∣∣



∫ π



((
�u

(
x(t)

)
+ c�u

(
x(t)

)) · v
(
x(t)

))
x′(t) dt

∣∣∣∣

≤
∣∣∣∣




∫ π



((
�u

(
x(t)

)
– c∇u

(
x(t)

)) · (�v
(
x(t)

)
– c∇v

(
x(t)

)))
x′(t) dt

∣∣∣∣

≤ 


∫ π



∣∣(�u
(
x(t)

)
– c∇u

(
x(t)

)) · (�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣x′(t) dt

≤ 


∫ π



∣∣(�u
(
x(t)

)
– c∇u

(
x(t)

))∣∣∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣x′(t) dt

≤ 


∫ π



∣∣(�u
(
x(t)

)
– c∇u

(
x(t)

))∣∣x′(t) dt
∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣x′(t) dt

≤ 


(∫ π



∣∣(�u
(
x(t)

)
– c∇u

(
x(t)

))∣∣qx′(t) dt
) 

q
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·
(∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣qx′(t) dt
) 

q

≤ D‖u ◦ x‖H‖v ◦ x‖H = O
(‖v ◦ x‖H

)
,

∣∣∣∣



∫ π



[(
�v

(
x(t)

)
+ c�v

(
x(t)

)) · u
(
x(t)

)]
x′(t) dt

∣∣∣∣

≤
∣∣∣∣




∫ π



[(
�v

(
x(t)

)
– c∇v

(
x(t)

)) · (�u
(
x(t)

)
– c∇u

(
x(t)

))]
x′(t) dt

∣∣∣∣

≤ 


∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

)) · (�u
(
x(t)

)
– c∇u

(
x(t)

))∣∣x′(t) dt

≤ 


∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣∣∣(�u
(
x(t)

)
– c∇u

(
x(t)

))∣∣x′(t) dt

≤ 


∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣x′(t) dt
∫ π



∣∣(�u
(
x(t)

)
– c∇u

(
x(t)

))∣∣x′(t) dt

≤ 


(∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣qx′(t) dt
) 

q

·
(∫ π



∣∣(�u
(
x(t)

)
– c∇u

(
x(t)

))∣∣qx′(t) dt
) 

q

≤ D‖u ◦ x‖H‖v ◦ x‖H = O
(‖v ◦ x‖H

)
,

∣∣∣∣



∫ π



[(
�v

(
x(t)

)
+ c�v

(
x(t)

)) · v
(
x(t)

)]
x′(t) dt

∣∣∣∣

≤
∣∣∣∣




∫ π



[(
�v

(
x(t)

)
– c∇v

(
x(t)

)) · (�v
(
x(t)

)
– c∇v

(
x(t)

))]
x′(t) dt

∣∣∣∣

≤ 


∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

)) · (�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣x′(t) dt

≤ 


∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣x′(t) dt

≤ 


∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣x′(t) dt
∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣x′(t) dt

≤ 


(∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣qx′(t) dt
) 

q

·
(∫ π



∣∣(�v
(
x(t)

)
– c∇v

(
x(t)

))∣∣qx′(t) dt
) 

q

≤ D‖v ◦ x‖H‖v ◦ x‖H = O
(‖v ◦ x‖H

)
.

Since u(x(t)), v(x(t)) ∈ D, we have that u(x(t)) > , v(x(t)) >  and u(x(t)) + v(x(t)) > . Thus,


|u(x(t))|p and 
|u(x(t))+v(x(t))|p are well defined, continuous, and C. By the mean value theorem

we have
(


q
∣∣u

(
x(t)

)
+ v

(
x(t)

)∣∣q –

p


|u(x(t)) + v(x(t))|p

)
–

(

q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

)

=
(∣∣u

(
x(t)

)∣∣q– +


|u(x(t))|p+

)
· v

(
x(t)

)
+ O

(‖v ◦ x‖H
)
. (.)
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Thus, there exist constants D > , D > , D > , and D >  such that

∣∣∣∣

∫ π



[(


�

(
u
(
x(t) + v

(
x(t)

))) +

q
∣∣u

(
x(t)

)
+ v

(
x(t)

)∣∣q –

p


|u(x(t)) + v(x(t))|p

)

–
(



�u

(
x(t)

