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Abstract
In this article, we investigate complete convergence and complete moment
convergence for weighted sums of arrays of rowwise asymptotically negatively
associated (ANA) random variables. The results obtained not only generalize the
corresponding ones of Sung (Stat. Pap. 52:447-454, 2011), Zhou et al. (J. Inequal. Appl.
2011:157816, 2011), and Sung (Stat. Pap. 54:773-781, 2013) to the case of ANA random
variables, but also improve them.
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1 Introduction
Recently, Sung [] proved the following strong laws of large numbers for weighted sums
of identically distributed negatively associated (NA) random variables.

Theorem A Let {Xn, n ≥ } be a sequence of identically distributed NA random variables,
and let {ani,  ≤ i ≤ n, n ≥ } be an array of real constants satisfying

n∑

i=

|ani|α = O(n) (.)

for some  < α ≤ . Let bn = n/α(log n)/γ for some γ > . Furthermore, suppose that EX = 
for  < α ≤ . If

E|X|α < ∞ for α > γ ,

E|X|α log
(
 + |X|

)
< ∞ for α = γ ,

E|X|γ < ∞ for α < γ ,

(.)

then

∞∑

n=


n

P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXi

∣∣∣∣∣ > εbn

)
< ∞ for all ε > . (.)
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Zhou et al. [] partially extended Theorem A for NA random variables to the case of
ρ̃-mixing (or ρ∗-mixing) random variables by using a different method.

Theorem B Let {Xn, n ≥ } be a sequence of identically distributed ρ̃-mixing random vari-
ables, and let {ani,  ≤ i ≤ n, n ≥ } be an array of real constants satisfying

n∑

i=

|ani|max{α,γ } = O(n) (.)

for some  < α ≤  and γ >  with α �= γ . Let bn = n/α(log n)/γ . Assume that EX =  for
 < α ≤ . If (.) is satisfied for α �= γ , then (.) holds.

Zhou et al. [] left an open problem whether the case α = γ of Theorem A holds for
ρ̃-mixing random variables. Sung [] solved this problem and obtained the following re-
sult.

Theorem C Let {Xn, n ≥ } be a sequence of identically distributed ρ̃-mixing random vari-
ables, and let {ani,  ≤ i ≤ n, n ≥ } be an array of real constants satisfying (.) for some
 < α ≤  and γ >  with α = γ . Let bn = n/α(log n)/α . Assume that EX =  for  < α ≤ .
If (.) is satisfied for α = γ , then (.) holds.

Inspired by these theorems, in this paper, we further investigate the limit convergence
properties and obtain some much stronger conclusions, which extend and improve The-
orems A, B, and C to a wider class of dependent random variables under the same condi-
tions.

Now we introduce some definitions of dependent structures.

Definition . A finite family of random variables {Xi,  ≤ i ≤ n} is said to be NA if for
any disjoint subsets A and B of {, , . . . , n},

Cov
(
f(Xi, i ∈ A), f(Xj, j ∈ B)

) ≤  (.)

whenever f and f are any real coordinatewise nondecreasing functions such that this
covariance exists. An infinite family of random variables {Xn, n ≥ } is NA if every finite
its subfamily is NA.

Definition . A sequence of random variables {Xn, n ≥ } is called ρ̃-mixing if for some
integer n ≥ , the mixing coefficient

ρ̃(s) = sup
{
ρ(S, T) : S, T ⊂ N, dist(S, T) ≥ s

} →  as s → ∞, (.)

where

ρ(S, T) = sup

{ |EXY – EXEY |√
Var X · √Var Y

; X ∈ L
(
σ (S)

)
, Y ∈ L

(
σ (T)

)}
, (.)

and σ (S) and σ (T) are the σ -fields generated by {Xi, i ∈ S} and {Xi, i ∈ T}, respectively.
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Definition . A sequence of random variables {Xn, n ≥ } is said to be ANA if

ρ–(s) = sup
{
ρ–(S, T) : S, T ⊂ N, dist(S, T) ≥ s

} →  as s → ∞, (.)

where

ρ–(S, T) =  ∨
{

Cov(f (Xi, i ∈ S), g(Xj, j ∈ T))
(Var f (Xi, i ∈ S))/(Var g(Xj, j ∈ T))/ , f , g ∈ C

}
, (.)

and C is the set of nondecreasing functions.

An array of random variables {Xni, i ≥ , n ≥ } is said to be rowwise ANA random vari-
ables if for every n ≥ , {Xni, i ≥ } is a sequence of ANA random variables.

