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1 Introduction
In this paper, we study one-dimensional p-Laplacian system with singular weights of the
form

⎧⎪⎪⎨
⎪⎪⎩

ϕp
(
u′(t)

)′ + λh(t)f
(
v(t)

)
= , t ∈ (, ),

ϕp
(
v′(t)

)′ + λh(t)g
(
u(t)

)
= , t ∈ (, ),

u() = , v() = , u() = , v() = ,

(Pλ)

where ϕp(u) = |u|p–u, λ is a nonnegative parameter, hi, i = ,  is a nonnegativemeasurable
function on (, ), hi �≡  on any open subinterval in (, ) and f , g ∈ C(R+,R+) with R+ =
[,∞). In particular, hi may be singular at the boundary or may not be in L(, ). It is easy
to see that if hi ∈ L(, ), then all solutions of (Pλ) are in C[, ]. On the other hand, if
hi /∈ L(, ), then this regularity of solutions is not true in general; for example, even for
scalar case, if we take h(t) = (p – )t–| + ln t|p–, p >  and λ = , f ≡ , then h /∈ L(, ),
and the solution u for corresponding scalar problem of (Pλ) is given by u(t) = –t ln t which
is not in C[, ].
For more precise description, let us introduce the following two classes of weights;

A≡
{
h ∈ Lloc(, ) :

∫ 



ϕ–
p

(∫ 


s
h(τ )dτ

)
ds +

∫ 




ϕ–
p

(∫ s




h(τ )dτ

)
ds < ∞

}
,

B ≡
{
h ∈ Lloc(, ) :

∫ 


sp–( – s)p–h(s)ds < ∞

}
.
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We note that h given in the above example satisfies h ∈ A ∩ B but h /∈ L(, ). The
main interest of this paper is to establish Amann type three solutions theorem [] when
hi ∈A∩B with possibility of h /∈ L(, ). The theorem generally describes that two pairs
of lower and upper solutions with an ordering condition imply the existence of three so-
lutions. Recently, Ben Naoum and De Coster [] have proved the theorem for scalar one-
dimensional p-Laplacian problems with L-Caratheodory condition which corresponds
to case h ∈ L(, ); Henderson and Thompson [] as well as Lü, O’Regan, and Agarwal
[] - for scalar second order ODEs and one-dimensional p-Laplacian with the derivative-
dependent nonlinearity respectively; and De Coster and Nicaise [] - for semilinear el-
liptic problems in nonsmooth domains. For noncooperative elliptic systems (p = ) with
ki ≡  and � bounded, one may refer to Ali, Shivaji, and Ramaswamy []. Specially, for
subsuper solutions which are not completely ordered, this type of three solutions result
was studied in [].
The three solutions theorem for our system (Pλ) or even for corresponding scalar p-

Laplacian problems is not obviously extended from previous worksmainly by the possibil-
ity h /∈ L(, ). Caused by the delicacy of Leray-Schauder degree computation, the crucial
step for the proof is to guarantee C regularity of solutions, but with condition h ∈A∩B,
C regularity is not known yet. Due to the singularity of weights on the boundary, the C

regularity heavily depends on the shape of nonlinear terms f and g . Therefore, the first
step is to investigate certain conditions on f and g to guarantee C regularity of solutions.
Another difficulty is to show that a corresponding integral operator is bounded on the set
of functions between upper and lower solutions in C

[, ]. To overcome this difficulty, we
give some restrictions on upper and lower solutions such that their boundary values are
zero. As far as the authors know, our three solutions theorem (Theorem . in Section )
is new and first for singular p-Laplacian systems with weights of A∩B class.
To cover a larger class of differential system, we consider the systems of the form

⎧⎪⎪⎨
⎪⎪⎩

ϕp
(
u′(t)

)′ + F
(
t, v(t)

)
= , t ∈ (, ),

ϕp
(
v′(t)

)′ +G
(
t,u(t)

)
= , t ∈ (, ),

u() = , v() = , u() = , v() = ,

(P)

where F ,G : (, ) × R → R are continuous. We give more conditions on F and G as fol-
lows:

(F) For each t ∈ (, ), F(t,u) and G(t,u) are nondecreasing in u.
(H) There exist h,h ∈A∩B and f , g ∈ C(R,R+) such that

≤ lim
s→

f (s)
ϕp(|s|) < ∞,  ≤ lim

s→

g(s)
ϕp(|s|) < ∞

and

∣∣F(t,u)∣∣ ≤ h(t)f (u),
∣∣G(t,u)∣∣ ≤ h(t)g(u),

for all t ∈ (, ) and u ∈R.
(F) F(t,u)u >  and G(t,u)u > , for all (t,u) ∈ (, )×R.
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We now state our first main result related to three solutions theorem as follows. See for
more details in Section .

Theorem . Assume (H), (F) and (F). Let (α, ᾱ), (β, β̄) be a lower solution and an
upper solution and (α, ᾱ), (β, β̄) be a strict lower solution and a strict upper solution of
problem (P) respectively. Also, assume that all of them are contained in C

[, ]× C
[, ]

and satisfy (α, ᾱ) ≤ (β, β̄) ≤ (β, β̄), (α, ᾱ) ≤ (α, ᾱ) ≤ (β, β̄), (α, ᾱ) � (β, β̄).
Then problem (P) has at least three solutions (u, v), (u, v) and (u, v) such that (α, ᾱ) ≤
(u, v) ≺ (β, β̄), (α, ᾱ) ≺ (u, v) ≤ (β, β̄), (α, ᾱ) ≤ (u, v) ≤ (β, β̄) and (u, v) �
(β, β̄), (u, v)� (α, ᾱ).

As an application of Theorem ., we study the existence, nonexistence, andmultiplicity
of positive radial solutions for the following quasilinear system on an exterior domain:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–�pz = λk
(|x|)f (w) in �,

–�pw = λk
(|x|)g(z) in �,

z(x) = , w(x) =  if |x| = r,

z(x)→ , w(x) →  if |x| → ∞,

(PE)

where � = {x ∈ RN : |x| > r}, r > ,  < p < N , �pz = div(|∇z|p–∇z), ki ∈ C([r,∞),
(,∞)), i = ,  and f , g ∈ C(R+,R+) with R+ = [,∞).
In recent years, the existence of positive solutions for such systems has been widely

studied, for example, in [] and [] for second order ODE systems, in [, , , , , ,
] and [] for semilinear elliptic systems on a bounded domain and in [, , ] and []
for p-Laplacian systems on a bounded domain.
For a precise description, let us give the list of assumptions that we consider.