) +

q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

)]
x′(t) dt

∣∣∣∣

=
∣∣∣∣

∫ π



[
�

(
u
(
x(t)

) · v
(
x(t)

)
+



�v

(
x(t)

))]
x′(t) dt

+
∫ π



[(∣∣u
(
x(t)

)∣∣q– +


|u(x(t))|p+

)
· v

(
x(t)

)
+ O

(‖v ◦ x‖H
)]

x′(t) dt
∣∣∣∣

≤
∣∣∣∣

∫ π



[
�

(
u
(
x(t)

) · v
(
x(t)

)
+



�v

(
x(t)

))]
x′(t) dt

∣∣∣∣

+
∣∣∣∣

∫ π



[(∣∣u
(
x(t)

)∣∣q– +


|u(x(t))|p+

)
· v

(
x(t)

)
+ O

(‖v ◦ x‖H
)]

x′(t) dt
∣∣∣∣

≤
∫ π



∣∣∣∣�
(

u
(
x(t)

) · v
(
x(t)

)
+



�v

(
x(t)

))∣∣∣∣x
′(t) dt

+
∫ π



∣∣∣∣

(∣∣u
(
x(t)

)∣∣q– +


|u(x(t))|p+

)
· v

(
x(t)

)
+ O

(‖v ◦ x‖H
)
∣∣∣∣x

′(t) dt

≤
∫ π



∣∣�
(
u
(
x(t)

) · v
(
x(t)

))∣∣x′(t) dt +



∫ π



∣∣�v
(
x(t)

)∣∣x′(t) dt

+
∫ π



∣∣∣∣
∣∣u

(
x(t)

)∣∣q– +


|u(x(t))|p+

∣∣∣∣
∣∣v

(
x(t)

)∣∣x′(t) dt + πO
(‖v ◦ x‖)H

≤
∫ π



∣∣�
(
u
(
x(t)

))∣∣x′(t) dt
∫ π



∣∣v
(
x(t)

)∣∣x′(t) dt +



∫ π



∣∣�v
(
x(t)

)∣∣x′(t) dt

+
∫ π



∣∣∣∣
∣∣u

(
x(t)

)∣∣q– +


|u(x(t))|p+

∣∣∣∣x
′(t) dt

∫ π



∣∣v
(
x(t)

)∣∣x′(t) dt

+ πO
(‖v ◦ x‖H

)

≤ D‖u ◦ x‖H‖v ◦ x‖H + D‖v ◦ x‖
H

+
(∫ π



∣∣∣∣
∣∣u

(
x(t)

)∣∣q– +


|u(x(t))|p+

∣∣∣∣

q

x′(t) dt
) 

q
(∫ π



∣∣v
(
x(t)

)∣∣qx′(t) dt
) 

q

+ πO
(‖v ◦ x‖H

)

≤ D‖u ◦ x‖H‖v ◦ x‖H + D‖v ◦ x‖
H + D‖u ◦ x‖q

H‖v ◦ x‖H

+ D

∥∥∥∥


|u ◦ x|p+

∥∥∥∥
H
‖v ◦ x‖H + πO

(‖v ◦ x‖H
)

= O
(‖v ◦ x‖H

)
.

Thus, we have

∣∣J(u ◦ x + v ◦ x) – J(u ◦ x)
∣∣ = O

(‖v ◦ x‖
H
)
.

Next, we shall prove that J(u ◦ x) is Fréchet differentiable. Let u ◦ x, v ◦ x ∈ H . Then since
u(x(t)), v(x(t)) ∈ D, it follows that u(x(t)) > , v(x(t)) > , and u(x(t)) + v(x(t)) > . Thus,
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|u(x(t))|p and 

|u(x(t))+v(x(t))|p are well defined, continuous, and C. Thus, we have

∣∣J(u ◦ x + v ◦ x) – J(u ◦ x) – DJ(u ◦ x) · (v ◦ x)
∣∣

=
∣∣∣∣




∫ π



(
�(u

(
x(t)

)
+ v

(
x(t)

))
+ c�

(
u
(
x(t)

)
+ v

(
x(t)

))) · (u
(
x(t)

)
+ v

(
x(t)

))
x′(t) dt

–
∫ π



[


�

(
u
(
x(t)

)
+ v

(
x(t)

)) +

q
∣∣u

(
x(t)

)
+ v

(
x(t)

