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Abstract
We consider the following system of difference equations: xn+1 =

ax2n
1+x2n+cyn

,

yn+1 =
by2n

1+y2n+dxn
, n = 0, 1, . . . , where a, b, c, d are positive constants and x0, y0 ≥ 0 are

initial conditions. This system has interesting dynamics and can have up to nine
equilibrium points. The most complex and perhaps most interesting case is the case
of nine equilibrium points, four of which are local attractors, four of which are saddle
points, and one of which is a repeller. Using recent results of Kulenović and Merino we
are able to characterize the basins of attractions of all local attractors and thus to
describe the global dynamics of this system. This case can be considered as a
two-dimensional version of the Allee effect for competitive systems.
MSC: 39A10; 39A30; 37G35
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1 Introduction
The following difference equation is known as the Beverton-Holt model:

xn+ =
axn
 + xn

, n = , , . . . , ()

where a >  is the rate of change (growth or decay) and xn is the size of the population at
the nth generation.
This model was introduced by Beverton and Holt in . It depicts density depen-

dent recruitment of a population with limited resources which are not shared equally.
The model assumes that the per capita number of offspring is inversely proportional to a
linearly increasing function of the number of adults. In other words () can be considered
as an equation of the form

xn+ = xnf (xn), n = , , . . . , ()

where f (u) = a/( + u) is inversely proportional to the linear function A + Bu, A,B > ,
which can be normalized to be  + u.
The Beverton-Holtmodel is well studied and understood. It exhibits the following prop-

erties.
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Theorem  Equation () has the two equilibrium points  and a –  when a > .
(a) All solutions of () are monotonic (increasing or decreasing) sequences.
(b) If a≤ , then the zero equilibrium is a global attractor, that is, limn→∞ xn = , for all

x ≥ .
(c) If a > , then the equilibrium point a –  is a global attractor, that is,

limn→∞ xn = a – , for all x > .
(d) Both equilibrium points are globally asymptotically stable in the corresponding

regions of parameters a≤  and a > , that is, they are global attractors with the
property that small changes of initial condition x result in small changes of the
corresponding solution {xn}.

Furthermore, () can be solved explicitly and has the following solution:

xn =


/(a – ) + (/x – /(a – ))/an
if a �= ,

xn =


n + /x
if a = ,

()

which can be used to prove all the preceding properties. See [–].
The Allee effect is a phenomenon in biology characterized by a positive correlation be-

tween population density and per capita growth rate. The Allee effect was first written on
extensively by its namesakeWarder Clyde Allee. The general idea of the Allee effect is that
for smaller populations, the reproduction and survival rates of individuals decrease. This
effect usually saturates or disappears as populations get larger. The Allee effect has been
detected in a number of discrete models; see [–].
The effect may be due to any number of causes. In some species, reproduction (finding

a mate in particular) may be increasingly difficult as the population density decreases.
Inmathematics, when the basin of attraction of the zero equilibriumof a system contains

an open set, we consider the system to exhibit the Allee effect. See [, ].
In view of Theorem  the Beverton-Holt model does not exhibit the Allee effect.

1.1 Beverton-Holt type model that exhibits the Allee effect
The difference equation

xn+ =
axn
 + xn

, n = , , . . . , ()

which was introduced by Thompson [] as a depensatory generalization of the Beverton-
Holt stock-recruitment relationship, was used to develop a set of constraints designed to
safeguard against overfishing. This model has been used in the study of fish population
dynamics, particularly when overfishing is present; see [] for further references. In view
of the sigmoid shape of the function f (u) = au

+u , () is called the sigmoid Beverton-Holt
model. A very important feature of the sigmoid Beverton-Holt model is that it exhibits the
Allee effect. We can see this from the following result, the proof of which is an immediate
consequence of a stair-step diagram analysis.

Theorem  The global dynamics of Equation () is as follows:

http://www.advancesindifferenceequations.com/content/2014/1/307
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(a) Equation () has only a zero equilibrium when a < .
(b) Equation () has a zero equilibrium and the positive equilibrium x̄ = /, when a = .
(c) There exists a zero equilibrium and two positive equilibria, x̄– and x̄+, when a > .
(d) All solutions of () are monotonic (increasing or decreasing) sequences.
(e) If a < , then the equilibrium point  is a global attractor, that is, limn→∞ xn =  for

all x ≥ .
(f ) If a = , then the equilibrium point  is a global attractor, with the basin of attraction

B() = (, x̄) and x̄ = / is a non-hyperbolic equilibrium point with the basin of
attraction B(x̄) = [x̄,∞).

(g) If a > , then we have zero equilibrium and x̄+ are locally asymptotically stable, while
x̄– is a repeller and the basins of attraction of the equilibrium points are given as

B() = {x : ≤ x < x̄–},
B(x̄+) = {x : x̄– < x <∞}.

In other words, the smaller positive equilibrium serves as the boundary between two
basins of attraction. The zero equilibrium has the basin of attraction B() and the
model exhibits the Allee effect.

(h) The equilibrium points  and x̄+ are globally asymptotically stable in the
corresponding basins of attractions B() and B(x̄+).

1.2 Competitive model in two dimensions that exhibits the Allee effect
We will now consider the two-dimensional analog of () which is the uncoupled system

xn+ =
axn
 + xn

,

yn+ =
byn
 + yn

, n = , , . . . ,
()

where a and b are positive parameters. System () can have at most nine nonnegative
equilibrium points:

E(, ), Eȳ–(, ȳ–), Eȳ+(, ȳ+),

Ex̄–(x̄–, ), Ex̄+(x̄+, ), E–(x̄–, ȳ–),

E–+(x̄–, ȳ+), E+–(x̄+, ȳ–), E+(x̄+, ȳ+).

The dynamics of system () is partially described in the following theorem, with com-
plete visual interpretation in Figure  can be derived fromTheorem. Since there are three
dynamics scenarios for each of two equations in (), there are nine dynamic scenarios for
system (), which are visualized in Figure .

Theorem  System () has the following properties:
(a) All solutions (xn, yn) of system () are component-wise monotonic and bounded, that

is, both sequences {xn} and {yn} are monotonic and bounded.
(b) If a <  and b < , then there exists only a zero equilibrium, which is a global attractor.

http://www.advancesindifferenceequations.com/content/2014/1/307
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Figure 1 Global dynamics of uncoupled two-dimensional model ()with nine dynamics scenarios.

(c) If a < , b > , then the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) :  ≤ x <∞,  ≤ y < ȳ–

}
,

B
(
Eȳ+(, ȳ+)

)
=

{
(x, y) :  ≤ x < ∞, ȳ– < y < ∞}

.

