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*Correspondence:
episkin@dicle.edu.tr
Department of Mathematics, Dicle
University, Diyarbakir, Turkey

Abstract
In this work we investigate the global existence, decay, and blow up of solutions for a
quasilinear hyperbolic equation. We prove the decay estimates of the energy function
by using Nakao’s inequality. Also, we obtain the blow up of solutions and lifespan
estimates in three different ranges of the initial energy.
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1 Introduction
In this work we study the following quasilinear hyperbolic equations:

⎧
⎪⎨

⎪⎩

utt – div(|∇u|m∇u) – �ut + |ut|q–ut = |u|p–u, x ∈ �, t > ,
u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,
u(x, t) = , x ∈ ∂�, t > ,

()

where � is a bounded domain with smooth boundary ∂� in Rn (n ≥ ); m > , p, q ≥ .
Problems of this type arise in physics. For example, this problem represents the longitu-

dinal motion of a viscoelastic configuration which obeys a nonlinear Voight model [, ].
When m = , () becomes the following wave equation with nonlinear and strong damp-

ing terms:

utt – �u – �ut + |ut|q–ut = |u|p–u. ()

Gerbi and Houari [] studied the exponential decay, Chen and Liu [] studied the global
existence, decay, and exponential growth of solutions of the problem (). Also, Gazzola
and Squassina [] studied the global existence and blow up of solutions of the problem
(), for q = .

In the absence of the strong damping term �ut and m = , the problem () can be re-
duced to the following wave equation with nonlinear damping and source terms:

utt – �u + |ut|q–ut = |u|p–u. ()
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Many authors have investigated the local existence, blow up, and asymptotic behavior of
solutions of (); see [–]. The interaction between the damping (|ut|q–ut) and the source
term (|u|p–u) makes the problem more interesting. Levine [, ] first studied the interac-
tion between the linear damping (q = ) and source term by using a concavity method.
But this method cannot be applied in the case of a nonlinear damping term. Georgiev and
Todorova [] extended Levine’s result to the nonlinear case (q > ). They showed that so-
lutions with a negative initial energy blow up in finite time. Later, Vitillaro [] extended
these results to the case of a nonlinear damping and a positive initial energy.

In [], Messaoudi studied decay of solutions of the problem (), using the techniques
combination of the perturbed energy and potential well methods. Recently, the problem
() was studied by Wu and Xue []. They proved the uniform energy decay rates of the
solutions, by utilizing the multiplier method.

In this work, we established the polynomial and exponential decay of solutions of the
problem () by using Nakao’s inequality. After that, we show the blow up of solutions with
negative and nonnegative initial energy, using the same techniques as in [].

This work is organized as follows: In the next section, we present some lemmas, nota-
tions, and a local existence theorem. In Section , the global existence and decay of solu-
tions are given. In Section , we show the blow up of solutions, for q = .

2 Preliminaries
In this section, we shall give some assumptions and lemmas which will be used throughout
this paper. Let ‖ · ‖ and ‖ · ‖p denote the usual L(�) norm and Lp(�) norm, respectively.

Lemma  (Sobolev-Poincaré inequality) [] Let p be a number with  ≤ p < ∞ (n = , )
or  ≤ p ≤ n

n– (n ≥ ), then there is a constant C∗ = C∗(�, p) such that

‖u‖p ≤ C∗‖∇u‖ for u ∈ H
(�).

Lemma  [] Let φ(t) be a nonincreasing and nonnegative function defined on [, T],
T > , satisfying

φ+α(t) ≤ w
(
φ(t) – φ(t + )

)
, t ∈ [, T]

for w a positive constant and α a nonnegative constant. Then we have, for each t ∈ [, T],

{
φ(t) ≤ φ()e–w[t–]+ , α = ,
φ(t) ≤ (φ()–α + w–

 α[t – ]+)– 
α , α > ,

where [t – ]+ = max{t – , } and w = ln( w
w– ).

Next, we state the local existence theorem that can be established by combining the
arguments of [, , ].