)∣∣q

–

p


|u(x(t)) + v(x(t))|p

]
x′(t) dt

–



∫ π



(
�u

(
x(t)

)
+ c�u

(
x(t)

)) · u
(
x(t)

)
x′(t) dt

+
∫ π



[


�u

(
x(t)

) +

q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

]
x′(t) dt

–
∫ π



[(
�u

(
x(t)

)
+ c�u

(
x(t)

)) · v
(
x(t)

)

–
(

�u
(
x(t)

)
+

∣∣u
(
x(t)

)∣∣q– +


|u(x(t))|p+

)
· v

(
x(t)

)]
x′(t) dt

∣∣∣∣

=
∣∣∣∣




∫ π



[(
�v

(
x(t)

)
+ c�v

(
x(t)

)) · u
(
x(t)

)

+
(
�v

(
x(t)

)
+ c�v

(
x(t)

)) · v
(
x(t)

)]
x′(t) dt

–
∫ π



[((


�

(
u
(
x(t)

)
+ v

(
x(t)

)) +

q
∣∣u

(
x(t)

)
+ v

(
x(t)

)∣∣q

–

p


|u(x(t)) + v(x(t))|p

)

–
(



�u

(
x(t)

) +

q
∣∣u

(
x(t)

)∣∣q –

p


|u(x(t))|p

)

–
(

�u
(
x(t)

)
+

∣∣u
(
x(t)

)∣∣q– +


|u(x(t))|p+

))
· v

(
x(t)

)]
x′(t) dt

∣∣∣∣.

By (.) and the same arguments as in the proof of the continuity of J(u ◦ x) we have

∣∣J(u ◦ x + v ◦ x) – J(u ◦ x) – DJ(u ◦ x) · (v ◦ x)
∣∣ = O

(‖v ◦ x‖H
)
.

Thus, J ∈ C. �

Lemma . Assume that λk < c < λk+,  < q < p, q < n
n– , λk+m(λk+m – c) < � <

λk+m+(λk+m+ – c), k ≥ , m ≥ , and that conditions (A) and (A) hold. Then for any
sequence (un ◦ x)n ⊂ H such that un ◦ x ⇀ u ◦ x weakly in H with u ◦ x ∈ ∂H , we have
J(un ◦ x) → ∞.

Proof We claim that

∫ π



[
–



�un

(
x(t)

) –

q
∣∣un

(
x(t)

)∣∣q +

p


|un(x(t))|p

]
x′(t) dt −→ +∞.
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By (A) there exists a neighborhood Z of C in R such that for any u(x(t)) ∈ Z, {– 
�×

un(x(t)) – 
q |un(x(t))|q + 

p


|un(x(t))|p } is bounded from below. Thus, it suffices to prove that
there exists an interval [t, t] ⊂ [, π ] such that

∫ t

t

[
–



�un

(
x(t)

) –

q
∣∣un

(
x(t)

)∣∣q +

p


|un(x(t))|p

]
x′(t) dt −→ +∞.

Since u ◦ x ∈ ∂H , there exists t∗ ∈ [, π ] such that u(x(t∗)) ∈ ∂D. By (A) there exist con-
stants A >  and B >  such that

–


�u

(
x(t)

) –

q
∣∣u

(
x(t)

)∣∣q +

p


|u(x(t))|p ≥ A

d(u(x(t)), C)
– B.

Thus, we have
∫ t∗+δ

t∗

[
–



�u

(
x(t)

) –

q
∣∣u

(
x(t)

)∣∣q +

p


|u(x(t))|p

]
x′(t) dt

≥
∫ t∗+δ

t∗

[
A

d(u(x(t)), C)
– B

]
x′(t) dt

for all δ > . On the other hand, we have

∣∣u
(
x(t)

)
– u

(
x
(
t∗))∣∣ ≤ ∣∣t – t∗∣∣ 



(∫ π



∣∣u′(x(t)
)∣∣x′(t) dt

) 


≤ δ



(∫ π



∣∣u′(x(t)
)∣∣x′(t) dt

) 


. (.)

It follows from (.) that
∫ t∗+δ

t∗

[
–



�u

(
x(t)

) –

q
∣∣u

(
x(t)

)∣∣q +

p


|u(x(t))|p

]
x′(t) dt

≥
∫ t∗+δ

t∗

[
A

δ
∫ π

 |u′(x(t))|x′(t) dt
– B

]
x′(t) dt −→ +∞ as δ → .