(k) ki ∈KA ∩KB , where

KA =
{
k ∈ C

(
[r,∞), (,∞)

)
:
∫ ∞

r
ϕ–
p

(
τ –N

∫ τ

r
rN–k(r)dr

)
dτ <∞

}
,

KB =
{
k ∈ C

(
[r,∞), (,∞)

)
:
∫ ∞

r
rp–k(r)dr < ∞

}
,

(f) f = lims→+
f (s)
sp– =  and g = lims→+

g(s)
sp– = ,

(f) lims→∞ f (ρ(g(s))


p– )
sp– =  for all ρ > ,

(f) f and g are nondecreasing.

Condition (f) is sometimes called a combined sublinear effect at∞ and simple examples
satisfying (f) � (f) can be given as follows:

f (w) =

⎧⎨
⎩
wr , w ≤ ,

wq, w ≥ ,
g(z) =

⎧⎨
⎩
zγ , z ≤ ,

zδ , z ≥ ,

http://www.boundaryvalueproblems.com/content/2012/1/63


Lee and Lee Boundary Value Problems 2012, 2012:63 Page 4 of 20
http://www.boundaryvalueproblems.com/content/2012/1/63

where r,γ > p –  and qδ < (p – ), and also

⎧⎨
⎩
f (z) = arctan

(
zr

)
,

g(w) = wq,

where r,q > p – .
Among the reference works mentioned above, Hai and Shivaji [] and Ali and Shivaji

[] (with more general nonlinearities) considered problem (PE) with case ki ≡  and �

bounded. For C monotone functions f and g with lims→∞ f (s) = ∞ = lims→∞ g(s) and
satisfying condition (f), they proved that there exists λ* >  such that the problem has at
least one positive solution for λ > λ*.
We first transform (PE) into one-dimensional p-Laplacian systems (Pλ) with change of

variables z(r) = z(|x|), w(r) = w(|x|), u(t) = z(( r
r
)
–N+p
p– ) and v(t) = w(( r

r
)
–N+p
p– ) where hi is

given by

hi(t) =
(
p – 
N – p

)p

rpt
–p(N–)
N–p ki

(
rt

–(p–)
N–p

)
.

It is not hard to see that if ki in (PE) satisfies (k), then hi in (Pλ) satisfies hi ∈ A ∩ B, for
i = , . Mainly by making use of Theorem ., we prove the following existence result for
problem (Pλ)

Theorem . Assume hi ∈ A ∩ B, i = , , (f), (f) and (f). Then there exists λ* >  such
that (Pλ) has no positive solution for λ < λ*, at least one positive solution at λ = λ* and at
least two positive solutions for λ > λ*.

As a corollary, we obtain our second main result as follows.

Corollary . Assume (k), (f), (f) and (f). Then there exists λ* >  such that (PE) has no
positive radial solution for λ < λ*, at least one positive radial solution at λ = λ* and at least
two positive radial solutions for λ > λ*.

We finally notice that the first eigenfunctions of

⎧⎨
⎩

ϕp
(
u′(t)

)′ +μhi(t)ϕp
(
u(t)

)
= , t ∈ (, ),

u() = , u() = , i = , 
(E)

make an important role to construct upper solutions in the proofs of Theorem . and
Theorem .. This is possible due to a recent work of Kajikiya, Lee, and Sim [] which
exploits the existence of discrete eigenvalues and the properties of corresponding eigen-
functions for problem (E) with hi ∈A∩B.
This paper is organized as follows. In Section ,we state aC-regularity result and a three

solutions theorem for singular p-Laplacian systems. In addition, we introduce definitions
of (strict) upper and lower solutions, a related theorem and a fixed point theorem for later
use. In Section , we prove Theorem ..

http://www.boundaryvalueproblems.com/content/2012/1/63
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2 Three solutions theorem
In this section, we give definitions of upper and lower solutions and prove three solutions
theorem for the following singular system

⎧⎪⎪⎨
⎪⎪⎩

ϕp
(
u′(t)

)′ + F
(
t, v(t)

)
= , t ∈ (, ),

ϕp
(
v′(t)

)′ +G
(
t,u(t)

)
= , t ∈ (, ),

u() = , v() = , u() = , v() = ,

(P)

where F ,G : (, )×R→ R are continuous.
We call (u, v) a solution of (P) if (u, v) ∈ (C[, ] × C[, ]) ∩ (C(, ) × C(, )),

(ϕp(u′(t)),ϕp(v′(t))) ∈ C(, )×C(, ) and (u, v) satisfies (P).

Definition . We say that (α, ᾱ) is a lower solution of problem (P) if (α, ᾱ) ∈ (C(, ) ×
C(, ))∩ (C[, ]×C[, ]), (ϕp(α′(t)),ϕp(ᾱ′(t))) ∈ C(, )×C(, ) and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕp
(
α′(t)

)′ + F
(
t, ᾱ(t)

) ≥ , t ∈ (, ),

ϕp
(
ᾱ′(t)

)′ +G
(
t,α(t)

) ≥ , t ∈ (, ),

α()≤ , ᾱ()≤ ,

α()≤ , ᾱ()≤ .

We also say that (β , β̄) is an upper solution of problem (P) if (β , β̄) ∈ (C(, )×C(, ))∩
(C[, ] × C[, ]), (ϕp(β ′(t)),ϕp(β̄ ′(t))) ∈ C(, ) × C(, ) and it satisfies the reverse of
the above inequalities. We say that (α, ᾱ) and (β , β̄) are strict lower solution and strict
upper solution of problem (P), respectively, if (α, ᾱ) and (β , β̄) are lower solution and upper
solution of problem (P), respectively and satisfying ϕp(α′(t))′ + F(t, ᾱ(t)) > , ϕp(ᾱ′(t))′ +
G(t,α(t)) > , ϕp(β ′(t))′ + F(t, β̄(t)) < , ϕp(β̄ ′(t))′ +G(t,β(t)) <  for t ∈ (, ).

We note that the inequality on R can be understood componentwise. Let Dβ
α =

{(t,u, v)|(α(t), ᾱ(t)) ≤ (u, v) ≤ (β(t), β̄(t)), t ∈ (, )}. Then the fundamental theorem on
upper and lower solutions for problem (P) is given as follows. The proof can be done
by obvious combination from Lee [], Lee and Lee [] and Lü and O’Regan [].

