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Abstract
We present in this paper a necessary and sufficient condition to establish the
inequality between generalized weighted means which share the same sequence of
numbers but differ in the weights. We first present a sufficient condition, and then
obtain the more general, necessary and sufficient, condition. Our results were
motivated by an inequality, involving harmonic means, found in the study of multiple
importance sampling Monte Carlo technique. We present new proofs of Chebyshev’s
sum inequality, Cauchy-Schwartz, and the rearrangement inequality, and derive
several interesting inequalities, some of them related to the Shannon entropy, the
Tsallis, and the Rényi entropy with different entropic indices, and to logsumexp mean.
Those inequalities are obtained as particular cases of our general inequality, and show
the potential and practical interest of our approach. We show too the relationship of
our inequality with sequence majorization.
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1 Introduction
In the research in the multiple importance sample Monte Carlo integration problem [–],
we were confronted with several inequalities relating harmonic means, which were either
described in the literature [–] or easy to prove from it. However, we were unable to find
in the literature the following inequality (we give in an Appendix an interpretation of this
inequality), which we conjectured was true.

Conjecture  For {bk} a sequence of M strictly positive numbers, and C ≥ , we have

H({bk(bk + C)})
H({bk}) ≤ H({(bk + C)(bk + C)})

H({bk + C}) , ()

where H stands for harmonic mean.
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Observe that if we use the following weights:

αk =
H({bk + C})
M(bk + C)

, where
M∑

k=

αk = , ()

and

α′
k =

H({bk})
Mbk

, where
M∑

k=

α′
k =  ()

then equation () can be written as an inequality between weighted harmonic means,

H
({

(bk + C)/α′
k
}) ≤H

({
(bk + C)/αk

})
. ()

Observe also that

bi ≤ bj ⇒ α′
i

α′
j

=
bj

bi
≥ bj + C

bi + C
=

αi

αj
, ()

and as bi ≤ bj ⇔ bi + C ≤ bj + C we can state that, for any sequence {bk} of strictly positive
numbers, the weights {αk} and {α′

k} in equations () and (), with C ≥ , fulfill the following
condition:

∀(bi, bj), bi ≤ bj ⇒ α′
i/α

′
j ≥ αi/αj. ()

We will see in next section that this condition is sufficient for Conjecture  to be true.

2 Results: inequalities for generalized weighted mean
2.1 A new inequality for generalized weighted mean
By taking the {αk} to be any weights obeying equation () we generalize Conjecture  to
the following theorem.

Theorem  Consider a sequence of M strictly positive numbers {bk} and strictly positive
weights {αk} and {α′

k},
∑

k αk = ,
∑

k α′
k = . Consider that the weights {αk} and {α′

k} obey
the following condition:

∀(bi, bj), bi ≤ bj ⇒ α′
i/α

′
j ≥ αi/αj. ()

Then the following inequality holds:


∑M

k= α′
k/bk

≤ 
∑M

k= αk/bk
, ()

or, equivalently,

H
(
bk/α′

k
) ≤H(bk/αk). ()
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Without loss of generality we can assume the sequence {bk} is given in increasing order.
In that case condition () is equivalent to

∀(i, j),  ≤ i, j ≤ M, i ≤ j ⇒ α′
i/α

′
j ≥ αi/αj. ()

Let us prove first the following lemma.

Lemma  Obeying condition in equation () implies that

α′
 ≥ α,

α′
M ≤ αM. ()

Proof Effectively, using equation (),

 = α′
 + · · · + α′

M ≥ αα
′
M

αM
+ · · · +

αM–α
′
M

αM
+ α′

M

=
α′

M
αM

(α + · · · + αM) =
α′

M
αM

. ()

In a similar way we can show that α′
 ≥ α. �

We prove now Theorem  under the {bk}-increasing condition:

Proof Now, if we prove that

M∑

k=

αk

bk
≤

M∑

k=

α′
k

bk
, ()

we will have proved equation ().
Proving equation () for M =  is easy:

α′


b
+

α′


b
–

(
α

b
+

α

b

)
=

α′
 – α

b
+

α′
 – α

b
≥ α′

 – α + α′
 – α

b
= , ()

where the inequality is obtained because from equation (), α′
 – α ≥  and  < b ≤ b.

Let us use induction for M > , i.e., assume that equation () holds for M –, M ≥ , and
take as weights { αk

(–αM) } and { α′
k

(–α′
M) } (they add to  as

∑M–
k= αk =  – αM , and

∑M–
k= α′

k =
 – α′

M). These weights fulfill condition (), and thus


( – αM)

(
α

b
+ · · · +

αM–

bM–

)
≤ 

( – α′
M)

(
α′


b

+ · · · +
α′

M–
bM–

)
. ()

Changing of side the divisors and adding α′
M/bM to the left and right members,

(
 – α′

M
)(α

b
+ · · · +

αM–

bM–

)
+

α′
M

bM

≤ ( – αM)
(

α′


b
+ · · · +

α′
M–

bM–

)
+

α′
M

bM
. ()
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After reorganizing terms, and adding and subtracting αM/bM , we obtain