Thus,
∫ t∗+δ

t∗

[
–



�u

(
x(t)

) –

q
∣∣u

(
x(t)

)∣∣q +

p


|u(x(t))|p

]
x′(t) dt −→ ∞

as δ → . Since the embedding H(S, R) ↪→ C(S, R) is compact, we have

max
{∣∣u

(
x(t)

)
– un

(
x(t)

)∣∣ | ∀t ∈ S} −→  as n → ∞.

By Fatou’s lemma we have

lim inf
∫ t∗+δ

t∗

[
–



�un

(
x(t)

) –

q
∣∣un

(
x(t)

)∣∣q +

p


|un(x(t))|p

]
x′(t) dt

≥
∫ t∗+δ

t∗
lim inf

[
–



�un

(
x(t)

) –

q
∣∣un

(
x(t)

)∣∣q +

p


|un(x(t))|p

]
x′(t) dt

=
∫ t∗+δ

t∗

[
–



�u

(
x(t)

) –

q
∣∣u

(
x(t)

)∣∣q +

p


|u(x(t))|p

]
x′(t) dt −→ ∞
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as δ → . Thus,

lim inf
∫ t∗+δ

t∗

[
–



�un

(
x(t)

) –

q
∣∣un

(
x(t)

)∣∣q +

p


|un(x(t))|p

]
x′(t) dt = +∞,

so that J(u ◦ x) −→ +∞, and the lemma is proved. �

Lemma . Assume that λk < c < λk+,  < q < p, q < n
n– , λk+m(λk+m – c) < � <

λk+m+(λk+m+ – c), k ≥ , m ≥ , and that conditions (A) and (A) hold. Then if
‖un ◦ x‖H → ∞ and (un ◦ x)n is a sequence in H such that

∫ π

 [(|un(x(t))|q– + 
|un(x(t))|p+ ) · un(x(t)) – ( 

q |un(x(t))|q – 
p


|un(x(t))|p )]x′(t) dt

‖un ◦ x‖H
−→ ,

then there exist (uhn ◦ x)n and z ◦ x in H such that

|uhn ◦ x|q– + 
|uhn ◦x|p+

‖un ◦ x‖H
→ z ◦ x ∈ H ,

uhn ◦ x
‖uhn ◦ x‖H

→ .

Proof Since

∫ π

 [(|un(x(t))|q– + 
|un(x(t))|p+ ) · un(x(t)) – ( 

q |un(x(t))|q – 
p


|un(x(t))|p )]x′(t) dt

‖un ◦ x‖H
−→ ,

the sequence (
∫ π

 [(|un(x(t))|q–+ 
|un(x(t))|p+ )·un(x(t))–( 

q |un(x(t))|q– 
p


|un(x(t))|p )]x′(t) dt

‖un◦x‖H
)n is bounded, and

there exists a constant C >  such that

∥∥∥∥

∫ π

 [(|un(x(t))|q– + 
|un(x(t))|p+ ) · un(x(t)) – ( 

q |un(x(t))|q – 
p


|un(x(t))|p )]x′(t) dt

‖un ◦ x‖H

∥∥∥∥
H

≤ C.

Then we have

∥∥∥∥

∫ π

 [(|un(x(t))|q– + 
|un(x(t))|p+ ) · un(x(t))]x′(t) dt

‖un ◦ x‖H

∥∥∥∥
H

≤
∥∥∥∥

∫ π

 [(|un(x(t))|q– + 
|un(x(t))|p+ ) · un(x(t)) – ( 

q |un(x(t))|q – 
p


|un(x(t))|p )]x′(t) dt

‖un ◦ x‖H

∥∥∥∥
H

+
∥∥∥∥

∫ π

 [ 
q |un(x(t))|q – 

p


|un(x(t))|p ]x′(t) dt
‖un ◦ x‖H

∥∥∥∥
H

≤ C +
∥∥∥∥

∫ π

 [ 
q |un(x(t))|q – 

p


|un(x(t))|p ]x′(t) dt
‖un ◦ x‖H

∥∥∥∥
H

. (.)