Theorem . Let (α, ᾱ) and (β , β̄) be a lower solution and an upper solution of problem
(P) respectively such that

(a) (α(t), ᾱ(t))≤ (β(t), β̄(t)), for all t ∈ [, ].

Assume (F). Also assume that there exist hF ,hG ∈A∩B such that

(a) |F(t, v)| ≤ hF (t), |G(t,u)| ≤ hG(t), for all (t,u, v) ∈ Dβ
α .

Then problem (P) has at least one solution (u, v) such that

(
α(t), ᾱ(t)

) ≤ (
u(t), v(t)

) ≤ (
β(t), β̄(t)

)
, for all t ∈ [, ].

Remark . It is not hard to see that condition (H) implies the following condition;

http://www.boundaryvalueproblems.com/content/2012/1/63
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For eachM > , there exists CM >  such that

∣∣F(t,u)∣∣ ≤ CMh(t)ϕp
(|u|), ∣∣G(t,u)∣∣ ≤ CMh(t)ϕp

(|u|),
for t ∈ (, ) and |u| ≤ M.

Lemma. Assume (H) and (F). Let (u, v) be a nontrivial solution of (P). Then there exists
a >  such that both u and v have no interior zeros in (,a]∪ [ – a, ).

Proof Let (u, v) be a nontrivial solution of (P). Suppose, on the contrary, that there exist
sequences (tn), (sn) of interior zeros of u and v respectively with tn, sn → . We note that
both sequences should exist simultaneously. Indeed, if one of the sequences say, (tn), does
not exist, then assuming without loss of generality, u >  on (,a] for some a > , we get
ϕp(v′(s))′ =G(t,u(t)) >  for t ∈ (,a] by (F). From the monotonicity of ϕp, we know that v
is concave on the interval. Thus v should have at most one interior zero in (,a], a contra-
diction. With this concave-convex argument, we know that (tn, tn–)∩ (sn, sn–) �= ∅, uv ≥ 
on (tn, tn–)∩ (sn, sn–) and if t*n and s*n are local extremal points of u and v on (tn, tn–) and
(sn, sn–) respectively, thus both t*n and s*n are in (tn, tn–) ∩ (sn, sn–). We consider the case
that tn ≤ sn, t*n ≤ s*n and u, v >  in (tn, tn–)∩ (sn, sn–). All other cases can be explained by
the same argument. IfM =max{‖u‖∞,‖v‖∞}, then by using Remark ., we have

u
(
t*n

)
=

∫ t*n

tn
ϕ–
p

(∫ t*n

s
F
(
r, v(r)

)
dr

)
ds

≤
∫ t*n

tn
ϕ–
p

(∫ t*n

sn
F
(
r, v(r)

)
dr

)
ds

≤ CM

∫ t*n

tn
ϕ–
p

(∫ t*n

sn
h(r)v(r)p– dr

)
ds

≤ CM

(∫ t*n

tn
ϕ–
p

(∫ t*n

sn
h(r)dr

)
ds

)
v
(
t*n

)

(.)

and similarly,

v
(
t*n

) ≤ CM

(∫ t*n

sn
ϕ–
p

(∫ s*n

s
h(r)dr

)
ds

)
u
(
t*n

)
. (.)

Therefore, it follows from plugging (.) into (.) that

u
(
t*n

) ≤ (CM)
(∫ t*n

tn
ϕ–
p

(∫ t*n

sn
h(r)dr

)
ds

)(∫ t*n

sn
ϕ–
p

(∫ s*n

s
h(r)dr

)
ds

)
u
(
t*n

)
. (.)

Since hi ∈A, for sufficiently large n, we obtain

(CM)
(∫ t*n

tn
ϕ–
p

(∫ t*n

sn
h(r)dr

)
ds

)(∫ t*n

sn
ϕ–
p

(∫ s*n

s
h(r)dr

)
ds

)
< /.

This contradicts (.) and the proof is done. �

http://www.boundaryvalueproblems.com/content/2012/1/63
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Theorem . Assume (H) and (F). If (u, v) is a solution of (P), then (u, v) ∈ C
[, ] ×

C
[, ].

Proof Let (u, v) be a nontrivial solution of (P). Then u, v ∈ C[, ] ∩ C(, ) so that it is
enough to show

∣∣u′(+)∣∣ < ∞,
∣∣u′(–)∣∣ <∞,

∣∣v′(+)∣∣ < ∞,
∣∣v′(–)∣∣ < ∞.

We will show |u′(+)| < ∞. Other facts can be proved by the same manner. Suppose
|u′(+)| = ∞. By Lemma . and the concave-convex argument, we may assume without
loss of generality that there exists a ∈ (, ) such that u, v,u′, v′ >  on (,a]. Then for given
ε > , by the fact hi ∈ B, i = , , there exists δ ∈ (,a) such that

∫ δ


tp–hi(t)dt < ε, i = , .

Let M =max{‖u‖∞,‖v‖∞}. Then integrating (P) over (s, t) ⊂ (, δ) and using Remark .,
we have

u′(s)p– ≤ u′(t)p– +CM

∫ t

s
h(τ )

(
v(τ )
τ

)p–

τ p– dτ

≤ u′(t)p– +CM

(
v(s)
s

)p– ∫ t

s
h(τ )τ p– dτ (.)

≤ u′(t)p– +CMε

(
v(s)
s

)p–

,

where we use the fact that ( v(τ )
τ
)p– is decreasing since v is concave. From u′(+) = ∞ and

(.), we know lims→+( v(s)s )p– = ∞. This implies that conditions u′(+) = ∞ and v′(+) =
∞ are equivalent. From (.), we have

(
su′(s)
v(s)

)p–

≤
(

s
v(s)

)p–

u′(t)p– +CMε.

Thus we have

lim sup
s→+

(
su′(s)
v(s)

)p–

≤ CMε.

Since ε is arbitrary, we have

lim sup
s→+

(
su′(s)
v(s)

)p–

= . (.)

Using the fact v′(+) = ∞, with same argument, we have

lim sup
s→+

(
sv′(s)
u(s)

)p–

= . (.)

http://www.boundaryvalueproblems.com/content/2012/1/63
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On the other hand, we observe the inequality

(α + β)


p– ≤ Cp
(
α


p– + β


p–

)
, for α,β ≥ , (.)

where

Cp =

⎧⎨
⎩
 if p ≥ ,


–p
p– if  < p < .

Since hi ∈A, we may choose b ∈ (,min{a,  }) such that

(CM)


p–Cp

∫ b



(∫ 


s
hi(τ )dτ

) 
p–

ds <


. (.)