α′


b
+ · · · +

α′
M

bM
–

(
α

b
+ · · · +

αM

bM

)

≥ –
αM

bM
+

α′
M

bM
+

αMα′
 – α′

Mα

b
+ · · · +

αMα′
M– – α′

MαM–

bM–
. ()

Observe now that both by the condition on the weights

αMα′
 – α′

Mα ≥ , . . . , αMα′
M– – α′

MαM– ≥ 

and by the ordering of the {bk},  < b ≤ b ≤ · · · ≤ bM , we can write

–
αM

bM
+

α′
M

bM
+

αMα′
 – α′

Mα

b
+ · · · +

αMα′
M– – α′

MαM–

bM–

≥ –
αM

bM
+

α′
M

bM
+

αMα′
 – α′

Mα + · · · + αMα′
M– – α′

MαM–

bM
= , ()

proving thus equation () for any M. �

Corollary  A sufficient condition for strict inequality in equation () is that b < bM (i.e.,
the non-trivial case) and αMα′

 – α′
Mα > .

Proof Observe that αMα′
 – α′

Mα =  would imply, from equation (), that α = α′
 and

αM = α′
M , and applying condition () with i =  we would obtain αj ≥ α′

j for all j ≥ . Using
the fact that

∑
j αj =

∑
j α

′
j =  we immediately arrive at αj = α′

j for all j, thus the trivial case.
If we exclude this trivial case the inequality () is strict. �

Corollary  Given a strictly positive sequence {bk}, and k > , k, C, C ≥ , we have

H({bk(kbk + C)})
H({bk}) ≤ H({(kbk + C)(kbk + C)})

H({(kbk + C)}) . ()

Proof Consider the strictly positive sequence {(kbk + C)} and the weights

α′
i =

H({bk})
Mbi

, ()

αi =
H({(kbk + C)})

M(kbi + C)
,

then we have

∀(i, j),
(
(kbi + C) ≤ (kbj + C)

) ⇔ (bi ≤ bj)

⇒ α′
i

α′
j

=
bj

bi
≥ (kbj + C)

(kbi + C)
=

αi

αj
.

()

�

Observe that Conjecture  is a particular case of equation () when k = k = , C = C.
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Other interesting cases are when k = , k = :

H
({

bk(bk + C)
}) ≤H

({bk}
)
H

({
(bk + C)

})
, ()

and when k = , k = , C = :

H
({

b
k
}) ≤ (

H
({bk}

)), ()

a result that can be immediately derived from the inequality between power means with
orders – and – []. Finally, taking k = , k = , C = :

H({b
k})

H({bk}) ≤ H({bk(bk + C)})
H({(bk + C)}) . ()

Corollary  Given a strictly positive sequence {bk}, for any γ , we have

H
({

bγ +
k

})
H

({
bγ –

k
}) ≤ (

H
({

bγ

k
})). ()

Proof Taking as weights

α′
k =

H({bγ

k })
Mbγ

k
, ()

αk =
H({bγ –

k })
Mbγ –

k

,

we have

bi ≤ bj ⇒ α′
i

α′
j

=
bγ

j

bγ

i
≥ bγ –

j

bγ –
i

=
αi

αj
. ()

�

Observe that for γ =  we reproduce again equation (). Observe also that taking γ = 
we get the well-known inequality

H
({bk}

) ≤A
({bk}

)
, ()

where A({bk}) = (H({b–
k }))– is the arithmetic mean of {bk}.

Corollary  Given a strictly positive sequence {bk}, and γ,γ, such that γ,γ ≥ , the
following inequality holds:

H
({

bγ+γ
k

}) ≤H
({

bγ
k

})
H

({
bγ

k
})

. ()

Proof Consider the sequence {bγ
k }, and take as weights

α′
k =

H({bγ
k })

Mbγ
k

, ()

αk = /M,
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we have

bi ≤ bj ⇔ bγ
i ≤ bγ

j ⇒ α′
i

α′
j

=
bγ

j

bγ
i

≥  =
αi

αj
. ()

�

Let us see now that Theorem , for the weighted harmonic mean, also holds for the
weighted arithmetic mean.

Theorem  Consider a sequence of M strictly positive numbers {bk} and strictly positive
weights {αk} and {α′

k},
∑

k αk = ,
∑

k α′
k = . If the weights {αk} and {α′

k} obey the following
condition:

∀(bi, bj), bi ≤ bj ⇒ α′
i/α

′
j ≥ αi/αj, ()

then the following inequality holds:

∑

k

α′
kbk ≤

∑

k

αkbk , ()

or equivalently

A
({

α′
kbk

}) ≤A
({αkbk}

)
. ()

Proof As A({αkbk}) = (H({b–
k /αk}))– it is enough to prove

H
({

b–
k /αk

}) ≤H
({

b–
k /α′

k
})

. ()

Observe now that

b–
j ≤ b–

i ⇔ bi ≤ bj ⇒ α′
i/α

′
j ≥ αi/αj ⇔ αj/αi ≥ α′

j/α
′
i , ()

and thus we can apply Theorem  to the sequence {b–
k } with switched weights (i.e. with

{α′
k} and {αk} instead of {αk} and {α′

k}) to obtain equation (). �

Remark  We can relax from Theorem  the positivity condition for sequence {bk}. In-
deed, for any C,

(∑

k

α′
kbk ≤

∑

k

αkbk

)
⇔

(∑

k

α′
k(bk + C) ≤

∑

k

αk(bk + C)
)

()

and

∀(bi, bj), bi ≤ bj ⇔ bi + C ≤ bj + C. ()

The next corollary is the equivalent of Corollary .