We note that

∫ π



[

q
∣∣un

(
x(t)

)∣∣q –

p


|un(x(t))|p

]
x′(t) dt ≤ 

q
‖un ◦ x‖q

Lq(S,R) +

p

∥∥∥∥


|un ◦ x|
∥∥∥∥

p

Lq(S,R)
.
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Then there exist constants C >  and C >  such that

∥∥∥∥

∫ π

 [ 
q |un(x(t))|q – 

p


|un(x(t))|p ]x′(t) dt
‖un ◦ x‖H

∥∥∥∥
H

≤ C

(‖un ◦ x‖q
Lq(S,R)

‖un ◦ x‖H

) q–
q

‖un ◦ x‖l
H + C

‖ 
|un◦x| ‖p

Lq(S,R)

‖un ◦ x‖H
, (.)

where l = – + q–
q = – 

q < . Note that since (
‖un◦x‖q

Lq(S,R)
‖un◦x‖H

)
q–

q is bounded, it follows from
l <  that the right-hand side of (.) is bounded from above and

∥∥∥∥

∫ π

 [ 
q |un(x(t))|q – 

p


|un(x(t))|p ]x′(t) dt
‖un ◦ x‖H

∥∥∥∥
H

−→  as n → ∞.

Thus, by (.),

∥∥∥∥

∫ π

 [(|un(x(t))|q– + 
|un(x(t))|p+ ) · un(x(t))]x′(t) dt

‖un ◦ x‖H

∥∥∥∥
H

is bounded from above

and

lim
n→∞

∫ π

 [(|un(x(t))|q– + 
|un(x(t))|p+ ) · un(x(t))]x′(t) dt

‖un ◦ x‖H
= .

Thus, the sequence (
∫ π

 [(|un(x(t))|q–+ 
|un(x(t))|p+ )·un(x(t))]x′(t) dt

‖un◦x‖H
)n is bounded. When  < q < n

n– ,
the embedding H ↪→ Lq(�) is compact, Thus there exists a subsequence (uhn ◦ x)n such
that

lim
n→∞

∫ π

 [(|uhn (x(t))|q– + 
|uhn (x(t))|p+ ) · uhn (x(t))]x′(t) dt

‖uhn ◦ x‖H

= lim
n→∞

∫ π



(∣∣uhn

(
x(t)

)∣∣q– +


|uhn (x(t))|p+

)
· uhn (x(t))
‖uhn ◦ x‖H

x′(t) dt = . (.)

We note that  < |uhn (x(t))|q– + 
|uhn (x(t))|p+ ≤ ‖uhn (x(t))‖q–

Lq(S,R) + ‖ 
|uhn (x(t))|p+ ‖Lq(S,R) < ∞.

It follows from (.) that there exists z ◦ x in H such that

|uhn ◦ x|q– + 
|uhn ◦x|p+

‖un ◦ x‖H
→ z ◦ x ∈ H ,

uhn ◦ x
‖uhn ◦ x‖H

→ .

Thus, the lemma is proved. �

Let us set

H–(
S, R

)
=

⊕

�i<

Hλi(λi–c)
(
S, R

)
,

H+(
S, R

)
=

⊕

�i>

Hλi(λi–c)
(
S, R

)
,
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H(S, R
)

=
⊕

�i=

Hλi(λi–c)
(
S, R

)
.

Then

H = H–(
S, R

) ⊕ H+(
S, R

) ⊕ H(S, R
)
.

We note that if λk+m(λk+m – c) < � < λk+m+(λk+m+ – c), k ≥ , m ≥ , then

H–(
S, R

)
=

⊕

�≤�i≤�k+m

Hλi(λi–c)
(
S, R

)
,

H+(
S, R

)
=

⊕

�i≥�k+m+

Hλi(λi–c)
(
S, R

)
,

dim H–(S, R) < ∞, H(S, R) = ∅, and

H = H–(
S, R

) ⊕ H+(
S, R

)
.

Now, we shall prove that J(u ◦ x) satisfies (P.S.)c condition for c ∈ R.

Lemma . (Palais-Smale condition) Assume that λk < c < λk+,  < q < p, q < n
n– ,

λk+m(λk+m – c) < � < λk+m+(λk+m+ – c), k ≥ , m ≥ , and that conditions (A) and (A)
hold. Then J(u ◦ x) satisfies (P.S.)c condition for any c ∈ R: if (un ◦ x)n ∈ H is any sequence
such that J(un ◦ x) → c and DJ(un ◦ x) → , then (un ◦ x)n has a convergent subsequence
(uni ◦ x) such that

uni ◦ x → u ◦ x ∈ H .