Theorem  (Local existence) Suppose that m +  < p +  < n(m+)
n–(m+) , m +  < n, and further

u ∈ W ,m+
 (�) and u ∈ L(�) such that problem () has a unique local solution,

u ∈ C
(
[, T); W ,m+

 (�)
)

and ut ∈ C
(
[, T); L(�)

) ∩ Lq+(� × [, T)
)
.
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Moreover, at least one of the following statements holds true:
(i) T = ∞,

(ii) ‖ut‖ + ‖∇u‖m+
m+ → ∞ as t → T–.

3 Global existence and decay of solutions
In this section, we discuss the global existence and decay of the solution for problem ().

We define

J(t) =


m + 
‖∇u‖m+

m+ –


p + 
‖u‖p+

p+ ()

and

I(t) = ‖∇u‖m+
m+ – ‖u‖p+

p+. ()

We also define the energy function as follows:

E(t) =


‖ut‖ +


m + 

‖∇u‖m+
m+ –


p + 

‖u‖p+
p+. ()

Finally, we define

W =
{

u : u ∈ W ,m+
 (�), I(u) > 

} ∪ {}. ()

The next lemma shows that our energy functional () is a nonincreasing function along
the solution of ().

Lemma  E(t) is a nonincreasing function for t ≥  and

E′(t) = –
(‖ut‖q+

q+ + ‖∇ut‖) ≤ . ()

Proof Multiplying the equation of () by ut and integrating over �, using integrating by
parts, we get

E(t) – E() = –
∫ t



(‖uτ‖q+
q+ + ‖∇uτ‖)dτ for t ≥ . ()

�

Lemma  Let u ∈ W and u ∈ L(�). Suppose that p > m +  and

β = C∗
(

(p + )(m + )
p – m – 

E()
) p–m–

m+
< , ()

then u ∈ W for each t ≥ .

Proof Since I() > , it follows by the continuity of u(t) that

I(t) > 

for some interval near t = . Let Tm >  be a maximal time, when () holds on [, Tm].
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From () and (), we have

J(t) =


p + 
I(t) +

p – m – 
(p + )(m + )

‖∇u‖m+
m+

≥ p – m – 
(p + )(m + )

‖∇u‖m+
m+. ()

Thus, from () and E(t) being nonincreasing by (), we have

‖∇u‖m+
m+ ≤ (p + )(m + )

p – m – 
J(t)

≤ (p + )(m + )
p – m – 

E(t)

≤ (p + )(m + )
p – m – 

E(). ()

And so, exploiting Lemma , (), and (), we obtain

‖u‖p+
p+ ≤ C∗‖∇u‖p+

≤ C∗‖∇u‖p+
m+

= C∗‖∇u‖p–m–
m+ ‖∇u‖m+

m+

≤ C∗
(

(p + )(m + )
p – m – 

E()
) p–m–

m+ ‖∇u‖m+
m+

= β‖∇u‖m+
m+

< ‖∇u‖m+
m+ on t ∈ [, Tm]. ()

Therefore, by using (), we conclude that I(t) >  for all t ∈ [, Tm]. By repeating the pro-
cedure, Tm is extended to T . The proof of Lemma  is completed. �

Lemma  Let the assumptions of Lemma  hold. Then there exists η =  – β such that

‖u‖p+
p+ ≤ ( – η)‖∇u‖m+

m+.

Proof From (), we get

‖u‖p+
p+ ≤ β‖∇u‖m+

m+. �

Let η =  – β , then we have the following result.

Remark  From Lemma , we can deduce that

‖∇u‖m+
m+ ≤ 

η
I(t). ()

Theorem  Suppose that m +  < p +  < n(m+)
n–(m+) , m +  < n holds. Let u ∈ W satisfying

(). Then the solution of problem () is global.
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Proof It is sufficient to show that ‖ut‖ + ‖∇u‖m+
m+ is bounded independently of t. To

achieve this we use () and () to obtain

E() ≥ E(t) =


‖ut‖ +


m + 

‖∇u‖m+
m+ –


p + 

‖u‖p+
p+

=


‖ut‖ +

p – m – 
(p + )(m + )

‖∇u‖m+
m+ +


p + 

I(t)

≥ 

‖ut‖ +

p – m – 
(p + )(m + )

‖∇u‖m+
m+

since I(t) ≥ . Therefore,

‖ut‖ + ‖∇u‖m+
m+ ≤ CE(),

where C = max{, (p+)(m+)
p–m– }. Then by Theorem , we have the global existence result. �

Theorem  Suppose that m +  < p +  < n(m+)
n–(m+) , m +  < n, and () hold, and further

u ∈ W . Thus, we have the following decay estimates:

E(t) ≤
{

E()e–w[t–]+ , if q = , m = ,
(E()–α + C–

 α[t – ]+)– 
α , if q > 

m+ ,

where w, α, and C are positive constants which will be defined later.