(d) If a > , b < , then the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) :  ≤ x < x̄–, ≤ y < ∞}

,

B
(
Ex̄+(x̄+, )

)
=

{
(x, y) : x̄– < x < ∞, ≤ y < ∞}

.

(e) If a > , b > , then the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) :  ≤ x < x̄–, ≤ y < ȳ–

}
,

B
(
Ex̄+(x̄+, )

)
=

{
(x, y) : x̄– < x < ∞, ≤ y < ȳ–

}
,

B
(
Eȳ+(, ȳ+)

)
=

{
(x, y) :  ≤ x < x̄–, ȳ– < y < ∞}

,

B
(
E++(x̄+, ȳ+)

)
=

{
(x, y) : x̄– < x <∞, ȳ– < y < ∞}

,

B
(
Ex̄–(x̄–, )

)
=

{
(x̄–, y) :  ≤ y < ȳ–

}
,
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B
(
Eȳ–(, ȳ–)

)
=

{
(x, ȳ–) :  ≤ x < x̄–

}
,

B(E+–) =
{
(x, ȳ–) : x̄– < x < ∞}

, B(E–+) =
{
(x̄–, y) : ȳ– < y < ∞}

.

(f ) If a = , b < , then the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) :  ≤ x < x̄, ≤ y < ∞}

,

B
(
Ex̄(x̄, )

)
=

{
(x, y) : x̄ ≤ x < ∞,  ≤ y < ∞}

.

(g) If a < , b = , then the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) :  ≤ x <∞,  ≤ y < ȳ

}
,

B
(
Eȳ(, ȳ)

)
=

{
(x, y) : ≤ x <∞, ȳ ≤ y < ∞}

.

(g) If a = , b = , then the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) :  ≤ x < x̄, ≤ y < ȳ

}
,

B
(
Ex̄(x̄, )

)
=

{
(x, y) : x̄ ≤ x < ∞,  ≤ y < ȳ

}
,

B
(
Eȳ(, ȳ)

)
=

{
(x, y) : ≤ x < x̄, ȳ≤ y <∞}

,

B(E) =
{
(x, y) : x̄ ≤ x, ȳ≤ y

}
.

(h) If a = , b > , then the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) :  ≤ x < x̄, ≤ y < ȳ–

}
,

B
(
Ex̄(x̄, )

)
=

{
(x, y) : x̄ ≤ x < ∞,  ≤ y < ȳ–

}
,

B(Eȳ+) =
{
(x, y) :  ≤ x < x̄, ȳ– ≤ y < ∞}

,

B
(
E+(x̄, ȳ+)

)
=

{
(x, y) : x̄≤ x, ȳ– < y

}
.

(i) Case a > , b = , is symmetric to the case a = , b > .

Two species can interact in several different ways through competition, cooperation, or
predator-prey interactions. For each of these interactions, we obtain variations of system
(), all of which may require a different mathematical analysis.
The following coupled system is a variation of system () that exhibits competitive in-

teractions:

xn+ =
axn

 + xn + cyn
,

yn+ =
byn

 + yn + dxn
, n = , , . . . ,

()

where a,b, c,d > . This system will be considered in the remainder of this paper. We will
show that system () has similar but more complex dynamics than system (). We will
see that like system () the coupled system () may possess one, three, five, seven or nine

http://www.advancesindifferenceequations.com/content/2014/1/307
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equilibrium points in the hyperbolic case and two, four, six or eight equilibrium points
in the non-hyperbolic case. In each of these cases we will show that the Allee effect is
present and we will precisely describe the basins of attraction of all equilibrium points.
We will show that the boundaries of the basins of attraction of the equilibrium points
are the global stable manifolds of the saddle or the non-hyperbolic equilibrium points.
See [–] for related results. An interesting feature of our results is that the size of the
basin of attraction of the zero equilibrium decreases as a function of the number of the
equilibrium points. The biological interpretation of our results is given in [, ] and a
similar system is treated in []. However, no details of the proofs are provided in [, ]
and non-hyperbolic cases were not treated there. Here we give the detailed proofs of all
dynamic scenarios and provide the explicit algebraic conditions for the existence of one
through nine equilibrium points, which was also missing in [, ]. A specific feature of
our results is that no equilibrium point in the interior of the first quadrant is computable
and so our analysis is based on the geometry of the equilibrium curves.

2 Preliminaries
Our proofs use some recent general results for competitive systems of difference equations
of the form

{
xn+ = f (xn, yn),
yn+ = g(xn, yn),

()

where f and g are continuous functions and f (x, y) is non-decreasing in x and non-
increasing in y and g(x, y) is non-increasing in x andnon-decreasing in y in somedomainA.
Competitive systems of the form () were studied bymany authors in [, , –] and

others.
Here we give some basic notions as regards monotonic maps in a plane.
Wedefine a partial order�se onR (the so-called southeast ordering) so that the positive

cone is the fourth quadrant, i.e., this partial order is defined by

(
x

y

)
�se

(
x

y

)
⇔

{
x ≤ x,
y ≥ y.

()

Similarly, we define northeast ordering as

(
x

y

)
�ne

(
x

y

)
⇔

{
x ≤ x,
y ≤ y.

()

A map F is called competitive if it is non-decreasing with respect to �se, that is, if the
following holds:

(
x

y

)
�

(
x

y

)
⇒ F

(
x

y

)
� F

(
x

y

)
. ()

For each v = (v, v) ∈ R
+, define Qi(v) for i = , . . . ,  to be the usual four quadrants

based at v and numbered in a counterclock-wise direction, e.g.,Q(v) = {(x, y) ∈ R
+ : v ≤ x,

v ≤ y}.

http://www.advancesindifferenceequations.com/content/2014/1/307
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For S ⊂ R
+ let S◦ denote the interior of S.

The following definition is from [].

Definition  Let R be a nonempty subset of R. A competitive map T : R → R is said to
satisfy condition (O+) if for every x, y in R, T(x) �ne T(y) implies x �ne y, and T is said to
satisfy condition (O–) if for every x, y in R, T(x)�ne T(y) implies y�ne x.

The following theorem was proved by de Mottoni-Schiaffino [] for the Poincaré map
of a periodic competitive Lotka-Volterra system of differential equations. Smith general-
ized the proof to competitive and cooperative maps [, ].

Theorem  Let R be a nonempty subset of R. If T is a competitive map for which (O+)
holds then for all x ∈ R, {Tn(x)} is eventually component-wisemonotone. If the orbit of x has
compact closure, then it converges to a fixed point of T . If instead (O–) holds, then for all
x ∈ R, {Tn} is eventually component-wise monotone. If the orbit of x has compact closure
in R, then its omega limit set is either a period-two orbit or a fixed point.