Corollary  A sufficient condition for strict inequality in equation () is that b < bM (i.e.,
the non trivial case) and αMα′

 – α′
Mα > .
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Proof From equation () and equation (), we apply Corollary  to the sequence {b–
k }

with weights {α′
k} and {αk}. As the ordering is the reverse of {bk}, and weights are switched,

αM would take the role of α′
 and vice versa, and the same with α′

M and α. �

Corollary  (Chebyshev’s sum inequality) Given the sequences {x ≥ x ≥ · · · ≥ xM ≥
}, {y ≥ y ≥ · · · ≥ yM ≥ } the following inequality holds:

A
({xkyk}

) ≥A
({xk}

)
A

({yk}
)
. ()

Proof Consider first the minimum index, M� ≤ M, so that all xk , yk are strictly positive,
the sequence {xk}M�

k=, and weights

α′
k = /M�, ()

αk =
yk∑M�

k= yk
.

As both sequences {xk}M�

k= and {yk}M�

k= are in the same (decreasing) order, we have

xi ≤ xj ⇔ yi ≤ yj ⇒ α′
i

α′
j

=  ≥ αi

αj
=

yi

yj
, ()

and we can apply Theorem  to obtain

∑M�

k= xkyk∑M�

k= yk
≥

∑M�

k= xk

M�
, ()

M�∑

k=

xkyk ≥ 
M�

M�∑

k=

xk

M�∑

k=

yk .

Suppose now without loss of generality that the minimum index M� corresponds to the
{xk} succession. We can write

M∑

k=

xkyk =
M�∑

k=

xkyk ≥ 
M�

M∑

k=

xk

M�∑

k=

yk ≥ 
M

M∑

k=

xk

M∑

k=

yk , ()

where the last inequality happens because the {yk} is a decreasing sequence. �

Corollary  can easily be extended to the following one.

Corollary  (Chebyshev’s sum inequality extended) Given the positive sequences {x, x,
. . . , xM}, {y, y, . . . , yM}, then the following holds:

If both sequences are sorted in the same order then

A
({xkyk}

) ≥A
({xk}

)
A

({yk}
)
. ()

If in addition they are strictly positive

A
({xk/yk}

) ≤A
({xk}

)
A

({/yk}
)
. ()
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If both sequences are sorted in opposite order then

A
({xkyk}

) ≤A
({xk}

)
A

({yk}
)
. ()

If in addition they are strictly positive

A
({xk/yk}

) ≥A
({xk}

)
A

({/yk}
)
. ()

Corollary  (Cauchy-Schwartz-Buniakowski inequality) Given the sequences {x, x,
. . . , xM}, {y, y, . . . , yM} the following inequality holds:

(∑

k

x
k

)(∑

k

y
k

)
≥

(∑

k

xkyk

)

. ()

Proof Consider first the sequences of absolute values {|x|, |x|, . . . , |xM|}, {|y|, |y|, . . . ,
|yM|}. Reorder the sequences so that the zero values are at the end, and be M� the mini-
mum length of non-zero values. Consider now the sequence {|xk|/|yk|} and the weights

α′
k =

|yk|∑M�

k= |yk|
, ()

αk =
|xk||yk|∑M�

k= |xk||yk|
.

Trivially, |xi|
|yi| ≤ |xj|

|yj| ⇔ α′
i/α′

j = |yi|
|yj| ≥ |xi||yi|

|xj||yj| = αi/αj, and we can apply Theorem ,

( M�∑

k=

|xk||yk|
)

≤
( M�∑

k=

|xk|
)( M�∑

k=

|yk|
)

, ()

( M∑

k=

xkyk

)

≤
( M∑

k=

|xk||yk|
)

=

( M�∑

k=

|xk||yk|
)

≤
( M�∑

k=

|xk|
)( M�∑

k=

|yk|
)

≤
( M∑

k=

|xk|
)( M∑

k=

|yk|
)

=

( M∑

k=

x
k

)( M∑

k=

y
k

)
. �

A({bγ

k }) = /H({b–γ

k }) and reciprocally, Corollary , applied to sequences {bγ
k }, {bγ

k },
γ,γ ≥ , together with Corollary , allow us to establish the following corollary.