Proof By integrating () over [t, t + ], t > , we have

E(t) – E(t + ) = Dq+(t), ()

where

Dq+(t) =
∫ t+

t

(‖uτ‖q+
q+ + ‖∇uτ‖)dτ . ()

By virtue of () and Hölder’s inequality, we observe that

∫ t+

t

∫

�

|ut| dx dt ≤ |�| q+
q+ D(t) = CD(t). ()

Hence, from (), there exist t ∈ [t, t + 
 ] and t ∈ [t + 

 , t + ] such that

∥
∥ut(ti)

∥
∥ ≤ CD(t), i = , . ()

Multiplying () by u and integrating it over � × [t, t], using integration by parts, we get

∫ t

t

I(t) dt = –
∫ t

t

∫

�

uutt dx dt –
∫ t

t

∫

�

∇ut∇ dx dt

–
∫ t

t

∫

�

|ut|q–utu dx dt. ()
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By using () and integrating by parts and applying the Cauchy-Schwarz inequality in the
first term and the Hölder inequality in the second term of the right-hand side of (), we
obtain

∫ t

t

I(t) dt ≤ ∥
∥ut(t)

∥
∥
∥
∥u(t)

∥
∥ +

∥
∥ut(t)

∥
∥
∥
∥u(t)

∥
∥

+
∫ t

t

∥
∥ut(t)

∥
∥ dt +

∫ t

t

‖∇ut‖‖∇u‖dt

–
∫ t

t

∫

�

|ut|q–utu dx dt. ()

Now, our goal is to estimate the last term in the right-hand side of inequality (). By using
Hölder inequality, we obtain

∫ t

t

∫

�

|ut|q–utu dx dt ≤
∫ t

t

∥
∥ut(t)

∥
∥q

q+

∥
∥u(t)

∥
∥

q+ dt. ()

By applying the Sobolev-Poincaré inequality and (), we find

∫ t

t

∥
∥ut(t)

∥
∥q

q+

∥
∥u(t)

∥
∥

q+ dt

≤ C∗
∫ t

t

∥
∥ut(t)

∥
∥q

q+‖∇u‖dt

≤ C∗
∫ t

t

∥
∥ut(t)

∥
∥q

q+‖∇u‖m+ dt

≤ C∗
(

(p + )(m + )
p – m – 

E()
) 

m+
∫ t

t

∥
∥ut(t)

∥
∥q

q+E


m+ (s) dt

≤ C∗
(

(p + )(m + )
p – m – 

E()
) 

m+
sup

t≤s≤t
E


m+ (s)

∫ t

t

∥
∥ut(t)

∥
∥q

q+ dt

≤ C∗
(

(p + )(m + )
p – m – 

E()
) 

m+
sup

t≤s≤t
E


m+ (s)Dq(t). ()

Now, we estimate the fourth term of the right-hand side of inequality (). By using the
embedding Lm+(�) ↪→ L(�), we have

∫ t

t

‖∇ut‖‖∇u‖dt

≤ C∗
∫ t

t

‖∇ut‖
∥
∥∇u(t)

∥
∥

m+ dt

≤ C∗
(

(p + )(m + )
p – m – 

E()
) 

m+
∫ t

t

‖∇ut‖E


m+ (s) dt

≤ C∗
(

(p + )(m + )
p – m – 

E()
) 

m+
sup

t≤s≤t
E


m+ (s)

∫ t

t

‖∇ut‖dt,
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which implies

∫ t

t

‖∇ut‖dt ≤
(∫ t

t

 dt
) 


(∫ t

t

‖∇ut‖ dt
) 



≤ CD(t).