It is obvious to see that ρ–(s) ≤ ρ̃(s) and that a sequence of ANA random variables is
NA if and only if ρ–() = . So, ANA random variables include ρ̃-mixing and NA random
variables. Consequently, the study of the limit convergence properties for ANA random
variables is of much interest. Since the concept of ANA random variables was introduced
by Zhang and Wang [], many applications have been found. For example, Zhang and
Wang [] and Zhang [, ] obtained moment inequalities for partial sums, the central
limit theorems, the complete convergence, and the strong law of large numbers, Wang
and Lu [] established some inequalities for the maximum of partial sums and weak con-
vergence, Wang and Zhang [] obtained the law of the iterated logarithm, Liu and Liu []
showed moments of the maximum of normed partial sums, Yuan and Wu [] obtained
the limiting behavior of the maximum of partial sums, Budsaba et al. [] investigated
the complete convergence for moving-average process based on a sequence of ANA and
NA random variables, Tan et al. [] obtained the almost sure central limit theorem, Ko
[] obtained the Hájek-Rényi inequality and the strong law of large numbers, Zhang []
established the complete moment convergence for moving-average process generated by
ANA random variables, and so forth.

In this work, we further study the strong convergence for weighted sums of arrays of
ANA random variables without assumption of identical distribution and obtain some im-
proved results (i.e., the so-called complete moment convergence, which will be introduced
in Definition .). As applications, the complete convergence theorems for weighted sums
of arrays of identically distributed NA and ρ̃-mixing random variables can been obtained.
The results obtained not only generalize the corresponding ones of Sung [, ] and Zhou
et al. [], but also improve them under the same conditions.

For the proofs of the main results, we need to restate some definitions used in this pa-
per.

Definition . A sequence of random variables {Xn, n ≥ } converges completely to a con-
stant λ if for all ε > ,

∞∑

n=

P
(|Xn – λ| > ε

)
< ∞.

This notion was first introduced by Hsu and Robbins [].
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Definition . (Chow []) Let {Xn, n ≥ } be a sequence of random variables, and an > ,
bn > , q > . If for all ε ≥ ,

∞∑

n=

anE
(
b–

n |Xn| – ε
)q

+ < ∞,

then the sequence {Xn, n ≥ } is said to satisfy the complete moment convergence.

Definition . A sequence of random variables {Xn, n ≥ } is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P
(|Xn| ≥ x

) ≤ CP
(|X| ≥ x

)

for all x ≥  and n ≥ .

An array of rowwise random variables {Xni, i ≥ , n ≥ } is said to be stochastically dom-
inated by a random variable X if there exists a positive constant C such that

P
(|Xni| ≥ x

) ≤ CP
(|X| ≥ x

)

for all x ≥ , i ≥  and n ≥ .
Throughout this paper, I(A) is the indicator function of a set A. The symbol C denotes

a positive constant, which may be different in various places, and an = O(bn) means that
an ≤ Cbn.

2 Main results
Now, we state our main results. The proofs will be given in Section .

Theorem . Let {Xni, i ≥ , n ≥ } be an array of rowwise ANA random variables stochas-
tically dominated by a random variable X, let {ani,  ≤ i ≤ n, n ≥ } be an array of constants
satisfying (.) for some  < α ≤ , and let bn = n/α(log n)/γ for some γ > . Furthermore,
assume that EXni =  for  < α ≤ . If

E|X|α < ∞ for α > γ ,

E|X|α log
(
 + |X|) < ∞ for α = γ ,

E|X|γ < ∞ for α < γ ,

(.)

then

∞∑

n=


n

P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > εbn

)
< ∞ for all ε > . (.)

Theorem . Let {Xni, i ≥ , n ≥ } be an array of rowwise ANA random variables which
is stochastically dominated by a random variable X, let {ani,  ≤ i ≤ n, n ≥ } be an array of
real constants satisfying (.) for some  < α ≤ , and let bn = n/α(log n)/γ for some γ > .
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Furthermore, assume that EXni =  for  < α ≤ . If (.) holds, then, for  < q < α,

∞∑

n=


n

E

(


bn
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ – ε

)q

+

< ∞ for all ε > . (.)

Remark . Since ANA includes NA and ρ̃-mixing, Theorem . extends Theorem A
for identically distributed NA random variables and Theorems B and C for identically
distributed ρ̃-mixing random variables (by taking Xni = Xi in Theorem .).