It is well known that a stable period-two orbit and a stable fixed point may coexist; see
Hess [].
A non-hyperbolic equilibrium point E of a competitive or cooperative map T is called

non-hyperbolic point of stable type (resp. of unstable type) if the second characteristic
value of the Jacobian matrix JT (E) is in interval (–, ) (resp. outside of interval [–, ]).
The following result is from [], with the domain of themap specialized to be theCarte-

sian product of intervals of real numbers. It gives a sufficient condition for conditions (O+)
and (O–).

Theorem  Let R ⊂R
 be the Cartesian product of two intervals in R. Let T : R → R be a

C′ competitive map. If T is injective and det JT (x) >  for all x ∈ R then T satisfies (O+). If
T is injective and det JT (x) <  for all x ∈ R then T satisfies (O–).

Theorems  and  are quite applicable as we have shown in [], in the case of compet-
itive systems in the plane consisting of linear fractional equations.
The following result is from [], which generalizes the corresponding result for hyper-

bolic case from []. Related results have been obtained by Smith in [].

Theorem  LetR be a rectangular subset of R and let T be a competitive map onR. Let
x̄ ∈ R be a fixed point of T such that (Q(x̄) ∪Q(x̄)) ∩R has nonempty interior (i.e., x̄ is
not the NW or SE vertex ofR).
Suppose that the following statements are true.
(a) The map T is strongly competitive on int((Q(x̄)∪Q(x̄))∩R).
(b) T is C on a relative neighborhood of x̄.
(c) The Jacobian of T at x̄ has real eigenvalues λ, μ such that |λ| < μ, where λ is stable

and the eigenspace Eλ associated with λ is not a coordinate axis.
(d) Either λ ≥  and

T(x) �= x̄ and T(x) �= x for all x ∈ int
((
Q(x̄)∪Q(x̄)

) ∩R
)
,

http://www.advancesindifferenceequations.com/content/2014/1/307
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or λ <  and

T(x) �= x for all x ∈ int
((
Q(x̄)∪Q(x̄)

) ∩R
)
.

Then there exists a curve C inR such that:
(i) C is invariant and a subset ofW s(x̄).
(ii) The endpoints of C lie on ∂R.
(iii) x̄ ∈ C .
(iv) C the graph of a strictly increasing continuous function of the first variable.
(v) C is differentiable at x̄ if x̄ ∈ int(R) or one sided differentiable if x̄ ∈ ∂R, and in all

cases C is tangential to Eλ at x̄.
(vi) C separatesR into two connected components, namely

W– := {x ∈R : ∃y ∈ C with x� y}

and

W+ := {x ∈R : ∃y ∈ C with y� x}.

(vii) W– is invariant, and dist(Tn(x),Q(x̄)) →  as n→ ∞ for every x ∈W–.
(viii) W+ is invariant, and dist(Tn(x),Q(x̄)) →  as n→ ∞ for every x ∈W+.

The next results from [] give the existence and uniqueness of invariant curves ema-
nating from a non-hyperbolic point of unstable type, that is, a non-hyperbolic point where
the second eigenvalue is outside the interval [–, ]. See also [].

Theorem  Let R = (a,a) × (b,b), and let T :R → R be a strongly competitive map
with a unique fixed point x̄ ∈R, and such that T is continuously differentiable in a neigh-
borhood of x̄. Assume further that at the point x̄ the map T has associated characteristic
values μ and ν satisfying  < μ and –μ < ν < μ.
Then there exist curves C, C inR and there exist p,p ∈ ∂R with p �se x̄ �se p such

that:
(i) For � = , , C� is invariant, northeast strongly linearly ordered, such that x̄ ∈ C� and

C� ⊂Q(x̄)∪Q(x̄); the endpoints q�, r� of C�, where q� �ne r�, belong to the
boundary ofR. For �, j ∈ {, } with � �= j, C� is a subset of the closure of one of the
components ofR \ Cj. Both C and C are tangential at x̄ to the eigenspace
associated with ν .

(ii) For � = , , let B� be the component ofR \ C� whose closure contains p�. Then B� is
invariant. Also, for x ∈ B, Tn(x) accumulates onQ(p)∩ ∂R, and for x ∈ B,
Tn(x) accumulates onQ(p)∩ ∂R.

(iii) Let D :=Q(x̄)∩R \ (B ∪B) and D :=Q(x̄)∩R \ (B ∪B). Then D ∪D is
invariant.

Corollary  Let a map T with fixed point x̄ be as in Theorem . Let D, D be the sets as
in Theorem . If T satisfies (O+), then for � = , ,D� is invariant, and for every x ∈D�, the
iterates Tn(x) converge to x̄ or to a point of ∂R. If T satisfies (O–), then T(D) ⊂ D and
T(D) ⊂D. For every x ∈D ∪D, the iterates Tn(x) either converge to x̄, or converge to a
period-two point, or to a point of ∂R.

http://www.advancesindifferenceequations.com/content/2014/1/307
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3 Main results
The main results of this paper depend on the number of interior equilibrium points of
system (). So first we give the explicit algebraic conditions in terms of the parameters
for system () to have zero-five interior equilibrium points. Next, we present the local
stability analysis of the equilibrium points and then the results on the global dynamics. It
is interesting to note that the local stability analysis is themost difficult part of our analysis.

3.1 Equilibrium points
The equilibrium points of system () satisfy the following system of equations:

x̄ =
ax̄

 + x̄ + cȳ
,

ȳ =
bȳ

 + ȳ + dx̄
, n = , , . . . .

()

All solutions of system ()with at least one zero component are given asE(, ),Ex̄(x̄, )
where x̄ = , Eȳ(, ȳ) where ȳ = , Ex̄± (, x̄±) where x̄± = a±√

a–
 , and Eȳ± (, ȳ±) where

ȳ± = b±√
b–
 . E(, ) exists in all cases. Ex̄(x̄, ) and Eȳ(, ȳ) exist when a =  and b = ,

respectively. Ex̄± (, x̄±) and Eȳ± (, ȳ±) exist when a >  and b > , respectively.
The equilibrium points with strictly positive coordinates satisfy the following system of

equations:

– ax + cy + x +  = ,

– by + dx + y +  = .
()

From () one can see that all positive solutions of system () satisfy the quartic equation:

x – ax + x
(
a + bc + 

)
+ x

(
cd – a(bc + )

)
+ bc + c +  = . ()

Lemma  Let

� = –a
(
b – 

)
d
(
–

(
a – 

)
bc +

(
a – 

) – 
(
b – 

)
c

)
– acd(a – (bc + )

)
+ d(a(bc + ) – a

(
c
(
b(bc + ) – c

)
+ 

)
– (bc + )

((
b – 

)
c – bc – 

))
+

(
b – 

)(a – a(bc + ) + 
(
c(b + c) + 

))
– cd, ()

� =
(
b – 

)(
a – bc – 

)
– ad

(
a – bc – 

)
– cd ()

and

� = a – bc – .