Corollary  Given a strictly positive sequence {bk}, and γ,γ both positive or negative, the
following inequalities hold:

A
({

bγ+γ
k

}) ≥A
({

bγ
k

})
A

({
bγ

k
})

, ()

H
({

bγ+γ
k

}) ≤H
({

bγ
k

})
H

({
bγ

k
})

.

Observe that we can only guarantee that equation () hold when both γ,γ are of the
same sign. For instance, taking γ = γ = –γ we can easily check that equation () would
read H({bγ

k }) ≥ A({bγ

k }), which is false in general (rather what is true is the inverse in-
equality).

Consider now H({pk}) = –
∑

k pk log pk , the Shannon entropy of {pk}.
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Corollary  For any probability distribution {pk} the following inequality holds:

H
({pk}

) ≤A
({– log pk}

)
, ()

where, if for any i, pi = , we use the convention pi log pi = limpi→ pi log pi = , – log pi =
limpi→ – log pi = +∞.

Proof The limiting cases are trivial, thus let us assume ∀i, pi > . As the logarithm function
is increasing, given the sequence {log pk}, and the weights

α′
k = /M

and αk = pk , we have

pi ≤ pj ⇔ log pi ≤ log pj ⇒ α′
i

α′
j

=  ≥ log pi

log pj
=

αi

αj
()

and we can apply Theorem . �

In information theory [], the value – log pi is considered as the information of result i,
thus Corollary  says that the expected value of information is less than or equal to its
average value.

Corollary  For any strictly positive probability distribution {pk} the following inequality
holds:

H
({

p–
k∑

k p–
k

})
+ H

({pk}
) ≤ log

(∑

k

p–
k

)
. ()

Proof We apply Theorem  to the sequence {log pk}, with weights

α′
k =

p–
k∑

k p–
k

and αk = pk ,

∑

k

p–
k∑

k p–
k

log pk ≤
∑

k

pk log pk , ()

–
∑

k

p–
k∑

k p–
k

log p–
k ≤

∑

k

pk log pk ,

–
∑

k

p–
k∑

k p–
k

log p–
k + log

(∑

k

p–
k

)
≤

∑

k

pk log pk + log

(∑

k

p–
k

)
,

–
∑

k

p–
k∑

k p–
k

log
p–

k∑
k p–

k
–

∑

k

pk log pk ≤ log

(∑

k

p–
k

)
. �

The Tsallis entropy with entropic index q of probability distribution {pk} [, ] is defined
as

Sq
({pk}

)
=


q – 

(
 –

M∑

k=

pq
k

)
. ()
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Corollary  For any probability distribution {pk}, and q, r both positive or both negative,
the following inequality holds:

(
 – (q – )Sq

({pk}
))(

 – (r – )Sr
({pk}

)) ≤ M
(
 – (r + q – )Sr+q

({pk}
))

. ()

Proof From the definition of the Tsallis entropy, equation (), we have

M∑

k=

pq
k =  – (q – )Sq

({pk}
)
. ()

Consider first both q, r positive. For simplicity, let us assume the null pk members of the
sequence to be the last ones. Applying Theorem  to the sequence of strictly positive M� ≤
M, {pq

k > }, with weights

α′
k =


M�

,

αk =
pr

∑M�

k= pr
k

, ()

we obtain


M�

M�∑

k=

pq
k ≤ 

(
∑M�

k= pr
k)

M�∑

k=

pq+r
k ,

( M�∑

k=

pq
k

)( M�∑

k=

pr
k

)
≤ M�

M�∑

k=

pq+r
k ,

( M∑

k=

pq
k

)( M∑

k=

pr
k

)
=

( M�∑

k=

pq
k

)( M�∑

k=

pr
k

)
≤ M�

M�∑

k=

pq+r
k ≤ M

M∑

k=

pq+r
k , ()

where in last inequality in equation () we have expanded the sums with all the null pk

probabilities. Using now equation () we obtain equation (). Consider now both q, r
negative. For the sake of simplicity, we assume all the pk > , otherwise we proceed as
in the q, r positive case. Applying Theorem , equation (), to the sequence {p–|q|

k } with
weights

α′
k =

pr

∑M
k= pr

k
,

αk =


M
, ()

we obtain again equation () and using equation () we obtain equation (). �

Rényi entropy of order β ≥  [] is defined as

Hβ

({pk}
)

=


 – β
log

( M∑

k=

pq
k

)
. ()
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Corollary  For any probability distribution {pk}, and any β ,γ ≥  the following inequal-
ity holds:

( – β)Hβ

({pk}
)

+ ( – γ )Hγ

({pk}
) ≤ (

 – (β + γ )
)
Hβ+γ

({pk}
)

+ log M. ()

Proof For the sake of simplicity, we assume all the pk > , otherwise we proceed as in
Corollary . Using the weights in equation () with r = γ , and applying Theorem , we
obtain a similar result to equation (),

( M∑

k=

pβ

k

)( M∑

k=

pγ

k

)
≤ M

M∑

k=

pβ+γ

k . ()

As the logarithm is an increasing function

log

( M∑

k=

pβ

k

)
+ log

( M∑

k=

pγ

k

)
≤ log M + log

( M∑

k=

pβ+γ

k

)
, ()

by substituting

log

( M∑

k=

pq
k

)
= ( – β)Hβ

({pk}
)
, ()

we obtain the result. �

Let us see now that Theorem  extends to a weighted geometric mean.