Proof Let c ∈ R, and let (un ◦ x)n ⊂ H be a sequence such that J(un ◦ x) → c and

DJ(un ◦x) = �(un ◦x)+c�(un ◦x)–
(

�(un ◦x)+ |un ◦x|q– +


|un ◦ x|p+

)
−→  in H

or, equivalently,

un ◦ x –
(
� + c�

)–
(

�(un ◦ x) + |un ◦ x|q– +


|un ◦ x|p+

)
−→ , (.)

where (� + c�)– is a compact operator. We shall show that (un ◦ x)n has a convergent
subsequence. We claim that {un ◦ x} is bounded in H . By contradiction we suppose that
‖un ◦ x‖H → ∞ and set wn ◦ x = un◦x

‖un◦x‖H
. Since (wn ◦ x)n is bounded, up to a subsequence,

(wn ◦ x)n converges weakly to some w ◦ x in H . Since J(un ◦ x) → c and DJ(un ◦ x) → ,
we have

DJ(un ◦ x) · (un ◦ x)
‖un ◦ x‖H

=
J(un ◦ x)
‖un ◦ x‖H
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–

∫ π

 [(|un(x(t))|q– + 
|un(x(t))|p+ ) · un(x(t)) – ( 

q |un(x(t))|q – 
p


|un(x(t))|p )]x′(t) dt

‖un ◦ x‖H

−→ .

Thus, we have

∫ π

 [(|un(x(t))|q– + 
|u(x(t))|p+ ) · un(x(t)) – ( 

q |un(x(t))|q – 
p


|un(x(t))|p )]x′(t) dt

‖un ◦ x‖H
−→ .

By Lemma . and (.) there exist (uhn ◦ x)n and z ◦ x in H such that

|uhn ◦ x|q– + 
|uhn ◦x|p+

‖un ◦ x‖H
→ z ◦ x ∈ H ,

uhn ◦ x
‖uhn ◦ x‖H

→ .

Thus, we have w ◦ x = , which is absurd because ‖w ◦ x‖H = . Thus, {un ◦ x} is bounded
in H . Thus, (un ◦ x)n has a convergent subsequence converging weakly to some u ◦ x in H .
We claim that this subsequence of (un ◦ x)n converges strongly to u ◦ x. Since DJ(un ◦ x) →
, we have

DJ(un ◦ x) =
(
� + c� – �

)
(un ◦ x) –

(
|un ◦ x|q– +


|un ◦ x|p+

)
−→ .

We claim that the mapping un ◦ x →�→ (|un ◦ x|q– + 
|un◦x|p+ )n is compact. Since the

embedding H ↪→ Lq(S, R) is compact for  < q < n
n– , the mapping H → Lq(S, R) :

un ◦ x �→ ∫ π

 (|un(x(t))|q– + 
|un(x(t))|p+ )un(x(t))x′(t) dt is compact. Thus, the sequence

(
∫ π

 (|un(x(t))|q– + 
|un(x(t))|p+ )un(x(t))x′(t) dt)n has a convergent subsequence that con-

verges to
∫ π

 (|u(x(t))|q– + 
|u(x(t))|p+ )u(x(t))x′(t) dt. Because {un ◦ x} is bounded and the

subsequence of (un ◦ x)n converges weakly to some u ◦ x in H , (|un ◦ x|q– + 
|un◦x|p+ )n has a

convergent subsequence. Since (|un ◦ x|q– + 
|un◦x|p+ )n has a convergent subsequence, the

subsequence of (� + c� – �)(un ◦ x) converges. Since (� + c� – �)– is compact, the
sequence (un ◦ x)n has a subsequence converging strongly to u ◦ x in H . �

3 Proof of Theorem 1.1
Let us set again

H–(
S, R

)
=

⊕

�i<

Hλi(λi–c)
(
S, R

)
,

H+(
S, R

)
=

⊕

�i>

Hλi(λi–c)
(
S, R

)
,

H(S, R
)

=
⊕

�i=

Hλi(λi–c)
(
S, R

)
.