Then the following holds:
(a) If � > , � > , and � > , then () has four simple real roots.
(b) If � >  and � ≤ ∨ (� > ∧ � ≤ ) then () has no real roots.
(c) If � <  then () has two simple real roots.

http://www.advancesindifferenceequations.com/content/2014/1/307
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(d) If � =  and � <  then () has one real double root.
(e) If � =  and � >  then () has two real simple roots and one real double root.
(f ) If � = , � =  and � >  then () has two real double roots.
(g) If � = , � =  and � <  then () has no real roots.
(h) If � = , � =  and � =  then () has one real root of multiplicity four.

Proof The discrimination matrix [] of f̃ and f̃ ′ is given by

Discr(f̃ )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 –a a + bc +  cd – a(bc + ) c + bc +    
  –a (a + bc + ) cd – a(bc + )   
  –a a + bc +  cd – a(bc + ) c + bc +   
   –a (a + bc + ) cd – a(bc + )  
   –a a + bc +  cd – a(bc + ) c + bc +  
    –a (a + bc + ) cd – a(bc + ) 
    –a a + bc +  cd – a(bc + ) c + bc + 
     –a (a + bc + ) cd – a(bc + )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

f̃ (x) = x – ax + x
(
a + bc + 

)
+ x

(
cd – a(bc + )

)
+ bc + c + .

Let Dk denote the determinant of the submatrix of Discr(f̃ ), formed by the first k rows
and the first k columns, for k = , , , . So, by straightforward calculation one can see
that D = , D = �, D = c�, and D = c�. The rest of the proof follows in view of
[, Theorem ]. �

3.2 Local stability of equilibrium points
Geometrically the solutions of system () are intersections of two orthogonal parabolas
that satisfy the equations

y = –

c

(
x –

a


)

+
a – 
c

,

x = –

d

(
y –

b


)

+
b – 
d

,

()

with respective vertices ( a ,
a–
c ) and ( b–d , b ). See Figure .

Figure 2 Equilibrium curves.
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Consequently when a >  and b > , in addition to the five equilibrium points on the
axes, system () may have one, two, three or four positive equilibrium points. We will
refer to these equilibrium points as ESW(x̄, ȳ) (southwest), ESE(x̄, ȳ) (southeast), ENW(x̄, ȳ)
(northwest), and ENE(x̄, ȳ) (northeast) where

ENW �se ENE �se ESE, ESW �ne ENW.

When a positive equilibrium point is non-hyperbolic we will refer to it as EN (x̄, ȳ).
The map associated with system () has the form

T

(
x
y

)
=

( ax
+x+cy
by

+y+dx

)
. ()

The Jacobian matrix of T is

JT (x, y) =

( ax(cy+)
(x+cy+) – acx

(x+cy+)

– bdy
(y+dx+)

by(dx+)
(y+dx+)

)
. ()

The Jacobian matrix of T evaluated at an equilibrium E(x̄, ȳ) with positive coordinates
has the form

JT (x̄, ȳ) =

( (cȳ+)
ax̄ – c

a

– d
b

(dx̄+)
bȳ

)
. ()

The determinant and trace of () are

det JT (x̄, ȳ) =
(cȳ + )

ax̄
(d + )

bȳ
–
d
b
c
a
=
cȳ + dx̄ + cdx̄ȳ + 

ax̄bȳ
,

tr JT (x̄, ȳ) =
(cȳ + )

ax̄
+
(dx̄ + )

bȳ
.

()

It is worth noting that det JT (x̄, ȳ) and tr JT (x̄, ȳ) of () are both positive.
Using the equilibrium condition (), we may rewrite the determinant and trace as

det JT (x̄, ȳ) =
(a – x̄)

a
(b – ȳ)

b
–
d
b
c
a
,

tr JT (x̄, ȳ) =
(a – x̄)

a
+
(b – ȳ)

b
.

()

We will use both () and () in our proofs to follow.
The characteristic equation of the matrix () is

λ – tr JT (x̄, ȳ)λ + det JT (x̄, ȳ) = , ()

of which the solutions are the eigenvalues

λ =
tr JT (x̄, ȳ) –

√
(tr JT (x̄, ȳ)) – det JT (x̄, ȳ)


,

μ =
tr JT (x̄, ȳ) +

√
(tr JT (x̄, ȳ)) – det JT (x̄, ȳ)


.

()
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The eigenvalues of () are therefore

λ =
((cȳ+)ax̄ + (dx̄+)

bȳ ) –
√
( (cȳ+)ax̄ – (dx̄+)

bȳ ) +  dc
ba


,

μ =
((cȳ+)ax̄ + (dx̄+)

bȳ ) +
√
( (cȳ+)ax̄ – (dx̄+)

bȳ ) +  dc
ba


,

()

with corresponding eigenvectors

Eλ =
(
–
b
d

(
(cȳ + )
ax̄

–
(dx̄ + )

bȳ
–

√
( (cȳ+)ax̄ – (dx̄+)

bȳ ) +  dc
ba



)
, 

)
,

Eμ =
(
–
b
d

(
(cȳ + )
ax̄

–
(dx̄ + )

bȳ
+

√
( (cȳ+)ax̄ – (dx̄+)

bȳ ) +  dc
ba



)
, 

)
.

()

Using the equilibrium condition (), we may rewrite the eigenvalues and eigenvectors
as

λ =
((a–x̄)a + (b–ȳ)

b ) –
√
( (a–x̄)a – (b–ȳ)

b ) +  dc
ba


,

μ =
((a–x̄)a + (b–ȳ)

b ) +
√
( (a–x̄)a – (b–ȳ)

b ) +  dc
ba


,

()

Eλ =
(
–
b
d

(
(a – x̄)

a
–
(b – ȳ)

b
–

√
( (a–x̄)a – (b–ȳ)

b ) +  dc
ba



)
, 

)
,

Eμ =
(
–
b
d

(
(a – x̄)

a
–
(b – ȳ)

b
+

√
( (a–x̄)a – (b–ȳ)

b ) +  dc
ba



)
, 

)
.

()

We will now consider two lemmas that will be used to prove the local stability char-
acter of the positive equilibrium points of system (). The nonzero coordinates, (x̄, ȳ), of
all equilibrium points will subsequently be designated with the subscripts: r (repeller),
a (attractor), s, s, s (saddle point), ns, ns (non-hyperbolic of the stable type), and nu
(non-hyperbolic of the unstable type).

Lemma  The following conditions hold for the coordinates of the positive equilibrium
points, E(x̄, ȳ), of system ().