Theorem  Consider a sequence of M strictly positive numbers {bk} and strictly positive
weights {αk} and {α′

k},
∑

k αk = ,
∑

k α′
k = . Consider that the weights {αk} and {α′

k} obey
the following condition:

∀(bi, bj), bi ≤ bj ⇒ α′
i/α

′
j ≥ αi/αj. ()

Then the following inequality holds:

�kb
α′

k
k ≤ �kbαk

k . ()

Proof Taking logarithms in both sides of equation (), as log(x) is an increasing function,
equation () is equivalent to

∑

k

α′
k log bk ≤

∑

k

αk log bk . ()

As bi ≤ bj ⇔ log bi ≤ log bj, we could apply Theorem  except for the fact that sequence
{log bk} can contain negative numbers. But this is not a problem taking into account the
Remark to Theorem . �

Let us see now that Theorem  also extends to weighted generalized (or power) mean:
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Theorem  Consider a sequence of M strictly positive numbers {bk} and strictly positive
weights {αk} and {α′

k},
∑

k αk = ,
∑

k α′
k = . Consider that the weights {αk} and {α′

k} obey
the following condition:

∀(bi, bj), bi ≤ bj ⇒ α′
i/α

′
j ≥ αi/αj. ()

Then the following inequality holds:

(∑

k

α′
kbp

k

)/p

≤
(∑

k

αkbp
k

)/p

()

for any p 
=  (for p =  the power mean is defined as the weighted geometric mean).

Proof Observe that the power function is increasing when the exponent is positive and
decreasing when negative. We assume first the case p > , equation () is equivalent to

∑

k

α′
kbp

k ≤
∑

k

αkbp
k . ()

But as bi ≤ bj ⇔ bp
i ≤ bp

j we just apply Theorem .
When p <  we just apply Theorem . �

Theorem  below extends Theorem  to the quasi-arithmetic or Kolmogorov general-
ized weighted mean.

Theorem  Let f (x) be an invertible strictly positive monotonic function, with inverse func-
tion f –(x). Consider a sequence of M strictly positive numbers {bk} and strictly positive
weights {αk} and {α′

k},
∑

k αk = ,
∑

k α′
k = . Consider that the weights {αk} and {α′

k} obey
the following condition:

∀(bi, bj), bi ≤ bj ⇒ α′
i/α

′
j ≥ αi/αj. ()

Then the following inequality holds:

f –
(∑

α′
kf (bk)

)
≤ f –

(∑
αkf (bk)

)
. ()

Proof Consider first f (x) increasing. Then we can apply Theorem  to the increasing se-
quence {f (bk)}:

∑
α′

kf (bk) ≤
∑

αkf (bk), ()

and the result follows by applying f –(x), which is also increasing, to both terms of equation
().

Consider now f (x) decreasing. The sequence { 
f (bk ) } is increasing, and we can apply The-

orem :

∑
α′

k



f (bk )
≥

∑
αk




f (bk )
, ()
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and the result follows by applying f –(x), which is also decreasing, to both terms of equa-
tion (). �

The mean logsumexp({bk}) is defined as

logsumexp
({bk}

)
= log

(∑

k

ebk

)
. ()

We can state then the following corollary to Theorem .

Corollary  Given a strictly positive sequence {bk},  ≤ k ≤ M, we have

 logsumexp
({bk}

) ≤ logsumexp
({bk}

)
+ log M. ()

Proof Observe that we can write

log

(∑
k ebk

M

)
= logsumexp

({bk}
)

– log M, ()

which is a Kolmogorov mean with f (x) = ex. Applying now Theorem  to this mean with
weights

α′
k = /M, ()

αk =
ebk

∑
k ebk

,

we obtain

log

(∑
k ebk

M

)
≤ log

(∑
k ebk

∑
k ebk

)
, ()

log

(∑

k

ebk

)
– log M ≤ log

(∑

k

ebk

)
– log

(∑

k

ebk

)
,

 log

(∑

k

ebk

)
≤ log

(∑

k

ebk

)
+ log M,

and by the definition of the logsumexp function, equation (), is equal to equation ().
�

Corollary  Given a strictly positive sequence {bk},  ≤ k ≤ M, we have

logsumexp
({–bk}

)
+ logsumexp

({bk}
) ≥  log M. ()

Proof Apply Theorem  to the Kolmogorov mean with f (x) = ex with weights

α′
k =

e–bk
∑

k e–bk
,

αk = /M.

()

�
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Observe now that the condition α′
i/α′

j ≥ αi/αj appearing Theorems - is equivalent to
the one of decreasing quotients:

α′
/α ≥ α′

/α ≥ · · · ≥ α′
M/αM. ()

Thus we can immediately extend the previous Theorems - to the following one.