Then

H = H–(
S, R

) ⊕ H+(
S, R

) ⊕ H(S, R
)
.
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We note that if λk+m(λk+m – c) < � < λk+m+(λk+m+ – c), k ≥ , m ≥ , then

H–(
S, R

)
=

⊕

�≤�i≤�k+m

Hλi(λi–c)
(
S, R

)
,

H+(
S, R

)
=

⊕

�i≥�k+m+

Hλi(λi–c)
(
S, R

)
,

dim H–(S, R) < ∞, H(S, R) = ∅, and

H = H–(
S, R

) ⊕ H+(
S, R

)
.

Let us set

Br =
{

u ◦ x ∈ H
(
S, R

) | ‖u ◦ x‖H ≤ r, u
(
x(t)

) ∈ D = R+\C, x(t) ∈ χ ⊂ �,∀t ∈ S},

Sr = ∂Br

=
{

u ◦ x ∈ H
(
S, R

)|‖u ◦ x‖H = r, u
(
x(t)

) ∈ D = R+\C,

∀x(t) ∈ χ ⊂ �,∀t ∈ S},

Q = B̄R ∩ H–(
S, R

) ⊕ {
r(e ◦ x) | e ◦ x ∈ ∂B ∩ Hλk+m+(λk+m+–c)

(
S, R

)

⊂ ∂B ∩ H+(
S, R

)
,  < r < R

}
.

Let us define

� =
{
γ ∈ C

(
Q̄, H

(
S, R

)) | γ = id on ∂Q
}

.

Lemma . Under the assumptions of Theorem ., there exists a large number R >  such
that if e ◦ x ∈ ∂B ∩ Hλk+m+(λk+m+–c)(S, R) ⊂ ∂B ∩ H+(S, R) and u ◦ x ∈ ∂Q = ∂(B̄R ∩
H–(S, R) ⊕ {r(e ◦ x) |  < r < R}), then

sup
u◦x∈∂Q

J(u ◦ x) < , sup
u◦x∈Q

J(u ◦ x) < ∞.

Proof Let us choose elements e ◦ x ∈ ∂B ∩ Hλk+m+(λk+m+–c)(S, R) ⊂ ∂B ∩ H+(S, R) and
u ◦ x ∈ H–(S, R) ⊕ {r(e ◦ x) | r > }. Then we have

J(u ◦ x) =



∫ π



[(
�u

(
x(t)

)
+ c�u

(
x(t)

)) · u
(
x(t)

)
– �u

(
x(t)

)]x′(t) dt

–
∫ π




q
∣∣u

(
x(t)

)∣∣q dx +
∫

�


p


|u(x(t))|p x′(t) dt

≤ 

�k+m+‖u ◦ x‖

Lq(S,R)

–

q
‖u ◦ x‖q

Lq(S,R) +
∫ π




p


|u(x(t))|p x′(t) dt.

If u ◦ x ∈ ∂Q, then since  < p, there exists a constant C̄ such that
∫ π



p


|u(x(t))|p x′(t) dt < C̄.

Thus, we have

J(u ◦ x) ≤ 

�k+m+‖u ◦ x‖

Lq(S,R) –

q
‖u ◦ x‖q

Lq(S,R) + C̄.
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Since  < q, there exists a large number R >  such that if u ◦ x ∈ ∂Q, then J(u ◦ x) < .
Thus, we have supu◦x∈∂Q J(u ◦ x) < . Moreover, if u ◦ x ∈ Q, then J(u ◦ x) ≤ 

�k+m+‖u ◦
x‖

Lq(S,R) + C̄ < ∞. �

Lemma . Under the assumptions of Theorem ., there exists a small number r >  such
that

inf
u◦x∈∂Br∩H+(S,R)

J(u ◦ x) > , inf
u◦x∈Br∩H+(S,R)

J(u ◦ x) > –∞.

Proof Let u ◦ x ∈ ∂Br ∩ H+(S, R). Then we have

J(u ◦ x) =



∫ π



[
�u

(
x(t)

)
+ c�u

(
x(t)

) · u
(
x(t)

)
– �u

(
x(t)

)]x′(t) dt

–
∫ π




q
∣∣u

(
x(t)

)∣∣qx′(t) dt +
∫

�


p


|u(x(t))|p x′(t) dt

≥ 


∫ π



[
�u

(
x(t)

)
+ c�u

(
x(t)

) · u
(
x(t)

)
– �u

(
x(t)

)]x′(t) dt

–
∫ π




q
∣∣u

(
x(t)

)∣∣qx′(t) dt

≥ 

�k+m+‖u ◦ x‖

Lq(S,R) –

q
∥∥u

(
x(t)

)∥∥q
Lq(S,R).