(i) For ESW(x̄r , ȳr)

x̄ <
a

<
b – 
d

and ȳ <
b

<
a – 
c

. ()

(ii) For ENW(x̄s , ȳs ),

x̄ <
a

<
b – 
d

and
b

< ȳ <

a – 
c

. ()
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(iii) For ENE(x̄a, ȳa),

a

< x̄ <

b – 
d

and
b

< ȳ <

a – 
c

. ()

(iv) For ESE(x̄s , ȳs ),

a

< x̄ <

b – 
d

and ȳ <
b

<
a – 
c

. ()

(v) For EN (x̄ns, ȳns) and EN (x̄ns, ȳns),

a


≤ x̄ <
b – 
d

and
b

< ȳ≤ a – 

c
. ()

(vi) For EN (x̄nu, ȳnu),

x̄ <
b – 
d

<
a


and ȳ <
a – 
c

<
b

. ()

Proof This is clear from the geometry. See Figure . �

Lemma  The following conditions hold for the coordinates of the positive equilibrium
points, E(x̄, ȳ), of system ().

(i) For ESW(x̄r , ȳr) and ENW(x̄s , ȳs ),

cd < (a – x̄)(b – ȳ). ()

(ii) For ENE(x̄a, ȳa) and ESE(x̄s , ȳs ),

cd > (a – x̄)(b – ȳ). ()

(iii) For EN (x̄ns, ȳns), EN (x̄ns, ȳns), and EN (x̄nu, ȳnu),

cd = (a – x̄)(b – ȳ). ()

Proof (i) LetmP be the slope of the tangent line to parabola P at E(x̄, ȳ) = ESW(x̄r , ȳr) and
let mP be the slope of the tangent line to parabola P at E(x̄, ȳ) = ESW(x̄r , ȳr). It is clear
from the geometry that

mP >mP > .

See Figure . It follows that

dy
dx

∣∣∣∣
P
(x̄, ȳ) >

dx
dy

∣∣∣∣
P
(x̄, ȳ) > 

and in turn

a – x̄
c

>
d

b – ȳ
> .
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a = , b = , c = , d =  a = ., b = ., c = ., d = .

a = ., b = ., c = ., d = . a = ,
, , b =


 , c =


 , d = 

,

a = 
 , b =

,
, , c =


, , d = 

 a = ., b = ., c = ., d = .

Figure 3 Local stability.

Therefore

cd < (a – x̄)(b – ȳ).

The proofs for cases (ii) and (iii) are similar and will be omitted. �

Theorem  The following conditions hold for the equilibrium points E(x̄, ȳ) of system ().
(i) E(, ) is locally asymptotically stable.
(ii) Ex̄(x̄ns, ) and Eȳ(, ȳns) are non-hyperbolic of the stable type.
(iii) Ex̄+(x̄+a, ) is locally asymptotically stable and Ex̄–(x̄–s, ) is a saddle point.
(iv) Eȳ+(, ȳ+a) is locally asymptotically stable and Eȳ–(, ȳ–s) is a saddle point.
(v) ESW(x̄r , ȳr) is a repeller.
(vi) ENW(x̄s , ȳs ) and ESE(x̄s , ȳs ) are saddle points.
(vii) ENE(x̄a, ȳa) is locally asymptotically stable.
(viii) EN (x̄ns, ȳns) and EN (x̄ns, ȳns) are non-hyperbolic of the stable type.
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(ix) EN (x̄nu, ȳnu) is non-hyperbolic of the unstable type.

Proof (i) The eigenvalues of (), evaluated at Ex̄(, ), are λ =  and μ = .
(ii) The eigenvalues of (), evaluated at Ex̄(x̄ns, ), are λ =  and μ =  when a = . The

eigenvalues of (), evaluated at Eȳ(, ȳns), are λ =  and μ =  when b = .
(iii) The eigenvalues of (), evaluated at Ex̄+(x̄+a, ) and Ex̄–(x̄–s, ), respectively, are λ = 

and μ± = a( a±
√
a–
 )

( a±
√
a–
 )+( a±

√
a–
 )+

when a > .

(a) Note that when a > ,

μ+ =
a( a+

√
a–
 )

( a+
√
a–
 ) + ( a+

√
a–
 ) + 

=
a + 

√
a – 

a + 
√
a –  + a

√
a –  + (a – )  + a(a – )

<
a + 

√
a – 

a + 
√
a – 

= .

(b) Note that when a > ,

μ– =
a( a–

√
a–
 )

( a–
√
a–
 ) + ( a–

√
a–
 ) + 

=
a – 

√
a – 

a – 
√
a –  – a

√
a –  –

√
(a – ) + a – a

.

It can be shown that

–a
√
a –  –

√(
a – 

) + a – a = a
(
a – 

)(
 –

√
 +


a(a – )

)
< .

Therefore,

μ– >
a – 

√
a – 

a – 
√
a – 

= .

In both cases, the conclusion follows.
(iv) The eigenvalues of (), evaluated at Eȳ+(, ȳ+a) and Eȳ–(, ȳ–s), respectively, are λ = 

and μ± = b( b±
√
b–
 )

( b±
√
b–
 )+( b±

√
b–
 )+

when b > .

The proof of (iv) is similar to the proof of (iii) and will be omitted.
(v) We need to show that | tr JT (x̄, ȳ)| < | + det JT (x̄, ȳ)| and |det JT (x̄, ȳ)| >  when

E(x̄, ȳ) = ESW(x̄r , ȳr). Since tr JT (x̄, ȳ) and det JT (x̄, ȳ) are both positive, our conditions be-
come tr JT (x̄, ȳ) <  + det JT (x̄, ȳ) and det JT (x̄, ȳ) > . We will first show that det JT (x̄, ȳ) > .
By () we have

det
(
JT (x̄, ȳ)

)
– 

=
(a – x̄)

a
(b – ȳ)

b
–
d
b
c
a
– 
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>
(a – x̄)

a
(b – ȳ)

b
–
(a – x̄)(b – ȳ)

ab
– 

= 
(
 –

ȳ
b
–
x̄
a

)
.

By () we have

 –
ȳ
b
–
x̄
a
> .

Therefore det(JT (x̄, ȳ)) > . We will next show that tr(JT (x̄, ȳ)) <  + det(JT (x̄, ȳ)). By () we
have

 + det
(
JT (x̄, ȳ)

)
– 

=  +
(a – x̄)

a
(b – ȳ)

b
–
d
b
c
a
– 

>  +
(a – x̄)

a
(b – ȳ)

b
–
(a – x̄)(b – ȳ)

ab
– 

= tr
(
JT (x̄, ȳ)

)
– .