Theorem  Be M({bk}, {αk}) any of the means appearing in Theorems -, of a sequence
{bk} of M strictly positive numbers, with {αk}, {α′

k} strictly positive weights obeying the con-
dition

∀(bi, bj), bi ≤ bj ⇒ α′
i/α

′
j ≥ αi/αj. ()

Then, for any subsequence of M� numbers {bl} of {bk}, M� ≤ M, with their corresponding
normalized weights {αl}, {α′

l}, we have

M
({bl},

{
α′

l
}) ≤M

({bl}, {αl}
)
. ()

Finally, we consider the following theorem.

Theorem  Let f (x) be an invertible strictly positive monotonic function, with inverse
function f –(x). Consider a sequence of M strictly positive numbers {bk} and functions
g(x), h(x), h′(x) strictly positive in the domain [mink{bk}, maxk{bk}], and such that in the
same domain g(x) is increasing, and h′(x)/h(x) is decreasing. Then the following inequality
holds:

f –
(∑

k h′(bk)f (g(bk))∑
k h′(bk)

)
≤ f –

(∑
k h(bk)f (g(bk))∑

k h(bk)

)
. ()

Proof Apply Theorem  to the sequence {g(bk)} with weights α′
k = h′(bk )∑

k h′(bk ) and αk =
h(bk )∑
k h(bk ) . �

Observe that Corollaries - can be considered as applications of Theorem .

2.2 Relationship to majorization
Consider the sequences {xk}, {yk}, and renumber the indices so that {x ≥ x ≥ · · · ≥ xM ≥
}, {y ≥ y ≥ · · · ≥ yM ≥ }. The sequence {xk} is said to major sequence {yk} [, ], and
we write {xk} � {yk}, when the following inequalities hold:

x ≥ y, ()

x + x ≥ y + y,

· · ·
x + x + · · · + xM– ≥ y + y + · · · + yM–,

x + x + · · · + xM– + yM = y + y + · · · + yM– + yM.
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In general, the α′
k ,αk sequences fulfilling condition in equation () do not major each other,

and we can find examples of sequences that major each other but do not fulfill equation
(), consider for instance the sequences {, , , }, {, , , }, they do not fulfill equation
() but {, , , } � {, , , }. We will find now when both conditions, majorization and
equation (), coincide. Let us prove first the following lemma.

Lemma  Consider the sequences of M strictly positive weights {αk} and {α′
k},

∑
k αk =

,
∑

k α′
k = . If for any sequence of M strictly positive numbers in increasing order {bk} the

following inequality holds:

∑

k

α′
kbk ≤

∑

k

αkbk , ()

then the following inequalities also hold:

α′
 ≥ α,

α′
 + α′

 ≥ α + α,

...

α′
 + · · · + α′

M– ≥ α + · · · + αM–,

α′
 + · · · + α′

M– + α′
M = α + · · · + αM– + αM,

αM ≥ α′
M,

αM + αM– ≥ α′
M + α′

M–,

...

αM + · · · + α ≥ α′
M + · · · + α′

. ()

Proof Consider the increasing sequence {b, . . . , b, bM, . . . , bM}, b < bM , and where b is
written l times, denote L = a + · · · + al , L′ = a′

 + · · · + a′
l . Since al+ + · · · + aM =  – L,

a′
l+ + · · · + a′

M =  – L′ the inequality () gives

L′b +
(
 – L′)bM – Lb – ( – L)bM ≤ ,

i.e.,

(
L′ – L

)
(b – bM) ≤  ⇒ L′ ≥ L.

This proves the first M –  inequalities. Observe now that

L′ ≥ L ⇒  – L ≥  – L′,

and this accounts for the last M –  inequalities. �

We can then state Theorem .
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Theorem  Consider the sequences of M increasing strictly positive weights {αk} and {α′
k},∑

k αk = ,
∑

k α′
k = , with the following condition (equation ()):

∀(i, j),  ≤ i, j ≤ M, i ≤ j ⇒ α′
i/α

′
j ≥ αi/αj, ()

or equivalently

∀(i, j),  ≤ i, j ≤ M, i ≤ j ⇒ α′
i/αi ≥ α′

j/αj,

then the following majorization holds:

{αk} � {
α′

k
}

. ()

Proof Observe first that equation () (equation ()) is equivalent to equation () for se-
quences of M increasing strictly positive numbers {bk}. We can apply then Theorem ,
and obtain the condition equation () in Lemma . It is enough then to apply Lemma ,
which guarantees that the inequalities for majorization, equation (), are fulfilled for the
decreasing sequences {αM+–k}, {α′

M+–k}. �

Observe that the weights in Corollary  are such that {αk} � {α′
k}, and in this way Corol-

lary  can be proved by direct application of Lemma  in [].
A similar theorem can be proved for decreasing weights.