Remark . Under the conditions of Theorem ., we can obtain that

∞ >
∞∑

n=


n

E

(


bn
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ – ε

)q

+

=
∞∑

n=


n

∫ ∞


P

(


bn
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ – ε > t/q

)
dt

≥ C
∫ 



∞∑

n=


n

P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > bnε

)
dt

= C
∞∑

n=


n

P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > bnε

)
for all ε > . (.)

Hence, from (.) we get that the complete moment convergence implies the complete
convergence. Compared with the results of Sung [, ] and Zhou et al. [], it is worth point-
ing out that our main result is much stronger under the same conditions. So, Theorem .
is an extension and improvement of the corresponding ones of Sung [, ] and Zhou et
al. [].

3 Proofs
To prove the main results, we need the following lemmas.

Lemma . (Wang and Lu []) Let {Xn, n ≥ } be a sequence of ANA random variables. If
{fn, n ≥ } is a sequence of real nondecreasing (or nonincreasing) functions, then {fn(Xn), n ≥
} is still a sequence of ANA random variables.

From Wang and Lu’s [] Rosenthal-type inequality for ANA random variables we obtain
the following result.

Lemma . (Wang and Lu []) For a positive integer N ≥  and  ≤ s < 
 , let {Xn, n ≥ }

be a sequence of ANA random variables with ρ–(N) ≤ s, EXn = , and E|Xn| < ∞. Then
for all n ≥ , there exists a positive constant C = C(, N, s) such that

E

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

Xi

∣∣∣∣∣

)
≤ C

n∑

i=

EX
i . (.)

Lemma . (Adler and Rosalsky []; Adler et al. []) Suppose that {Xni, i ≥ , n ≥ } is
an array of random variables stochastically dominated by a random variable X. Then, for
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all q >  and x > ,

E|Xni|qI
(|Xni| ≤ x

) ≤ C
(
E|X|qI

(|X| ≤ x
)

+ xqP
(|X| > x

))
, (.)

E|Xni|qI
(|Xni| > x

) ≤ CE|X|qI
(|X| > x

)
. (.)

Lemma . (Wu et al. []) Let {ani, i ≥ , n ≥ } be an array of real constants satisfying
(.) for some α > , and X be a random variable. Let bn = n/α(log n)/γ for some γ > . If
p > max{α,γ }, then

∞∑

n=


nbp

n

n∑

i=

E|aniX|pI
(|aniX| ≤ bn

) ≤

⎧
⎪⎨

⎪⎩

CE|X|α for α > γ ,
CE|X|α log( + |X|) for α = γ ,
CE|X|γ for α < γ .

(.)

Proof of Theorem . Without loss of generality, assume that ani ≥  (otherwise, we shall
use a+

ni and a–
ni instead of ani, and note that ani = a+

ni – a–
ni). For fixed n ≥ , define

Yni = –bnI(aniXni < –bn) + aniXniI
(|aniXni| ≤ bn

)
+bnI(aniXni > bn), i ≥ ;

Zni = aniXni – Yni = (aniXni + bn)I(aniXni < –bn) + (aniXni – bn)I(aniXni > bn);

A =
n⋂

i=

(Yni = aniXni), B = Ā =
n⋃

i=

(Yni �= aniXni) =
n⋃

i=

(|aniXni| > bn
)
;

Eni =

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > εbn

)
.

It is easy to check that for all ε > ,

Eni = EniA ∪ EniB ⊂
(

max
≤j≤n

∣∣∣∣∣

j∑

i=

Yni

∣∣∣∣∣ > εbn

)
∪

( n⋃

i=

(|aniXni| > bn
)
)

,

which implies that

P(Eni) ≤ P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

Yni

∣∣∣∣∣ > εbn

)
+ P

( n⋃

i=

(|aniXni| > bn
)
)

≤ P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

(Yni – EYni)

∣∣∣∣∣ > εbn – max
≤j≤n

∣∣∣∣∣

j∑

i=

EYni

∣∣∣∣∣

)

+
n∑

i=

P
(|aniXni| > bn

)
. (.)

First, we shall show that


bn

max
≤j≤n

∣∣∣∣∣

j∑

i=

EYni

∣∣∣∣∣ →  as n → ∞. (.)
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For  < α ≤ , it follows from (.) of Lemma ., the Markov inequality, and E|X|α < ∞
that


bn

max
≤j≤n

∣∣∣∣∣

j∑

i=

EYni

∣∣∣∣∣ ≤ C


bn

n∑

i=

|EYni|

≤ C


bn

n∑

i=

E|aniXni|I
(|aniXni| ≤ bn

)
+ C

n∑

i=

P
(|aniXni| > bn

)

≤ C


bn

n∑

i=

(
E|aniX|I(|aniX| ≤ bn

)
+ bnP

(|aniX| > bn
))

+ C
n∑

i=

P
(|aniX| > bn

)

≤ C


bα
n

n∑

i=

aα
niE|X|αI

(|aniX| ≤ bn
)

+ C


bα
n

n∑

i=

aα
niE|X|α

≤ C(log n)–α/γ E|X|α →  as n → ∞. (.)