Therefore tr(JT (x̄, ȳ)) <  + det(JT (x̄, ȳ)).
(vi) We need to show that | tr J(x̄, ȳ)| > | + det JT (x̄, ȳ)| when E(x̄, ȳ) = ENW(x̄s , ȳs ). Since

tr JT (x̄, ȳ) and det JT (x̄, ȳ) are both positive, our condition becomes tr JT (x̄, ȳ) > +det JT (x̄, ȳ).
By () we have

 + det
(
JT (x̄, ȳ)

)
=  +

(a – x̄)
a

(b – ȳ)
b

–
d
b
c
a

<  +
(a – x̄)

a
(b – ȳ)

b
–
(a – x̄)(b – ȳ)

ab

=
(a – x̄)

a
+
(b – ȳ)

b

= tr
(
JT (x̄, ȳ)

)
.

Therefore tr JT (x̄, ȳ) >  + det JT (x̄, ȳ). The proof that ESE(x̄s , ȳs ) is a saddle point is similar
and will be omitted.
(vii) We need to show that | tr JT (x̄, ȳ)| <  + det JT (x̄, ȳ) and det JT (x̄, ȳ) <  when E(x̄, ȳ) =

ENE(x̄a, ȳa). Since tr JT (x̄, ȳ) and det JT (x̄, ȳ) are both positive, our conditions become
tr JT (x̄, ȳ) <  + det JT (x̄, ȳ) and det JT (x̄, ȳ) < . We will first show that det JT (x̄, ȳ) < . By
() we have

det
(
JT (x̄, ȳ)

)
–  =

(cȳ + )
ax̄

(dx̄ + )
bȳ

–
d
b
c
a
– .

By () we have

(cȳ + )
ax̄

(dx̄ + )
bȳ

–
d
b
c
a
– 

<
( a )
ax̄

( b )
bȳ

–
d
b
c
a
–  =

ab
x̄ȳ

–
d
b
c
a
– .
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By () again we have

ab
x̄ȳ

–
d
b
c
a
–  <  –

d
b
c
a
–  = –

d
b
c
a
< .

Therefore det(JT (x̄, ȳ)) < . We will next show that  + det(JF (x̄, ȳ)) > tr(JF (x̄, ȳ)).
By () we have

 + det
(
JF (x̄, ȳ)

)
– tr

(
JF (x̄, ȳ)

)
=  +

(a – x̄)
a

(b – ȳ)
b

–
d
b
c
a
–
(a – x̄)

a
–
(b – ȳ)

b

>  +
(a – x̄)

a
(b – ȳ)

b
–
(a – x̄)(b – ȳ)

ab
–
(a – x̄)

a
–
(b – ȳ)

b
= .

Therefore  + det(JF (x̄, ȳ)) > tr(JF (x̄, ȳ)).
(viii) By () and (), we have

λ =  –
y
b

–
x
a
,

μ = .

By (), we have λ < . The conclusion follows.
(ix) The proof of (ix) is similar to the proof of (viii) and will be omitted. �

3.3 Global results
In this section we combine the results from Sections  and . to prove the global results
for system (). First, we prove that the map T which corresponds to system () is injective
and it satisfies (O+).

Theorem  The map T which corresponds to system () is injective.

Proof Indeed,

T

(
x
y

)
= T

(
x
y

)
⇔

⎛
⎝ ax

+x+cy
by

+y +dx

⎞
⎠ =

⎛
⎝ ax

+x+cy
by

+y+dx

⎞
⎠ ,

which is equivalent to

x – x = c
(
xy – xy

)
, ()

y – y = d
(
yx – yx

)
. ()

Now we will prove that x = x, which immediately implies y = y.
First, assume x > x. Then xy – xy >  and xy > xy which in view of () implies

y > y. In view of (), yx – yx > , that is, xy · y > xy · y, which implies xy > xy
and xy > xxy > xy and in view of () we obtain x < x, which is a contradiction.
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Second, assume x < x. Then xy < xy, which implies y > y and yx – yx <  and
xy · y < xy · y, which is equivalent to xy < xy and xy > xxy > xy. In view of
() we obtain x > x, which is a contradiction.
Thus x = x and T is injective. �

Theorem  The map T which corresponds to system () satisfies (O+). All solutions of
system () converge to an equilibrium point.

Proof Assume that

T

(
x
y

)
≤ne T

(
x
y

)
⇔

⎛
⎝ ax

+x+cy
by

+y+dx

⎞
⎠ ≤

⎛
⎝ ax

+x+cy
by

+y+dx

⎞
⎠ .

The last inequality is equivalent to

x – x ≤ c
(
xy – xy

)
,

y – y ≤ d
(
yx – yx

)
.

First we prove that x ≤ x. Otherwise x > x.
Then

xy > xy, ()

which implies y > y ⇒ yx – yx > , which is equivalent to xy · y – xy · y > 
and implies xy > xy, which in turn implies xy > xxy > xy, which contradicts ().
Consequently x ≤ x.
Next we prove that y ≤ y. Otherwise y > y.
Then xy > xy , which implies x > x, which is impossible in view of x ≤ x.
Thus

( x
y

) ≤ne
( x
y

)
.

Thus we conclude that all solutions of () are eventually monotonic for all values of
parameters. Furthermore it is clear that all solutions are bounded. Indeed every solution
of () satisfies

xn ≤ a, yn ≤ b, n = , , . . . . ()

Consequently, all solutions converge to an equilibrium point. �

Theorem  Assume that a <  and b < . Then the zero equilibrium of () is globally
asymptotically stable.

Proof It follows immediately from Theorem . �

Theorem 
(a) If a = , b < , then system () has two equilibrium points, E, Ex̄, where E is locally

asymptotically stable and Ex̄ is non-hyperbolic of the stable type. The basins of
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attraction of the two equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) : points aboveW s(Ex̄)

}
,

B(Ex̄) =
{
(x, y) : points belowW s(Ex̄)

}
,

whereW s(E) denotes the global stable manifold guaranteed by Theorem .
(b) Similarly, if a < , b = , the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) : points belowW s(Eȳ)

}
,

B(Eȳ) =
{
(x, y) : points aboveW s(Eȳ)

}
.