Theorem  Consider the sequences of M decreasing strictly positive weights {αk} and {α′
k},∑

k αk = ,
∑

k α′
k = , with the following condition (equation ()):

∀(i, j),  ≤ i, j ≤ M, i ≤ j ⇒ α′
i/α

′
j ≥ αi/αj, ()

or equivalently

∀(i, j),  ≤ i, j ≤ M, i ≤ j ⇒ α′
i/αi ≥ α′

j/αj,

then the following majorization holds:

{
α′

k
} � {αk}. ()

Proof The same proof as for Theorem  holds. �

Theorem  Consider a convex function f (x), and the sequences of M strictly positive
weights {αk} and {α′

k},
∑

k αk = ,
∑

k α′
k = , with the following condition (equation ()):

∀(i, j),  ≤ i, j ≤ M, i ≤ j ⇒ α′
i/α

′
j ≥ αi/αj, ()

or equivalently

∀(i, j),  ≤ i, j ≤ M, i ≤ j ⇒ α′
i/αi ≥ α′

j/αj,

then the following holds:
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If both {αk} and {α′
k} are increasing then

∑

k

f (αk) ≥
∑

k

f
(
α′

k
)
. ()

If both {αk} and {α′
k} are decreasing then

∑

k

f
(
α′

k
) ≥

∑

k

f (αk). ()

Proof It is enough to apply Theorems  and  together with Hardy-Littlewood-Pólya the-
orem [, ] on majorization. �

Theorem  Given the sequences of strictly positive numbers {x, x, . . . , xM}, {y, y, . . . , yM}
obeying the conditions i ≤ j ⇒ xi/yi ≥ xj/yj, and

∑
k xk =

∑
k yk , then if both sequences are

increasing

{yk} � {xk}, ()

and if both sequences are decreasing

{xk} � {yk}. ()

Proof It is enough to normalize the sequences and apply Theorems  and , taking into
account that majorization is invariant to a change in scale. �

Theorem  Given the sequences of numbers {x, x, . . . , xM}, {y, y, . . . , yM} obeying the
condition

∑
k xk =

∑
k yk , and be {x + C, x + C, . . . , xM + C}, {y + C, y + C, . . . , yM + C} the

sequences translated by a positive constant C such that, for all k, xk + C > , yk + C > . If
the new sequences obey the condition i ≤ j ⇒ (xi + C)/(yi + C) ≥ (xj + C)/(yj + C), then if
both sequences are increasing

{yk} � {xk}, ()

and if both sequences are decreasing

{xk} � {yk}. ()

Proof It is enough to normalize the translated sequences and apply Theorems  and ,
taking into account that majorization is invariant to a change of scale and a translation.

�

Theorem  Given the sequences of numbers {x, x, . . . , xM}, {y, y, . . . , yM} obeying the
conditions i ≤ j ⇒ xi/yi ≥ xj/yj, i ≤ j ⇒ (xi – yi) ≥ (xj – yj), and

∑
k xk =

∑
k yk , then if both

sequences are increasing

{yk} � {xk}, ()
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and if both sequences are decreasing

{xk} � {yk}. ()

Proof Using the first two conditions, we have, for i ≤ j and for any positive constant C,

xiyj – xjyi + C
(
(xi – yi) – (xj – yj)

) ≥  ⇔ (xi + C)/(yi + C) ≥ (xj + C)/(yj + C).

We take C such that, for all k, xk + C > , yk + C > , and we apply Theorem . �

We can also obtain similar results for convex functions than in Theorem  for Theo-
rems , , and .

2.3 Not a necessary condition
We can see with counterexamples that the sufficient condition equation () appearing on
all Theorems - is not a necessary condition for the inequality of the means for any strictly
positive sequence {bk} for M ≥  (although it is easy to prove it is a necessary condition
for M = ).

Using the (unnormalized) weights {αk} = {, , . . . , , }, {α′
k} = {, , . . . , , } for M ≥ 

even and {αk} = {, , . . . , , , }, {α′
k} = {, , . . . , , , } for M ≥  odd, we can see that equa-

tion () does not hold but on the other side equation () holds for any strictly positive
increasing sequence {bk}. For instance, for M even,

b + b + · · · + bM– + bM ≤ b + b + · · · + bM– + bM, ()

because as the {bk} are in increasing order then b + b ≤ b + b, . . . , bM– + bM ≤
bM– + bM .

We leave it to the reader to check with the other means considered in this paper.

3 Results: a necessary and sufficient condition
We will see in this section that the condition found in Lemma  is a necessary and sufficient
condition.