Integrating (P) over (s, t) with  < s < t < b and using Remark ., we get

u′(s)p– ≤ u′(t)p– +CMv(t)p–
∫ t

s
h(τ )dτ ,

here we use the fact that v(t) is increasing in (,b). Using (.), we have

u′(s)≤ Cpu′(t) + (CM)


p–Cpv(t)
(∫ 



s
h(τ )dτ

) 
p–

. (.)

Integrating (.) over (, t) with respect to s and using (.), we have

u(t) ≤ Cptu′(t) + (CM)


p–Cpv(t)
∫ t



(∫ 


s
h(τ )dτ

) 
p–

ds

≤ Cptu′(t) +


v(t).

(.)

Similarly, we have

v(t)≤ Cptv′(t) +


u(t). (.)

Adding (.) and (.), we have

 <


Cp
<
tu′(t) + tv′(t)
u(t) + v(t)

≤ tu′(t)
v(t)

+
tv′(t)
u(t)

, (.)

on (,b). From (.) and (.), we see that the right-hand side of (.) goes to zero as
t → . This is a contradiction and the proof is complete. �

Now, we consider the three solutions theorem for singular p-Laplacian system (P). For
ν ∈ L(, ), if

ζ (x) =
∫ 


ϕ–
p

(
x –

∫ s


ν(τ )dτ

)
ds,

http://www.boundaryvalueproblems.com/content/2012/1/63
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then the zero of ζ (x), denoted by ξ (ν) is uniquely determined by ν . Define A : L(, ) →
C
[, ] by taking

A(ν)(t) =
∫ t


ϕ–
p

(
ξ (ν) –

∫ s


ν(τ )dτ

)
ds.

It is known that A is completely continuous []. Define X � C
[, ]×C

[, ] with norm
‖(u, v)‖X = ‖u′‖∞ + ‖v′‖∞. We note that

∣∣u(t)∣∣ ≤ t( – t)
∥∥u′∥∥∞, for all u ∈ C

[, ]. (.)

If F and G satisfy condition (H), then for (u, v) ∈ X, from Remark . and (.), we get

∫ 



∣∣F(
t, v(t)

)∣∣dt ≤
∫ 


h(t)f

(
v(t)

)
dt

≤
∫ 


h(t)C

∣∣v(t)∣∣p– dt

≤ p–C
∥∥v′∥∥p–

∞

∫ 


tp–( – t)p–h(t)dt.

This implies F(·, v(·)) ∈ L(, ) and by similar computation, we also getG(·,u(·)) ∈ L(, ).
This fact enables us to define the integral operator for problem (P) and the regularity of
solutions (Theorem .) is crucial in this argument. Now, define an operator T by

T(u, v) =
(
A

(
F
(
t, v(t)

))
,A

(
G

(
t,u(t)

)))
,

then we see that T : X → X and completely continuous.

Lemma . Assume (H), (F) and (F). Let (α, ᾱ) and (β , β̄) be a strict lower solution and a
strict upper solution of problem (P) respectively such that (α, ᾱ) ∈ X, (β , β̄) ∈ X and (α, ᾱ) ≺
(β , β̄). Then problem (P) has at least one solution (u, v) ∈ X such that

(α, ᾱ) ≺ (u, v) ≺ (β , β̄).

Moreover, for R >  large enough,

deg(I – T ,�, ) = ,

where � = {(u, v) ∈ X|(α, ᾱ) ≺ (u, v)≺ (β , β̄),‖(u, v)‖X < R}.

Proof Define γ : [, ]×R→R given by

γ (t,u) =

⎧⎪⎪⎨
⎪⎪⎩

β(t) if u > β(t),

u if α(t)≤ u≤ β(t),

α(t) if u < α(t),

http://www.boundaryvalueproblems.com/content/2012/1/63
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γ̄ (t, v) =

⎧⎪⎪⎨
⎪⎪⎩

β̄(t) if v > β̄(t),

v if ᾱ(t)≤ v ≤ β̄(t),

ᾱ(t) if v < ᾱ(t),

and also define

F*(t, v(t)) = F
(
t, γ̄

(
t, v(t)

))
, G*(t,u(t)) =G

(
t,γ

(
t,u(t)

))
.

Let us consider the following modified problem

⎧⎪⎪⎨
⎪⎪⎩

ϕp
(
u′(t)

)′ + F*(t, v(t)) = , t ∈ (, ),

ϕp
(
v′(t)

)′ +G*(t,u(t)) = , t ∈ (, ),

u() = , v() = , u() = , v() = .

(P̄)

We first show that there exists a constant R >  such that if (u, v) is a solution of (P̄), then
(u, v) ∈ �. In fact, every solution (u, v) of (P̄) satisfies (α, ᾱ) ≤ (u, v) ≤ (β , β̄) on [, ]. From
(H), (F) and the fact that (α, ᾱ) ∈ X, (β , β̄) ∈ X, we get

∣∣ϕp
(
u′(t)

)∣∣ =
∣∣∣∣
∫ t

t
F*(τ , v(τ ))dτ

∣∣∣∣ ≤
∫ t

t
max

{∣∣F(
τ , ᾱ(τ )

)∣∣, ∣∣F(
τ , β̄(τ )

)∣∣}dτ

≤
∫ 


h(t) max

t∈[,]
{
f
(
ᾱ(t)

)
, f

(
β̄(t)

)}
dt

≤
∫ 


ch(t) max

t∈[,]
{∣∣ᾱ(t)∣∣p–, ∣∣β̄(t)∣∣p–}dt

≤ p–cmax
{∥∥α′∥∥p–

∞ ,
∥∥β

′∥∥p–
∞

}∫ 


tp–( – t)p–h(t)dt < ∞.

Similarly, we see that ‖v′‖∞ is bounded. Therefore, ‖(u, v)‖X < R, for some R > . Thus it
is enough to show that

(α, ᾱ) ≺ (u, v) ≺ (β , β̄).

Assume, on the contrary, that there exists t ∈ (, ) such that

min
(
u(t) – α(t)

)
= u(t) – α(t) = .

Then choosing t ∈ (t, ) with (u – α)′(t)≥ , we get the following contradiction:

 ≤ [
ϕp

(
u′(t)

)
– ϕp

(
α′(t)

)]
–

[
ϕp

(
u′(t)

)
– ϕp

(
α′(t)

)]

=
∫ t

t
–F*(t, v(t)) – ϕp

(
α′(t)

)′ dt ≤
∫ t

t
–F

(
t, ᾱ(t)

)
– ϕp

(
α′(t)

)′ dt < .