Proof Wewill present the proof of (a) since the proof of (b) uses analogous arguments. Lo-
cal stability of the equilibrium points follows fromTheorem . Furthermore, the existence
of the stable manifold W s(Ex̄) follows from Theorem . By immediate checking one can
see that if x > x̄ then Tn(x, ) → Ex as n → ∞ and if x < x̄ then Tn(x, ) → E as n →
∞. Let (x, y) be an arbitrary point below W s(Ex̄). Then (x, yW ) �se (x, y) �se (x, )
where yW denotes the y coordinate of the point onW s(Ex̄). Consequently Tn((x, yW )) �se

Tn((x, y)) �se Tn((x, )), which in view of Tn((x, yW )) → Ex̄ and Tn((x, )) → Ex̄ as
n→ ∞ implies that Tn((x, y)) → Ex̄ as n→ ∞.
Let (x, y) be an arbitrary point above W s(Ex̄). If x ≥ x̄, then (, y) �se (x, y) �se

(x, yW ) where yW denotes the y coordinate of the point on W s(Ex̄). Consequently,
Tn((, y)) �se Tn((x, y)) �se Tn((x, yW )), which in view of Tn((x, yW )) → Ex̄ and
Tn((, y)) → E as n → ∞ implies that Tn((x, y)) → (x, ), x < x̄ as n → ∞. Thus
Tn((x, y)) → E as n → ∞. If x < x̄, then (, y) �se (x, y) �se (x, ), which im-
plies Tn((, y)) �se Tn((x, y)) �se Tn((x, )), which in view of Tn((x, )) → E and
Tn((, y))→ E as n→ ∞ implies that Tn((x, y))→ E as n→ ∞.
Another proof of this result follows from Theorem , which guarantees the existence

and uniqueness ofW s(Ex̄) and the invariance of the regions below and aboveW s(Ex̄) and
Theorem , which guarantees that all solutions converge to an equilibrium point. �

Theorem 
(a) If a < , b > , then system () has three equilibrium points, E, Eȳ+ , Eȳ– , where the

first two are locally stable and the third is a saddle point. The basins of attraction of
the three equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) : points belowW s(Eȳ–)

}
,

B
(
Eȳ+(, ȳ+)

)
=

{
(x, y) : points aboveW s(Eȳ–)

}
,

whereW s(E) denotes the global stable manifold guaranteed by Theorem .
(b) Similarly, if a > , b < , the basins of attraction of the equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) : points aboveW s(Ex̄–)

}
,

B
(
Ex̄+(x̄+, )

)
=

{
(x, y) : points belowW s(Ex̄–)

}
.

(c) If a = b = , then system () has three equilibrium points, E, Ex̄, Eȳ, where E is
locally stable and the remaining two are non-hyperbolic of stable type. The basins of
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attraction of three equilibrium points are given as

B
(
E(, )

)
=

{
(x, y) : region bounded byW s(Ex̄) andW s(Eȳ)

}
,

B(Eȳ) =
{
(x, y) : points aboveW s(Eȳ)

}
,

B(Ex̄) =
{
(x, y) : points belowW s(Ex̄)

}
,

whereW s(E) denotes corresponding global stable manifold.

Proof We present the proof in case (a) only. The proof in case (b) is similar.
Local stability of the equilibrium points follows from Theorem .
In view of Theorem  all solutions converge to an equilibrium solution. Furthermore,

all conditions of Theorem  are satisfied, which guarantee the existence of the manifold
W s(Eȳ–), which is the graph of a continuous increasing function and such that both re-
gions, below and above it are invariant. In addition the basin of attraction of Eȳ– is exactly
W s(Eȳ–). Thus, both regions, below and above W s(Eȳ–) are invariant and contain exactly
one equilibriumpoint and all solutions there are convergent. Consequently the conclusion
of the theorem follows.
Let us consider case (c). The existence and the properties of the manifolds W s(Eȳ) and

W s(Ex̄), as well as the invariance of the regions aboveW s(Eȳ), betweenW s(Eȳ) andW s(Ex̄)
and belowW s(Ex̄) is guaranteed by Theorem . Since the regions aboveW s(Eȳ) and below
W s(Ex̄) contains only one equilibrium point in view of Theorem  all solutions that start
in those regions converge to Eȳ and Ex̄, respectively.
Now, let (x, y) be an arbitrary point between W s(Eȳ) and W s(Ex̄). First assume that

x < x̄, y < ȳ. Then (, y) �se (x, y) �se (x, ) which implies Tn(, y) �se Tn(x, y) �se

Tn(x, ). In view of Tn(, y) → E, Tn(,x) → E as n → ∞ we conclude that
Tn(x, y) → E as n → ∞. Next assume that x < x̄, y < ȳ is not satisfied. Then there ex-
ist points (xl, yl) ∈W s(Eȳ), (xu, yu) ∈W s(Ex̄) such that (xl, yl) �se (x, y) �se (xu, yu) which
implies Tn(xl, yl) �se Tn(x, y) �se Tn(xu, yu). Since Tn(xl, yl) → Eȳ, Tn(xu, yu) → Ex̄ as
n → ∞ we conclude that Tn(x, y) eventually enters the ordered interval I(Eȳ,Ex̄) =
{(x, y) :  ≤ x ≤ x̄,  ≤ y ≤ ȳ}. Since the map T is strongly competitive it will eventually
enter the interior of I(Eȳ,Ex̄) and then, as we just showed, will converge to E. �

See Figure  for visual illustration of Theorems -.

Theorem 
(a) If a > , b = , then system () has four equilibrium points, E, Ex̄+ , Ex̄– , Eȳ, where the

first two are locally asymptotically stable, the third is a saddle point and the fourth is
non-hyperbolic of the stable type. The basins of attraction of the four equilibrium
points are given as

B(E) =
{
(x, y) : region bounded byW s(Ex̄–) andW s(Eȳ)

}
,

B(Eȳ) =
{
(x, y) : points aboveW s(Eȳ)

}
,

B(Ex̄+) =
{
(x, y) : points belowW s(Ex̄–)

}
,

B(Ex̄–) =W s(Ex̄–),

whereW s(E) denotes the global stable manifold guaranteed by Theorem .
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a = ., b = ., c = ., d = . a = , b = ., c = ., d = .

a = ., b = , c = ., d = . a = , b = , c = ., d = .

a = ., b = ., c = ., d = . a = ., b = ., c = ., d = .

Figure 4 Global stability and basins of attraction of system (6) in cases of one, two, and three
equilibrium points.
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(b) Similarly, if a = , b > , then system () has four equilibrium points E, Eȳ+ , Eȳ– , Ex̄,
where the first two are locally asymptotically stable, the third is a saddle point and the
fourth one is non-hyperbolic of the stable type. The basins of attraction are given as

B(E) =
{
(x, y) : region bounded byW s(Eȳ–) andW s(Ex̄)

}
,

B(Ex̄) =
{
(x, y) : points belowW s(Ex̄)

}
,

B(Eȳ+) =
{
(x, y) : points aboveW s(Eȳ–)

}
,

B(Eȳ–) =W s(Eȳ–).