From the definition of Zni = aniXni – Yni we know that when aniXni > bn,  < Zni =
aniXni – bn < aniXni, and when aniXni < –bn, aniXni < Zni = aniXni + bn < . Hence, |Zni| <
|aniXni|I(|aniXni| > bn).

For  < α ≤ , it follows from EXni = , (.) of Lemma ., and E|X|α < ∞ again that


bn

max
≤j≤n

∣∣∣∣∣

j∑

i=

EYni

∣∣∣∣∣ =


bn
max
≤j≤n

∣∣∣∣∣

j∑

i=

EZni

∣∣∣∣∣

≤ C


bn

n∑

i=

E|Zni|

≤ C


bn

n∑

i=

E|aniXni|I
(|aniXni| > bn

)

≤ C


bn

n∑

i=

E|aniX|I(|aniX| > bn
)

≤ C


bα
n

n∑

i=

aα
niE|X|αI

(|aniX| > bn
)

≤ C(log n)–α/γ E|X|α →  as n → ∞. (.)

By (.) and (.) we immediately obtain (.). Hence, for n large enough,

P(En) ≤ P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

(Yni – EYni)

∣∣∣∣∣ >
εbn



)
+

n∑

i=

P
(|aniXni| > bn

)
. (.)

To prove (.), it suffices to show that

I �
∞∑

n=


n

P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

(Yni – EYni)

∣∣∣∣∣ >
εbn



)
< ∞, (.)
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J �
∞∑

n=


n

n∑

i=

P
(|aniXni| > bn

)
< ∞. (.)

By Lemma . it obviously follows that {Yni – EYni, i ≥ , n ≥ } is still an array of rowwise
ANA random variables. Hence, it follows from the Markov inequality and Lemma . that

I ≤ C
∞∑

n=


n


b

n
E

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

(Yni – EYni)

∣∣∣∣∣

)

≤ C
∞∑

n=


n


b

n

n∑

i=

E|Yni – EYni|

≤ C
∞∑

n=


n


b

n

n∑

i=

EY 
ni

≤ C
∞∑

n=


n


b

n

n∑

i=

E|aniXni|I
(|aniXni| ≤ bn

)
+ C

∞∑

n=


n

n∑

i=

P
(|aniXni| > bn

)

≤ C
∞∑

n=


n


b

n

n∑

i=

E|aniX|I
(|aniX| ≤ bn

)

+ C
∞∑

n=


n


bα

n

n∑

i=

E|aniX|αI
(|aniX| > bn

)

� I + I. (.)

From Lemma . (for p = ) and (.) we obtain that I < ∞. Hence, it follows from (.)
of Lemma . and from (.) that

I = C
∞∑

n=


n (log n)–α/γ

n∑

i=

E|aniX|αI
(|aniX|α > n(log n)α/γ )

≤ C
∞∑

n=


n (log n)–α/γ

n∑

i=

E|aniX|αI
(

|X|α >
n(log n)α/γ
∑n

i= |ani|α
)

≤ C
∞∑

n=


n (log n)–α/γ

n∑

i=

E|aniX|αI
(|X| > (log n)/γ )

≤ C
∞∑

n=


n

(log n)–α/γ E|X|αI
(|X| > (log n)/γ )

= C
∞∑

n=


n

(log n)–α/γ
∞∑

k=n

E|X|αI
(
(log k)/γ < |X| <

(
log(k + )

)/γ )

= C
∞∑

k=

E|X|αI
(
(log k)/γ < |X| <

(
log(k + )

)/γ ) k∑

n=


n

(log n)–α/γ .

Note that

k∑

n=


n

(log n)–α/γ =

⎧
⎪⎨

⎪⎩

C for α > γ ,
C log log k for α = γ ,
C(log k)–α/γ for α < γ .
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Therefore, we obtain that

I ≤

⎧
⎪⎨

⎪⎩

CE|X|α for α > γ ,
CE|X|α log( + |X|) for α = γ ,
CE|X|γ for α < γ .