Theorem  Consider the sequences of M numbers {xk} and {yk},
∑

k xk =
∑

k yk . Then
propositions () to () are equivalent:

() for any sequence of M numbers in increasing order {zk} the following inequality holds:

M∑

k=

xkzk ≤
M∑

k=

ykzk , ()

() for any sequence of M numbers in increasing order {zk} the following inequality holds:

M∑

k=

yM–k+zk ≤
M∑

k=

xM–k+zk , ()
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() the following inequalities hold:

x ≥ y,

x + x ≥ y + y,

...

x + · · · + xM– ≥ y + · · · + yM–,

x + · · · + xM– + xM = y + · · · + yM– + yM, ()

() the following inequalities hold:

yM ≥ xM,

yM + yM– ≥ xM + xM–,

...

yM + · · · + y ≥ xM + · · · + x,

y + · · · + yM– + yM = x + · · · + xM– + xM. ()

Proof Let us see that proposition () implies () and (). The proof is similar to the one in
Lemma . Consider the increasing sequence {z, . . . , z, zM, . . . , zM}, z < zM , and where z

is written l times, denote L′ = x + · · · + xl , L = y + · · · + yl . Since xl+ + · · · + xM = C – L′,
yl+ + · · · + yM = C – L the inequality equation () gives

L′z +
(
C – L′)zM – Lz – (C – L)zM ≤ ,

i.e.,

(
L′ – L

)
(z – zM) ≤  ⇒ L′ ≥ L.

This proves that () implies (). To prove that () implies () observe that

L′ ≥ L ⇔ C – L ≥ C – L′.

This also proves that () implies () and () implies ().
To prove that () implies () and (), consider the sequence, {z, . . . , z, zM, . . . , zM}, z <

zM , zM is written l times, and the same definitions as before for L, L′, then equation ()
gives

(C – L)z + LzM –
(
C – L′)z – L′zM ≤ ,

and we proceed as above.
Let us see now that () implies (). The proof can be found in the proof of Lemma  by

Marjanović and Kadelburg [], where it was used to show the majorization between two
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decreasing sequences weighting a third decreasing one. For the sake of completeness we
repeat it here. Define for  ≤ M, Ak =

∑k
j= yk , A′

k =
∑k

j= xk , and A = A′
 = . Then

M∑

k=

ykzk –
M∑

k=

xkzk =
M∑

k=

(yk – xk)zk

=
M∑

k=

(
Ak – Ak– – A′

k + A′
k–

)
zk

=
M∑

k=

(
Ak – A′

k
)
zk –

M∑

k=

(
Ak– – A′

k–
)
zk

=
M–∑

k=

(
Ak – A′

k
)
zk –

M–∑

k=

(
Ak – A′

k
)
zk+

=
M–∑

k=

(
Ak – A′

k
)
zk –

M–∑

k=

(
Ak – A′

k
)
zk+

=
M–∑

k=

(
Ak – A′

k
)
(zk – zk+) ≥ , ()

as () implies that, for all k, A′
k – Ak ≥ , and {zk} is an increasing sequence.

Repeating the proof for the sequences {yM–k+} and {xM–k+} we find that () implies
(). �

Remark The case when the sequences {xk}, {yk} are strictly positive and
∑

k xk =
∑

k yk = 
is interesting and proves that condition in Lemma  is necessary and sufficient, and that it
can be extended to harmonic, geometric, and power means, in the same way as Theorem 
has been extended.

Corollary  (Rearrangement inequality) Given the sequences of real numbers {x, x,
. . . , xM}, {y, y, . . . , yM}, then the maximum of their crossed sum is obtained when both are
paired in the same (increasing or decreasing) order, while the minimum is obtained when
both are paired in inverse order.

Proof Without lack of generality, let us suppose that {x, x, . . . , xM}, {y, y, . . . , yM} are
in increasing order. Consider {y�

 , y�
, . . . , y�

M} be any rearrangement of the sequence
{y, y, . . . , yM}. Let us consider the sequences {y�

 , y�
, . . . , y�

M} and {y, y, . . . , yM}. These se-
quences obey proposition () from Theorem , thus, they obey proposition (),

∑

k

xky�
k ≤

∑

k

xkyk , ()

and proposition (),

∑

k

xkyM–k+ ≤
∑

k

xky�
k . ()

�
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4 Conclusions
Motivated by proving an inequality that appeared in our research in Monte Carlo mul-
tiple importance sampling (MIS), we identified first a sufficient condition for a general-
ized weighted means inequality where only the weights are changed. We obtained then a
necessary and sufficient condition. We have given new proofs for Chebyshev’s sum, the
Cauchy-Schwartz, and the rearrangement inequalities, as well as for other interesting in-
equalities, and we obtained results for the Shannon, the Tsallis, and the Rényi entropy and
logsumexp. We also showed the relationship to majorization.

Appendix: Interpretation of Conjecture 1
Conjecture  has the following interpretation in terms of variances of Monte Carlo estima-
tors [, ]. Suppose we have M independent estimators with variances vk = {bk + C}, all
of them with the same expected value μ, C > μ, and we draw a fixed number of samples
from them, distributed for each estimator proportionally to αk ,

∑
k αk = . The variance of

the optimal linear combination of the estimators when we distribute the samples accord-
ing to {αk} weights can be shown to be [, ]:

H({vk/αk})
M

=
H({(bk + C)/αk})

M
. ()

Thus Conjecture  means that, for estimators with variance {vk = bk + C}, to sample the
estimators using weights in equation () is better than using weights in equation ().
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