Then

∫ t

t

‖∇ut‖‖∇u‖dt ≤ CC∗
(

(p + )(m + )
p – m – 

E()
) 

m+
sup

t≤s≤t
E


m+ (s)D(t). ()

From (), (), and the Sobolev-Poincaré inequality, we have

∥
∥ut(ti)

∥
∥
∥
∥u(ti)

∥
∥ ≤ CD(t) sup

t≤s≤t
E


m+ (s), ()

where C = C∗( (p+)(m+)
p–m– E()) 

m+ . Then by ()-() we have

∫ t

t

I(t) dt ≤ CD(t) sup
t≤s≤t

E


m+ (s) + D(t)

+ CC∗
(

(p + )(m + )
p – m – 

E()
) 

m+
sup

t≤s≤t
E


m+ (s)D(t)

+ C∗
(

(p + )(m + )
p – m – 

E()
) 

m+
sup

t≤s≤t
E


m+ (s)Dq(t). ()

On the other hand, from (), (), and Remark , we obtain

E(t) ≤ 

‖ut‖ + CI(t), ()

where C = 
η

p–m–
(p+)(m+) + 

p+ .
By integrating () over [t, t], we have

∫ t

t

E(t) dt ≤ 


∫ t

t

‖ut‖ dt + C

∫ t

t

I(t) dt. ()

Then by (), (), and (), we get

∫ t

t

E(t) dt ≤ 


CD(t) + C

[

CD(t) sup
t≤s≤t

E


m+ (s) + D(t)

+ CC∗
(

(p + )(m + )
p – m – 

E()
) 

m+
sup

t≤s≤t
E


m+ (s)D(t)

+ C∗
(

(p + )(m + )
p – m – 

E()
) 

m+
sup

t≤s≤t
E


m+ (s)Dq(t)

]

. ()

By integrating () over [t, t], we obtain

E(t) = E(t) +
∫ t

t

(‖uτ‖q+
q+ + ‖∇uτ‖)dτ . ()
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Therefore, since t – t ≥ 
 , we conclude that

∫ t

t

E(t) dt ≥ (t – t)E(t) ≥ 


E(t).

That is,

E(t) ≤ 
∫ t

t

E(t) dt. ()

Consequently, exploiting (), ()-(), and since t, t ∈ [t, t + ], we get

E(t) ≤ 
∫ t

t

E(t) dt +
∫ t+

t

(‖uτ‖q+
q+ + ‖∇uτ‖)dτ

= 
∫ t

t

E(t) dt + Dq+(t). ()

Then, by (), we have

E(t) ≤
(




C + C

)

D(t) + Dq+(t)

+ C
[
D(t) + Dq(t)

]
E


m+ (t).

Hence, we obtain

E(t) ≤ C
[
D(t) + Dq+(t) + D

m+
m+ (t) + D

m+
m+ q(t)

]
. ()

Note that, since E(t) is nonincreasing and E(t) ≥  on [,∞),

Dq+(t) = E(t) – E(t + )

≤ E().

Thus, we have

D(t) ≤ E


q+ (). ()

It follows from () and () that

E(t) ≤ C
[
D

m
m+ (t) + Dq– 

m+ (t) +  + D
(m+)(q–)

m+ (t)
]
D

m+
m+ (t)

≤ C
[
E

m
(m+)(q+) () + E(q– 

m+ ) 
q+ () +  + E

(m+)(q–)
(m+)(q+)

]
D

m+
m+ (t)

= CD
m+
m+ (t).

Thus, we get

E+ (m+)q–
m+ (t) ≤ CDq+(t). ()
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Case : When q =  and m =  from (), we obtain

E(t) ≤ CD(t) = C
[
E(t) – E(t + )

]
.

By Lemma , we get

E(t) ≤ E()e–w[t–]+
,

where w = ln C
C– .

Case : When (m + )q > , applying Lemma  to () yield

E(t) ≤ (
E()–α + C–

 α[t – ]+)– 
α ,

where α = (m+)q–
m+ . The proof of Theorem  is completed. �

4 Blow up of solutions
In this section, we deal with the blow up of the solution for the problem (), when q = .
Let us begin by stating the following two lemmas, which will be used later.