Under the conditions of Theorem . it follows that I < ∞.
By (.) of Lemma . and the proof of I < ∞,

J ≤
∞∑

n=


n


bα

n

n∑

i=

E|aniX|αI
(|aniX| > bn

)
< ∞. (.)

The proof of Theorem . is completed. �

Proof of Theorem . For all ε > , we have

∞∑

n=


n

E

(


bn
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ – ε

)q

+

=
∞∑

n=


n

∫ ∞


P

(


bn
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ – ε > t/q

)
dt

=
∞∑

n=


n

∫ 


P

(


bn
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > ε + t/q

)
dt

+
∞∑

n=


n

∫ ∞


P

(


bn
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > ε + t/q

)
dt

≤
∞∑

n=


n

P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > εbn

)

+
∞∑

n=


n

∫ ∞


P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > bnt/q

)
dt

� K + K. (.)

To prove (.), it suffices to prove K < ∞ and K < ∞. By Theorem . we obtain that
K < ∞. By applying a similar notation and the methods of Theorem ., for fixed n ≥ ,
i ≥ , and all t ≥ , define

Y ′
ni = –bnt/qI

(
aniXni < –bnt/q) + aniXniI

(|aniXni| ≤ bnt/q)+bnt/qI
(
aniXni > bnt/q);

Z′
ni = aniXni – Y ′

ni

=
(
aniXni + bnt/q)I

(
aniXni < –bnt/q) +

(
aniXni – bnt/q)I

(
aniXni > bnt/q);

A′ =
n⋂

i=

(
Y ′

ni = aniXni
)
, B′ = Ā′ =

n⋃

i=

(
Y ′

ni �= aniXni
)

=
n⋃

i=

(|aniXni| > bnt/q);

E′
ni =

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

aniXni

∣∣∣∣∣ > bnt/q

)
.
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It is easy to check that for all ε > ,

P
(
E′

ni
) ≤ P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

Y ′
ni

∣∣∣∣∣ > bnt/q

)
+ P

( n⋃

i=

(|aniXni| > bnt/q)
)

≤ P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

(
Y ′

ni – EY ′
ni
)
∣∣∣∣∣ > bnt/q – max

≤j≤n

∣∣∣∣∣

j∑

i=

EY ′
ni

∣∣∣∣∣

)

+
n∑

i=

P
(|aniXni| > bnt/q). (.)

First, we shall show that

max
t≥


bnt/q max

≤j≤n

∣∣∣∣∣

j∑

i=

EY ′
ni

∣∣∣∣∣ →  as n → ∞. (.)

Similarly to the proofs of (.) and (.), for  < α ≤ , it follows from (.) of Lemma .,
the Markov inequality, and E|X|α < ∞ that

max
t≥


bnt/q max

≤j≤n

∣∣∣∣∣

j∑

i=

EY ′
ni

∣∣∣∣∣ ≤ C max
t≥


bnt/q

n∑

i=

∣∣EY ′
ni
∣∣

≤ C max
t≥


bnt/q

n∑

i=

E|aniXni|I
(|aniXni| ≤ bnt/q)

+ C max
t≥

n∑

i=

P
(|aniXni| > bnt/q)

≤ C max
t≥


bnt/q

n∑

i=

E|aniX|I(|aniX| ≤ bnt/q)

+ C max
t≥

n∑

i=

P
(|aniX| > bnt/q)

≤ C max
t≥


bα

ntα/q

n∑

i=

aα
niE|X|αI

(|aniX| ≤ bnt/q)

+ C max
t≥


bα

ntα/q

n∑

i=

aα
niE|X|α

≤ C(log n)–α/γ E|X|α →  as n → ∞. (.)

Noting that |Z′
ni| < |aniXni|I(|aniXni| > bnt/q), for  < α ≤ , it follows from EXn = , (.)

of Lemma ., and E|X|α < ∞ again that

max
t≥


bnt/q max

≤j≤n

∣∣∣∣∣

j∑

i=

EY ′
ni

∣∣∣∣∣ = max
t≥


bnt/q max

≤j≤n

∣∣∣∣∣

j∑

i=

EZ′
ni

∣∣∣∣∣

≤ C max
t≥


bnt/q

n∑

i=

E
∣∣Z′

ni
∣∣
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≤ C max
t≥


bnt/q

n∑

i=

E|aniXni|I
(|aniXni| > bnt/q)

≤ C max
t≥


bnt/q

n∑

i=

E|aniX|I(|aniX| > bnt/q)

≤ C max
t≥


bα

ntα/q

n∑

i=

aα
niE|X|αI

(|aniX| > bnt/q)

≤ C(log n)–α/γ E|X|α →  as n → ∞. (.)