Since  < q, there exists a small number r >  such that if u ◦ x ∈ ∂Br ∩ H+(S, R), then
J(u ◦ x) > . Thus, infu◦x∈∂Br∩H+(S,R) J(u ◦ x) > . Moreover, if u ◦ x ∈ Br ∩ H+(S, R), then
J(u ◦ x) ≥ – 

q ‖u ◦ x‖q
Lq(S,R) > –∞. Thus, infu◦x∈Br∩H+(S,R) J(u ◦ x) > –∞. So the lemma is

proved. �

Let us define

c = inf
h∈�

sup
u◦x∈Q

J
(
h(u ◦ x)

)
.

Lemma . Under the assumptions of Theorem ., we have

 < inf
u◦x∈∂Br∩H+(S,R)

J(u ◦ x) ≤ c = inf
h∈�

sup
u◦x∈Q

J
(
h(u ◦ x)

) ≤ sup
u◦x∈Q

J(u ◦ x) < ∞.

Proof By Lemma . we have

inf
h∈�

sup
u◦x∈Q

J
(
h(u ◦ x)

) ≤ sup
u◦x∈Q

J(u ◦ x) < ∞.

By Lemma . we have

inf
h∈�

sup
u◦x∈Q

J
(
h(u ◦ x)

) ≥ inf
u◦x∈∂Br∩H+(S,R)

J(u ◦ x) > .

Thus, the lemma is proved. �
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Proof of Theorem . Assume that λk < c < λk+,  < q < p, q < n
n– , λk+m(λk+m – c) < � <

λk+m+(λk+m+ – c), k ≥ , m ≥ , and that conditions (A) and (A) hold. Note that J(u ◦ x)
is continuous and Fréchet differentiable in H and DJ ∈ C. By Lemma ., J(u ◦ x) satisfies
(P.S.)c condition for c ∈ R. We claim that c = infh∈� supu◦x∈Q J(h(u◦x)) >  is a critical value
of J(u ◦ x), that is, J(u ◦ x) has a critical point u ◦ x such that

J(u ◦ x) = c,

DJ(u ◦ x) = .

In fact, by contradiction we suppose that c >  is not a critical value of J(u ◦ x). Then by
Theorem A. in [], for any ε̄ ∈ (, c) > , there exist a constant ε ∈ (, ε̄) and a deformation
η ∈ C([, ] × H , H) such that:

(i) η(, u ◦ x) = u ◦ x for all u ◦ x ∈ H ,
(ii) η(s, u ◦ x) = u ◦ x for all s ∈ [, ] if J(u ◦ x) /∈ [c – ε̄, c + ε̄],

(iii) J(η(, u ◦ x)) ≤ c – ε if J(u ◦ x) ≤ c + ε.
We can choose h ∈ � such that

sup
u◦x∈Q

J
(
h(u ◦ x)

) ≤ c + ε

and

J
(
h(u ◦ x)

)
< c – ε̄ on ∂Q.

This leads to J(h(u ◦ x)) /∈ [c – ε̄, c + ε̄]. Thus, by (ii),

η
(
, h(u ◦ x)

)
= h(u ◦ x) on ∂Q.

Hence, η(, h(u ◦ x)) ∈ �. By (iii) and the definition of c,

c ≤ sup
u◦x∈Q

J
(
η
(
, h(u ◦ x)

))
= sup

u◦x∈Q
J
(
h(u ◦ x)

) ≤ c – ε,

which is a contradiction. Thus, c is a critical value of J(u ◦ x). So J(u ◦ x) has a critical point
u ◦ x with a critical value

c = J(u ◦ x)

such that

 < inf
u◦x∈∂Br∩H+(S,R)

J(u ◦ x) ≤ c ≤ sup
u◦x∈Q

J(u ◦ x) < ∞.

By Lemma .,

u
(
x(t)

) = .

Thus, (.) has at least one nontrivial solution u such that u(x(t)) = , and Theorem .
is proved. �
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