Now, assume u′() = α′(). Since u(t) > α(t) on t ∈ (, ) and u() = α() = , there exists
t ∈ (, ) such that u′(t) ≥ α′(t) and we get the same contradiction from the above cal-
culation by using  instead of t. For u′() = α′() case, we also get the same contradiction.

http://www.boundaryvalueproblems.com/content/2012/1/63
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Consequently, we get α ≺ u. The other cases can be proved by the same manner. Taking
� = {(u, v) ∈ X|(α, ᾱ) ≺ (u, v) ≺ (β , β̄),‖(u, v)‖X < R}, we see that every solution of (P̄) is
contained in �. We now compute deg(I – T ,�, ). For this purpose, let us consider the
operator T̄ : X → X defined by

T̄(u, v)(t) =
(
A

(
F*(t, v(t))),A(

G*(t,u(t)))).
Then it is obvious that T̄ is completely continuous. We show that there exists R̄ >  such
that R̄ > R and T̄(X) ⊂ B(, R̄). Indeed, since A(F*(, v())) =  = A(F*(, v())), there is t̃ ∈
(, ) such that d

dt A(F
*(t, v(t)))|t=t̃ = . By integrating

d
dt

ϕp

(
d
dt

A
(
F*(t, v(t)))

)
= F*(t, v(t))

from t̃ to t, we have
∣∣∣∣ϕp

(
d
dt

A
(
F*(t, v(t)))

)∣∣∣∣ =
∣∣∣∣
∫ t

t̃
F*(τ , v(τ ))dτ

∣∣∣∣
≤

∫ 


h(t)f

(
γ̄
(
t, v(t)

))
dt ≤

∫ 


h(t)C

∣∣γ̄ (
t, v(t)

)∣∣p– dt

≤
∫ 


h(t)Cmax

{∣∣β̄(t)∣∣p–, ∣∣ᾱ(t)∣∣p–}dt

≤ Cmax
{∥∥β̄ ′∥∥p–

∞ ,
∥∥ᾱ′∥∥p–

∞
}∫ 


tp–( – t)p–h(t)dt.

Similarly, we see that d
dt A(G

*(t,u(t))) is bounded. Therefore, we get

deg
(
I – T̄ ,B(, R̄), 

)
= .

Since every solution of (P̄) is contained in �, the excision property implies that

deg(I – T̄ ,�, ) = deg
(
I – T̄ ,B(, R̄), 

)
= .

Since T̄ = T on �, we finally get

deg(I – T ,�, ) = deg(I – T̄ ,�, ) = .

This completes the proof. �

We now prove three solutions theorem for (P).

Proof of Theorem 1.1
Define

γ(t,u) =

⎧⎪⎪⎨
⎪⎪⎩

β(t) if u > β(t),

u if α(t) ≤ u≤ β(t),

α(t) if u < α(t),

http://www.boundaryvalueproblems.com/content/2012/1/63
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γ̄(t, v) =

⎧⎪⎪⎨
⎪⎪⎩

β̄(t) if v > β̄(t),

v if ᾱ(t)≤ v ≤ β̄(t),

ᾱ(t) if v < ᾱ(t),

and let us consider

⎧⎪⎪⎨
⎪⎪⎩

ϕp
(
u′(t)

)′ + F
(
t, γ̄

(
t, v(t)

))
= , t ∈ (, ),

ϕp
(
v′(t)

)′ +G
(
t,γ

(
t,u(t)

))
= , t ∈ (, ),

u() = , v() = , u() = , v() = .

(P̃)

Then noting that every solution (u, v) of (P̃) satisfies (α, ᾱ) ≤ (u, v) ≤ (β, β̄), we may
choose K,K > , by (H) such that

∣∣f (v)∣∣ ≤ Kϕp
(|v|) for all |v| ≤ max

{‖β̄‖,‖ᾱ‖
}
,

∣∣g(u)∣∣ ≤ Kϕp
(|u|) for all |u| ≤ max

{‖β‖,‖α‖
}
.

Let λ and μ be the first eigenvalues of

⎧⎨
⎩

ϕp
(
u′(t)

)′ +μhi(t)ϕp
(
u(t)

)
= , t ∈ (, ),

u() = , u() = ,
(E)

for i = ,  respectively and let e and e be corresponding eigenfunctions with ‖e‖∞ =
‖e‖∞ = . Since e, e ∈ C

[, ] are positive and concave [], we may chooseM,M > 
such that (Me,Me) � (β, β̄), (–Me, –Me) ≺ (α, ᾱ) and for t ∈ (, ),

Kmax
{
ϕp

(∣∣β̄(t)
∣∣),ϕp

(∣∣ᾱ(t)
∣∣)} < λϕp

(
Me(t)

)
,

Kmax
{
ϕp

(∣∣α(t)
∣∣),ϕp

(∣∣β(t)
∣∣)} < μϕp

(
Me(t)

)
.

We show that (Me,Me) and (–Me, –Me) are a strict upper solution and a strict
lower solution of (P̃) respectively. Indeed,

ϕp
(
Me′

(t)
)′ + F

(
t, γ̄

(
t,Me(t)

))
= ϕp

(
Me′

(t)
)′ + F

(
t, β̄(t)

)
≤ –λh(t)ϕp

(
Me(t)

)
+ h(t)f

(
β̄(t)

)
≤ –λh(t)ϕp

(
Me(t)

)
+ h(t)Kϕp

(∣∣β̄(t)
∣∣) < .

Similarly, we get

ϕp
(
Me′

(t)
)′ +G

(
t,γ

(
t,Me(t)

))
< .

Moreover,

ϕp
(
–Me′

(t)
)′ +G

(
t,γ

(
t, –Me(t)

))
= –ϕp

(
Me′

(t)
)′ +G

(
t,α(t)

)

http://www.boundaryvalueproblems.com/content/2012/1/63
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≥ μh(t)ϕp
(
Me(t)

)
– h(t)g

(
α(t)

)
≥ μh(t)ϕp

(
Me(t)

)
– h(t)Kϕp

(∣∣α(t)
∣∣) > .

Similarly, we also get

ϕp
(
–Me′

(t)
)′ + F

(
t, γ̄

(
t, –Me(t)

))
> .