To prove K < ∞, it suffices to show that

K �
∞∑

n=


n

∫ ∞


P

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

(
Y ′

ni – EY ′
ni
)
∣∣∣∣∣ >

bnt/q



)
dt < ∞, (.)

K �
∞∑

n=


n

∫ ∞



n∑

i=

P
(|aniXni| > bnt/q)dt < ∞. (.)

Hence, it follows from the Markov inequality and Lemma . that

K ≤ C
∞∑

n=


n

∫ ∞




b

nt/q E

(
max
≤j≤n

∣∣∣∣∣

j∑

i=

(
Y ′

ni – EY ′
ni
)
∣∣∣∣∣

)
dt

≤ C
∞∑

n=


n

∫ ∞




b

nt/q

n∑

i=

E
∣∣Y ′

ni – EY ′
ni
∣∣ dt

≤ C
∞∑

n=


n

∫ ∞



n∑

i=

P
(|aniXni| > bnt/q)dt

+ C
∞∑

n=


nb

n

∫ ∞




t/q

n∑

i=

E|aniXni|I
(|aniXni| ≤ bnt/q)dt

≤ C
∞∑

n=


n

∫ ∞



n∑

i=

P
(|aniX| > bnt/q)dt

+ C
∞∑

n=


nb

n

∫ ∞




t/q

n∑

i=

E|aniX|I
(|aniX| ≤ bn

)
dt

+ C
∞∑

n=


nb

n

∫ ∞




t/q

n∑

i=

E|aniX|I
(
bn < |aniX| ≤ bnt/q)dt. (.)

For  < q < α and
∑n

i= |ani|α = O(n), similarly as in the proof of I < ∞, we obtain that

K ≤
∞∑

n=


n

∫ ∞



n∑

i=

P
(|aniX| > bnt/q)dt

≤ C
∞∑

n=


n

∫ ∞



n∑

i=

P
(|aniX| > bnt/q)dt

≤ C
∞∑

n=


n

∫ ∞



n∑

i=

P
( |aniX|q

bq
n

> t
)

dt
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≤ C
∞∑

n=


n

n∑

i=

E|aniX|q
bq

n
I
(|aniX| > bn

)

≤ C
∞∑

n=


nbα

n

n∑

i=

E|aniX|αI
(|aniX| > bn

)

< ∞ (see the proof of I < ∞).

For  < q < α ≤ , it follows from Lemma . and (.) that

∇ �
∞∑

n=


nb

n

∫ ∞




t/q

n∑

i=

E|aniX|I
(|aniX| ≤ bn

)
dt

≤ C
∞∑

n=


n


b

n

n∑

i=

E|aniX|I
(|aniX| ≤ bn

)
< ∞.

Taking t = xq, by the Markov inequality from (.) of Lemma . it follows that

∇ �
∞∑

n=


nb

n

∫ ∞




t/q

n∑

i=

E|aniX|I
(
bn < |aniX| ≤ bnt/q)dt

≤ C
∞∑

n=


nb

n

∫ ∞


xq–

n∑

i=

E|aniX|I
(
bn < |aniX| ≤ bnx

)
dx

≤ C
∞∑

n=


nb

n

∞∑

m=

∫ m+

m
xq–

n∑

i=

E|aniX|I
(
bn < |aniX| ≤ bnx

)
dx

≤ C
∞∑

n=


nb

n

∞∑

m=

mq–
n∑

i=

E|aniX|I
(
bn < |aniX| ≤ bn(m + )

)

= C
∞∑

n=


nb

n

n∑

i=

∞∑

m=

m∑

s=

mq–E|aniX|I
(
bns < |aniX| ≤ bn(s + )

)

= C
∞∑

n=


nb

n

n∑

i=

∞∑

s=

E|aniX|I
(
bns < |aniX| ≤ bn(s + )

) ∞∑

m=s
mq–

≤ C
∞∑

n=


nb

n

n∑

i=

∞∑

s=

E|aniX|I
(
bns < |aniX| ≤ bn(s + )

)
sq–

≤ C
∞∑

n=


nbq

n

n∑

i=

E|aniX|qI
(|aniX| > bn

)

≤ C
∞∑

n=


nbα

n

n∑

i=

E|aniX|αI
(|aniX| > bn

)

< ∞ (see the proof of I < ∞).

The proof of Theorem . is completed. �
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