Lemma  [] Let us have δ >  and let B(t) ∈ C(,∞) be a nonnegative function satis-
fying

B′′(t) – (δ + )B′(t) + (δ + )B(t) ≥ . ()

If

B′() > rB() + K, ()

with r = (δ + ) – 
√

(δ + )δ, then B′(t) > K for t > , where K is a constant.

Lemma  [] If H(t) is a nonincreasing function on [t,∞) and satisfies the differential
inequality

[
H ′(t)

] ≥ a + b
[
H(t)

]+ 
δ for t ≥ t, ()

where a > , b ∈ R, then there exists a finite time T∗ such that

lim
t→T∗–

H(t) = .

Upper bounds for T∗ are estimated as follows:
(i) If b <  and H(t) < min{,

√
– a

b } then

T∗ ≤ t +
√
–b

ln

√
– a

b
√

– a
b – H(t)

.
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(ii) If b = , then

T∗ ≤ t +
H(t)
H ′(t)

.

(iii) If b > , then

T∗ ≤ H(t)√
a

or T∗ ≤ t + 
δ+

δ
δc√

a
[
 –

(
 + cH(t)

)– 
δ

]
,

where c = ( a
b )+ 

δ .

Definition  A solution u of () with q =  is called blow up if there exists a finite time
T∗ such that

lim
t→T∗–

[∫

�

u dx +
∫ t



∫

�

(
u + |∇u|)dx dτ

]

= ∞. ()

Let

a(t) =
∫

�

u dx +
∫ t



∫

�

(
u + |∇u|)dx dτ for t ≥ . ()

Lemma  Assume m +  < p +  < n(m+)
n–(m+) , m +  < n, and that m ≤ δ ≤ p – , then we

have

a′′(t) ≥ (δ + )
∫

�

u
t dx – (δ + )E() + (δ + )

∫ t



(‖ut‖ + ‖∇ut‖)dτ . ()

Proof From (), we have

a′(t) = 
∫

�

uut dx + ‖u‖ + ‖∇u‖, ()

a′′(t) = 
∫

�

u
t dx + 

∫

�

uutt dx + 
∫

�

(uut + ∇u∇ut) dx

= ‖ut‖ – ‖∇u‖m+
m+ + ‖u‖p+

p+. ()

Then from () and (), we have

a′′(t) = (δ + )
∫

�

u
t dx – (δ + )E() + (δ + )

∫ t



(‖ut‖ + ‖∇ut‖)dτ

+
(

δ + 
m + 

– 
)

‖∇u‖m+
m+ +

(

 –
δ + 
p + 

)

‖u‖p+
p+.

Since m ≤ δ ≤ p – , we obtain (). �

Lemma  Assume m +  < p +  < n(m+)
n–(m+) , m +  < n and one of the following statements

are satisfied:
(i) E() < ,

(ii) E() =  and
∫

�
uu dx > ,
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(iii) E() >  and

a′() > r

[

a() +
K

(δ + )

]

+ ‖u‖ ()

holds.
Then a′(t) > ‖u‖ for t > t∗, where t = t∗ is given by () in case (i) and t =  in cases

(ii) and (iii).
Here K and t∗ are defined in () and (), respectively.

Proof (i) If E() < , then from (), we have

a′(t) ≥ a′() – (δ + )E()t, t ≥ .

Thus we get a′(t) > ‖u‖ for t > t∗, where

t∗ = max

{
a′(t) – ‖u‖

(δ + )E()
, 

}

. ()

(ii) If E() =  and
∫

�
uu dx > , then a′′(t) ≥  for t ≥ . We have a′(t) > ‖u‖, t ≥ .

(iii) If E() > , we first note that


∫ t



∫

�

uut dx dτ = ‖u‖ – ‖u‖. ()

By the Hölder inequality and the Young inequality, we have

‖u‖ ≤ ‖u‖ +
∫ t


‖u‖ dτ +

∫ t


‖ut‖ dτ . ()

By the Hölder inequality, the Young inequality, and (), we have

a′(t) ≤ a(t) + ‖u‖ +
∫

�

u
t dx +

∫ t


‖ut‖ dτ . ()

Hence, by () and (), we obtain

a′′(t) – (δ + )a′(t) + ‖u‖a(t) + K ≥ ,

where

K = (δ + )E() + (δ + )‖u‖. ()

Let

b(t) = a(t) +
K

(δ + )
, t > .