For R > , large enough, define

� =
{
(u, v) ∈ X|(–Me, –Me) ≺ (u, v)≺ (β, β̄),

∥∥(u, v)∥∥X < R
}
,

� =
{
(u, v) ∈ X|(α, ᾱ) ≺ (u, v)≺ (Me,Me),

∥∥(u, v)∥∥X < R
}
,

� =
{
(u, v) ∈ X|(–Me, –Me) ≺ (u, v)≺ (Me,Me),

∥∥(u, v)∥∥X < R
}
.

Then by Theorem ., there exist two solutions (u, v) and (u, v) of (P) satisfying
(α, ᾱ) ≤ (u, v) ≺ (β, β̄) and (α, ᾱ) ≺ (u, v) ≤ (β, β̄). Therefore, by Lemma ., we
get

deg(I – T̃ ,�, ) = deg(I – T̃ ,�, ) = deg(I – T̃ ,�, ) = ,

and by the excision property, we have

deg
(
I – T̃ ,� \ (� ∪ �), 

)
= –.

This completes the proof.

3 Application
In this section, we prove the existence, nonexistence, andmultiplicity of positive solutions
for (Pλ) by using three solutions theorem in Section . Let us define a cone

K =
{
u ∈ C[, ]|u are concave and u() =  = u()

}
,

and define Aλ,Bλ : K → C[, ] by taking

Aλ(v)(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t


ϕ–
p

(∫ σv

s
λh(τ )f

(
v(τ )

)
dτ

)
ds,

∫ 

t
ϕ–
p

(∫ s

σv

λh(τ )f
(
v(τ )

)
dτ

)
ds,

Bλ(u)(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t


ϕ–
p

(∫ σu

s
λh(τ )g

(
u(τ )

)
dτ

)
ds,

∫ 

t
ϕ–
p

(∫ s

σu

λh(τ )g
(
u(τ )

)
dτ

)
ds,

where σv and σu are unique zeros of

xv(t) =
∫ t


ϕ–
p

(∫ t

s
λh(τ )f

(
v(τ )

)
dτ

)
ds –

∫ 

t
ϕ–
p

(∫ s

t
λh(τ )f

(
v(τ )

)
dτ

)
ds,
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yu(t) =
∫ t


ϕ–
p

(∫ t

s
λh(τ )g

(
u(τ )

)
dτ

)
ds –

∫ 

t
ϕ–
p

(∫ s

t
λh(τ )g

(
u(τ )

)
dτ

)
ds,

respectively. And define Tλ : K ×K → C[, ]×C[, ] by

Tλ(u, v) =
(
Aλ(v),Bλ(u)

)
.

Then it is known that Tλ : K × K → K × K is completely continuous [] and (u, v) =
Tλ(u, v) in K ×K is equivalent to the fact that (u, v) is a positive solution of (Pλ). We know
from Theorem . that under assumptions hi ∈ A ∩ B, i = ,  and (f), any solution (u, v)
of problem (Pλ) is in C

[, ]×C
[, ].

Remark . If (u, v) is a solution of (Pλ), then u = Aλ(Bλ(u)) and v = Bλ(Aλ(v)).

For later use, we introduce the following well-known result. See [] for proof and de-
tails.

Proposition . Let X be a Banach space, K an order cone in X. Assume that � and �

are bounded open subsets in X with  ∈ � and � ⊆ �. Let A :K ∩ (� \ �) → K be a
completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈K ∩ ∂�, and ‖Au‖ ≥ ‖u‖, u ∈K ∩ ∂�

or
(ii) ‖Au‖ ≥ ‖u‖, u ∈K ∩ ∂�, and ‖Au‖ ≤ ‖u‖, u ∈K ∩ ∂� .

Then A has a fixed point in K ∩ (� \ �).

Lemma . Assume hi ∈A∩B, i = , , (f) and (f). LetR be a compact subset of (,∞).
Then there exists a constant bR >  such that for all λ ∈R and all possible positive solutions
(u, v) of (Pλ), one has ‖(u, v)‖∞ ≤ bR.

Proof If it is not true, then there exist {λn} ⊂ R and solutions {(un, vn)} of (Pλn ) such that
‖(un, vn)‖∞ → ∞. We note that

‖un‖∞ =
∥∥Aλn (vn)

∥∥∞ ≤ �Qϕ
–
p

(
f
(‖vn‖∞

))
,

‖vn‖∞ =
∥∥Bλn (un)

∥∥∞ ≤ �Qϕ
–
p

(
g
(‖un‖∞

))
,

where � =max{λ 
p– |λ ∈R} and

Qi =
∫ 




ϕ–
p

(∫ 


s
hi(τ )dτ

)
ds +

∫ 




ϕ–
p

(∫ s




hi(τ )dτ

)
ds, i = , .

This implies both ‖un‖∞ → ∞ and ‖vn‖∞ → ∞. Moreover, by the above estimation,

‖un‖∞ ≤ �Qϕ
–
p

(
f
(
�Qϕ

–
p

(
g
(‖un‖∞

))))
.

Thus we get


ϕp(�Q)

≤ f (�Qϕ
–
p (g(‖un‖∞)))

ϕp(‖un‖∞)
→ 
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as ‖un‖∞ → ∞ and this contradiction completes the proof. �

Lemma . Assume hi ∈ A ∩ B, i = , , (f) and (f). If (Pλ) has a lower solution (α, ᾱ) ∈
C
[, ]×C

[, ] for some λ > , then (Pλ) has a solution (u, v) such that (α, ᾱ) ≤ (u, v).

Proof It suffices to show the existence of an upper solution (β , β̄) of (Pλ) satisfying (α, ᾱ) ≤
(β , β̄). Let φi and i = ,  be positive solutions of

⎧⎨
⎩

ϕp
(
u′(t)

)′ + λhi(t) = , t ∈ (, ),

u() = , u() = .

(Case I) Both f and g are bounded.
Since φi (i = , ) are positive concave functions and (α, ᾱ) ∈ C

[, ]× C
[, ], we may

choose M >  such that M >max{‖f ‖


p–∞ ,‖g‖


p–∞ } and (Mφ,Mφ) ≥ (α, ᾱ). We now show
that (β , β̄) = (Mφ,Mφ) is an upper solution of (Pλ). In fact,

ϕp
(
β ′(t)

)′ + λh(t)f
(
β̄(t)

)
= Mp–ϕp

(
φ′
(t)

)′ + λh(t)f
(
Mφ(t)

)
= λh(t)

[
f
(
Mφ(t)

)
–Mp–]

≤ λh(t)
[‖f ‖∞ –Mp–] ≤ .

Similarly,

ϕp
(
β̄ ′(t)

)′ + λh(t)g
(
β(t)

) ≤ λh(t)
[‖g‖∞ –Mp–] ≤ .

(Case II) g(u) → ∞ as u → ∞.
Using (f), chooseM >  such that (g(M‖φ‖∞))


p– φ ≥ ᾱ,Mφ ≥ α and

f (‖φ‖∞(g(M‖φ‖∞))


p– )
(M‖φ‖∞)p–

≤ 
‖φ‖p–∞

.

Let (β , β̄) = (Mφ, (g(M‖φ‖∞))


p– φ). Then

ϕp
(
β ′(t)

)′ + λh(t)f
(
β̄(t)

)
= Mp–ϕp

(
φ′
(t)

)′ + λh(t)f
((
g
(
M‖φ‖∞

)) 
p– φ(t)

)

= λh(t)
[
f
((
g
(
M‖φ‖∞

)) 
p– φ(t)

)
–Mp–]

≤ λh(t)
[
f
(‖φ‖∞

(
g
(
M‖φ‖∞

)) 
p–

)
–Mp–] ≤ .

And

ϕp
(
β̄ ′(t)

)′ + λh(t)g
(
β(t)

)
= g

(
M‖φ‖∞

)
ϕp

(
φ′
(t)

)′ + λh(t)g
(
Mφ(t)

)
= λh(t)

[
g
(
Mφ(t)

)
– g

(
M‖φ‖∞

)]
≤ λh(t)

[
g
(
M‖φ‖∞

)
– g

(
M‖φ‖∞

)]
= .

Thus (β , β̄) is an upper solution of (Pλ).
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(Case III) g is bounded and f (u) → ∞ as u → ∞.

ChooseM >  such that (f (M‖φ‖∞))


p– φ ≥ α,M > ‖g‖


p–∞ andMφ ≥ ᾱ and let

(β , β̄) =
((
f
(
M‖φ‖∞

)) 
p– φ,Mφ

)
.

Then

ϕp
(
β ′(t)

)′ + λh(t)f
(
β̄(t)

)
= f

(
M‖φ‖∞

)
ϕp

(
φ′
(t)

)′ + λh(t)f
(
Mφ(t)

)
= λh(t)

[
f
(
Mφ(t)

)
– f

(
M‖φ‖∞

)]
≤ λh(t)

[
f
(
M‖φ‖∞

)
– f

(
M‖φ‖∞

)]
= .

And

ϕp
(
β̄ ′(t)

)′ + λh(t)g
(
β(t)

)
= Mp–ϕp

(
φ′
(t)

)′ + λh(t)g
((
f
(
M‖φ‖∞

)) 
p– φ(t)

)

= λh(t)
[
g
((
f
(
M‖φ‖∞

)) 
p– φ(t)

)
–Mp–]

≤ λh(t)
[‖g‖∞ –Mp–] ≤ .

Consequently, by Theorem ., (Pλ) has a solution satisfying

(α, ᾱ) ≤ (u, v) ≤ (β , β̄). �

Lemma . Assume hi ∈A∩B, i = , , (f), (f) and (f). Then there exists λ̄ >  such that
if (Pλ) has a positive solution (u, v), then λ ≥ λ̄.

Proof Let (u, v) be a positive solution of (Pλ). Without loss of generality, we may assume
λ < . From (f), we know that

lim
x→+

f (ρϕ–
p (g(u)))
ϕp(u)

= , for all ρ > . (.)

From (.) and (f), we can chooseMf >  such that

f
(
Qϕ

–
p

(
g(u)

)) ≤ Mf ϕp(u), for all u > , (.)

where Qi =
∫ 


 ϕ–

p (
∫ 


s hi(τ )dτ )ds +

∫ 


ϕ–
p (

∫ s


hi(τ )dτ )ds, i = , . Using (.) and (f), we

have

‖u‖∞ ≤ Qϕ
–
p

(
λf

(∥∥Bλ(u)
∥∥∞

)) ≤ Qϕ
–
p

(
λf

(
Qϕ

–
p

(
λg

(‖u‖∞
))))

≤ Qϕ
–
p

(
λf

(
Qϕ

–
p

(
g
(‖u‖∞

)))) ≤ Qϕ
–
p

(
λMf ϕp

(‖u‖∞
))

≤ Qϕ
–
p (λMf )‖u‖∞.

Thus we have

λ̄ � 
ϕp(Q)Mf

≤ λ. �
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Lemma . Assume hi ∈ A∩B, i = , , (f), (f) and (f). Then for each R > , there exists
λR >  such that for λ > λR, (Pλ) has a positive solution (u, v) with ‖u‖∞ > R and ‖v‖∞ > R.

Proof Weknow that if (u, v) satisfies u = Aλ(Bλ(u)) and v = Bλ(u), then (u, v) is a solution of
(Pλ). Since Aλ,Bλ : K → K are completely continuous, Aλ ◦ Bλ : K → K is also completely
continuous. Given R > , choose

λR =max

{
ϕp

(
R
�

)


g(R )
,ϕp

(
R
�

)


f (R )

}
,

where �i = mint∈[  ,  ]{
∫ t



ϕ–
p (

∫ t
s hi(τ )dτ )ds +

∫ 

t ϕ–

p (
∫ s
t hi(τ )dτ )ds}. Let � = {u ∈

C[, ]|‖u‖∞ < R}. If u ∈ ∂� ∩ K , then for t ∈ [  ,

 ], u(t) ≥ 

‖u‖∞ ≥ 
R. From the def-

inition of BλR (u), we know that BλR (u)(σu) is the maximum value of BλR (u) on [, ]. If
σu ∈ [  ,


 ], then from the choice of λR, we have

∥∥BλR (u)
∥∥∞

≥ 


[∫ σu




ϕ–
p

(∫ σu

s
λRh(τ )g

(
u(τ )

)
dτ

)
ds +

∫ 


σu

ϕ–
p

(∫ s

σu

λRh(τ )g
(
u(τ )

)
dτ

)
ds

]

≥ 


[∫ σu




ϕ–
p

(∫ σu

s
λRh(τ )g

(
R


)
dτ

)
ds +

∫ 


σu

ϕ–
p

(∫ s

σu

λRh(τ )g
(
R


)
dτ

)
ds

]

≥ 

�ϕ

–
p

(
λRg

(
R


))
≥ R.