Then b(t) satisfies Lemma . Consequently, we get from () a′(t) > ‖u‖, t > , where
r is given in Lemma . �
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Theorem  Assume m +  < p +  < n(m+)
n–(m+) , m +  < n and one of the following statements

are satisfied:
(i) E() < ,

(ii) E() =  and
∫

�
uu dx > ,

(iii)  < E() < (a′(t)–‖u‖)

[a(t)+(T–t)‖u‖] and () holds.
Then the solution u blow up in finite time T∗ in the case of (). In case (i),

T∗ ≤ t –
H(t)
H ′(t)

. ()

Furthermore, if H(t) < min{,
√

– a
b }, we have

T∗ ≤ t +
√
–b

ln

√
– a

b
√

– a
b – H(t)

, ()

where

a = δH+ 
δ (t)

[(
a′(t) – ‖u‖) – E()H– 

δ (t)
]

> , ()

b = δE(). ()

In case (ii),

T∗ ≤ t –
H(t)
H ′(t)

. ()

In case (iii),

T∗ ≤ H(t)√
a

or T∗ ≤ t + 
δ+

δ

(
a
b

)+ 
δ δ√

a

{

 –
[

 +
(

a
b

)+ 
δ

H(t)
]– 

δ
}

, ()

where a and b are given; see (), ().

Proof Let

H(t) =
[
a(t) + (T – t)‖u‖]–δ for t ∈ [, T], ()

where T >  is a certain constant which will be specified later. Then we get

H ′(t) = –δ
[
a(t) + (T – t)‖u‖]–δ–[a′(t) – ‖u‖]

= –δH+ 
δ (t)

[
a′(t) – ‖u‖], ()

H ′′(t) = –δH+ 
δ (t)a′′(t)

[
a(t) + (T – t)‖u‖]

+ δH+ 
δ (t)( + δ)

[
a′(t) – ‖u‖] ()

and

H ′′(t) = –δH+ 
δ (t)V (t), ()
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where

V (t) = a′′(t)
[
a(t) + (T – t)‖u‖] – ( + δ)

[
a′(t) – ‖u‖]. ()

For simplicity of the calculation, we define

Pu =
∫

�

u dx, Ru =
∫

�

u
t dx,

Qu =
∫ t


‖u‖ dt, Su =

∫ t


‖ut‖ dt.

From (), (), and the Hölder inequality, we get

a′(t) = 
∫

�

uut dx + ‖u‖ + 
∫ t



∫

�

uut dx dt

≤ (
√

RuPu +
√

QuSu) + ‖u‖. ()

If case (i) or (ii) holds, by () we have

a′′(t) ≥ (– – δ)E() + ( + δ)(Ru + Su). ()

Thus, from ()-() and (), we obtain

V (t) ≥ [
(– – δ)E() + ( + δ)(Ru + Su)

]
H– 

δ (t)

– ( + δ)(
√

RuPu +
√

QuSu).

From (),

a(t) =
∫

�

u dx +
∫ t



∫

�

u dx ds = Pu,

and (), we get

V (t) ≥ (– – δ)E()H– 
δ (t) + ( + δ)

[
(Ru + Su)(T – t)‖u‖ + �(t)

]
,

where

�(t) = (Ru + Su)(Pu + Qu) – (
√

RuPu +
√

QuSu).

By the Schwarz inequality, and �(t) being nonnegative, we have

V (t) ≥ (– – δ)E()H– 
δ (t), t ≥ t. ()

Therefore, by () and (), we get

H ′′(t) ≤ δ( + δ)E()H+ 
δ (t), t ≥ t. ()
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By Lemma , we know that H ′(t) <  for t ≥ t. Multiplying () by H ′(t) and integrating
it from t to t, we get

H ′(t) ≥ a + bH+ 
δ (t)

for t ≥ t, where a, b are defined in () and () respectively.
If case (iii) holds, by the steps of case (i), we get a >  if and only if

E() <
(a′(t) – ‖u‖)

[a(t) + (T – t)‖u‖]
.

Then by Lemma , there exists a finite time T∗ such that limt→T∗– H(t) =  and the upper
bound of T∗ is estimated according to the sign of E(). This means that () holds. �
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