If σu > 
 , then we have

∥∥BλR (u)
∥∥∞ ≥

∫ 





ϕ–
p

(∫ 


s
λRh(τ )g

(
R


)
dτ

)
ds≥ 


�ϕ

–
p

(
λRg

(
R


))
≥ R.

If σu < 
 , then

∥∥BλR (u)
∥∥∞ ≥

∫ 





ϕ–
p

(∫ s




λRh(τ )g
(
R


)
dτ

)
ds ≥ 


�ϕ

–
p

(
λRg

(
R


))
≥ R.

By the concavity of BλR (u), we get for t ∈ [  ,

 ],

BλR (u)(t)≥



∥∥BλR (u)
∥∥∞ ≥ 


R. (.)

By similar argument as the above, with (.), we may show that

∥∥AλR

(
BλR (u)

)∥∥∞ ≥ 

�ϕ

–
p

(
λRf

(
R


))
≥ R = ‖u‖∞.

Let Qi =
∫ 


 ϕ–

p (
∫ 


s hi(τ )dτ )ds +

∫ 


ϕ–
p (

∫ s


hi(τ )dτ )ds, i = , . For ε < 

ϕp(Q)λR
, from (f),

we may choose R̃ >  such that R̃ > R and

f
(
Qϕ

–
p (λR)ϕ–

p
(
g(R̃)

)) ≤ εϕp(R̃).
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Let � = {u ∈ C[, ]|‖u‖∞ < R̃}, then � ⊂ � and for u ∈ ∂� ∩K ,

∥∥AλR

(
BλR (u)

)∥∥∞ ≤ Qϕ
–
p

(
λRf

(
Qϕ

–
p (λR)ϕ–

p
(
g(R̃)

)))
≤ Qϕ

–
p

(
λRεϕp(R̃)

) ≤ Qϕ
–
p (λRε)R̃ ≤ R̃ = ‖u‖∞.

By Proposition ., (PλR ) has a positive solution (uR, vR) such that ‖uR‖∞ > R and ‖vR‖∞ >
R. We know that (uR, vR) is a lower solution of (Pλ) for λ > λR and by Lemma ., the proof
is complete. �

We now prove one of the main results for this paper.

Proof of Theorem 1.2
From Lemma . and Lemma ., we know that the set S = {λ > |(Pλ) has a positive
solution} is not empty and λ* = infS > . By Lemma . and complete continuity of T ,
there exist sequences {λn} and {(un, vn)} such that λn → λ* and (un, vn) → (u*, v*) in K ×K
with (u*, v*) a solution of (Pλ* ). We claim that (u*, v*) is a nontrivial solution of (Pλ* ). Sup-
pose that it is not true, then there exists a sequence of solutions (un, vn) for (Pλn ) such that
(un, vn) → (, ) and λn → λ*. As in the proof of Lemma ., we get


ϕp(�Q)

≤ f (�Qϕ
–
p (g(‖un‖∞)))

ϕp(‖un‖∞)
.

But from (f), we have a contradiction to the fact that the right side of the above inequality
converges to zero as ‖un‖ → . Thus (u*, v*) is a nontrivial solution of (Pλ* ). According
to Lemma . and the definition of λ*, we know that (Pλ) has at least one positive solu-
tion at λ ≥ λ* and no positive solution for λ < λ*. To prove the existence of the second
positive solution of (Pλ) for λ > λ*, we will use Theorem .. Let λ > λ*. Then we have
(α, ᾱ) = (, ) a lower solution of (Pλ) and (α, ᾱ) = (u*, v*) a strict lower solution of (Pλ)
in C

[, ]×C
[, ] satisfying (α, ᾱ) ≥ (α, ᾱ). For upper solutions, let λ and μ be the

first eigenvalues of

⎧⎨
⎩

ϕp
(
u′(t)

)′ +μhi(t)ϕp
(
u(t)

)
= , t ∈ (, ),

u() = , u() = ,
(E)

for i = ,  respectively and let e and e be corresponding eigenfunctions with ‖e‖∞ =
‖e‖∞ = . Since e and e are in C

[, ] and positive [], we may choose c >  and c > 
such that

λce
p–
 < λe

p–
 and λce

p–
 < μe

p–
 .

Also by the fact f = g = , there exists a >  such that

f (u) ≤ cup–, g(u) ≤ cup–,

for all |u| ≤ a and

ae(t) < α(t), ae(t) < ᾱ(t).

http://www.boundaryvalueproblems.com/content/2012/1/63


Lee and Lee Boundary Value Problems 2012, 2012:63 Page 19 of 20
http://www.boundaryvalueproblems.com/content/2012/1/63

Let (β, β̄) = (ae,ae). Then (β, β̄) � (α, ᾱ) and it is a strict upper solution of (Pλ) in
C
[, ]×C

[, ]. Indeed,

ϕp
(
β ′
(t)

)′ + λh(t)f
(
β̄(t)

)
= ap–ϕp

(
e′
(t)

)′ + λh(t)f
(
ae(t)

)
≤ –λh(t)ap–ϕp

(
e(t)

)
+ λh(t)cap–ϕp

(
e(t)

)
= ap–h(t)

[
λcϕp

(
e(t)

)
– λϕp

(
e(t)

)]
< 

and

ϕp
(
β̄ ′
(t)

)′ + λh(t)g
(
β(t)

)
= ap–ϕp

(
e′
(t)

)′ + λh(t)g
(
ae(t)

)
≤ –μh(t)ap–ϕp

(
e(t)

)
+ λh(t)cap–ϕp

(
e(t)

)
= ap–h(t)

[
λcϕp

(
e(t)

)
–μϕp

(
e(t)

)]
< .

Finally, from Lemma ., there exists λ̄ > λ such that (Pλ̄) has a positive solution (ū, v̄) ∈
C
[, ]×C

[, ] satisfying ‖ū‖∞ >max{‖α′
‖∞,‖β ′

‖∞} and ‖v̄‖∞ >max{‖ᾱ′
‖∞,‖β̄ ′

‖∞}.
By using the concavity of solutions, it is easily verified that

(β, β̄) ≤ (ū, v̄) and (α, ᾱ) ≤ (ū, v̄).

Therefore, (β, β̄) = (ū, v̄) is an upper solution of (Pλ) in C
[, ]× C

[, ]. Now by The-
orem ., (Pλ) has at least two positive solutions (u, v) and (u, v) such that (α, ᾱ) ≺
(u, v) ≤ (β, β̄) and (α, ᾱ) ≤ (u, v) ≤ (β, β̄) and (u, v)� (β, β̄), (u, v)� (α, ᾱ).
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