Proof We present the proof in case (a) only. The proof in case (b) is similar. Local stability
of the equilibrium points follows from Theorem . The proof for the basin of attraction
B(Eȳ) is identical to the proof of the corresponding part of Theorem . Let (x, y) be
an arbitrary point below W s(Ex̄–). Then (x, yW ) �se (x, y) �se (x, ) where yW denotes
the y coordinate of the point on W s(Ex̄–). Consequently Tn((x, yW )) �se Tn((x, y)) �se

Tn((x, )), which in view of Tn((x, yW )) → Ex̄– and Tn((x, )) → Ex̄+ as n → ∞ implies
that Tn((x, y)) → Ex̄+ as n→ ∞. We also used the fact that the stable manifoldW s(Ex̄–)
is unique and represents the basin of attraction of the point Ex̄– .
Finally, let (x, y) be an arbitrary point betweenW s(Eȳ) andW s(Ex̄–). First assume that

x < x̄–, y < ȳ. Then (, y) �se (x, y) �se (x, ) which impliesTn(, y) �se Tn(x, y) �se

Tn(x, ). In view of Tn(, y) → E, Tn(,x) → E as n → ∞ we conclude that
Tn(x, y) → E as n → ∞. Next assume that x < x̄–, y < ȳ is not satisfied. Then there ex-
ist points (xl, yl) ∈W s(Eȳ), (xu, yu) ∈W s(Ex̄–) such that (xl, yl) �se (x, y)�se (xu, yu) which
implies Tn(xl, yl) �se Tn(x, y) �se Tn(xu, yu). Since Tn(xl, yl) → Eȳ, Tn(xu, yu) → Ex̄– as
n → ∞ we conclude that Tn(x, y) eventually enters the ordered interval I(Ey,Ex̄–) =
{(x, y) :  ≤ x ≤ x̄–,  ≤ y ≤ ȳ}. Since the map T is strongly competitive it will eventually
enters the interior of I(Eȳ,Ex̄–) and then, as we just showed, will converge to E. �

Theorem  Assume that a > , b >  and that system () has five equilibrium points.
Three of these equilibrium points are locally asymptotically stable, E, Ex̄+ , Eȳ+ , and two
are saddle points, Ex̄– , Eȳ– .
The basins of attraction of the equilibrium points are given as

B(E) =
{
(x, y) : region bounded byW s(Ex̄–) andW s(Eȳ–)

}
,

B(Ex̄+) =
{
(x, y) : region bounded byW s(Ex̄–) and the x-axis

}
,

B(Eȳ+) =
{
(x, y) : region bounded byW s(Eȳ–) and the y-axis

}
.

The basins of attraction of the saddle equilibrium points E are the corresponding stable
manifoldsW s(E).

Proof Local stability of the equilibrium points follows from Theorem . Furthermore, the
existence of the stable manifoldsW s(Ex̄–) andW s(Eȳ–) with the mentioned properties fol-
lows in the same way as in Theorem . The three regions B(E), B(Ex̄+), B(Eȳ+) are invari-
ant by Theorem  and in view of Theorem  every solution converges to an equilibrium
point. Since the equilibrium points E, Ex̄+ , Eȳ+ are locally asymptotically stable and Ex̄– ,
Eȳ– are saddle points, the result follows. �
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Theorem Assume that a > , b >  and that system () has six equilibriumpoints.Three
of these equilibrium points are locally asymptotically stable, E, Ex̄+ , Eȳ+ , two are saddle
points, Ex̄– , Eȳ– , and one interior point, Enu, is non-hyperbolic of the unstable type. There
exist two invariant curves Cu and Cl emanating from Enu which are graphs of continuous
non-decreasing functions such that Cu is above Cl .
The basins of attraction of the equilibrium points are given as

B(E) =
{
(x, y) : region bounded byW s(Ex̄–) andW s(Eȳ–)

}
,

B(Ex̄+) =
{
(x, y) : region bounded byW s(Ex̄–)∪ Cl and the x-axis

}
,

B(Eȳ+) =
{
(x, y) : region bounded byW s(Eȳ–)∪ Cu and the y-axis

}
,

B(Enu) =
{
(x, y) : region bounded by Cl and Cu

}
.

The basins of attraction of the saddle equilibrium points B(Ex̄–) and B(Eȳ–) are the corre-
sponding stable manifoldsW s(Ex̄–) andW s(Eȳ–), respectively.

Proof Local stability of the equilibrium points follows from Theorem . Furthermore, the
existence of the stable manifoldsW s(Ex̄–) andW s(Eȳ–) with the mentioned properties fol-
lows from Theorem . The region B(E) is invariant by Theorem  and in view of The-
orem  every solution which starts in that region converges to E. The existence and
the properties of the curves Cl and Cu follow from Corollary . Thus the regions B(Ex̄+)
and B(Eȳ+) are both invariant and so by Theorem  every solution which starts in those
regions converges to Ex̄+ and Eȳ+ , respectively, since these equilibrium points are locally
asymptotically stable. Finally, the set B(Enu) is invariant by Theorem  and by Theorem 
every solution which starts in that region converges to Enu. �

Conjecture  Based on our numerical experiments we believe that Cl = Cu in Theorem 
holds.

Theorem  Assume that a > , b >  and that system () has seven equilibrium points.
Three of these equilibrium points are locally asymptotically stable, E, Ex̄+ , Eȳ+ , three are
saddle points, Ex̄– , Eȳ– , ENW or ESE, and one is a repeller, ESW.
The basins of attraction of the equilibrium points are given as

B(E) =
{
(x, y) : region bounded byW s(Ex̄–) andW s(Eȳ–)

}
,

B(Ex̄+) =
{
(x, y) : region belowW s(Ex̄–)∪W s(ENW)

}
,

B(Eȳ+) =
{
(x, y) : region aboveW s(Eȳ–)∪W s(ENW)

}
.

The basins of attraction of the saddle equilibrium points E are the corresponding stable
manifoldsW s(E).

Proof Local stability of all equilibrium points E, Ex̄± , Eȳ± follows from Theorem .
Three regions B(E), B(Ex̄+), B(Eȳ+) are invariant by Theorem  and in view of Theo-

rem  every solution converges to an equilibrium. Since the equilibrium points E, Ex̄+ ,
Eȳ+ are locally asymptotically stable and Ex̄– , Eȳ– , ENW or ESE are saddle points, the result
follows. �

See Figure  for visual illustration of Theorems -.
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a = ., b = , c = ., d = . a = , b = ., c = ., d = .

a = ., b = ., c = ., d = . a = , b = , c = , d = 

a = ., b = ., c = ., d = . a = ., b = ., c = ., d = .

Figure 5 Global stability and basins of attraction of system (6) in cases of four, five, six and seven
equilibrium points.
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Theorem  Assume that a > , b >  and that system () has eight equilibrium points.
Three of these equilibrium points are locally asymptotically stable, E, Ex̄+ , Eȳ+ , three are
saddle points, Ex̄– , Eȳ– , ENW or ESE, one is a repeller, ESW, and one is non-hyperbolic of the
stable type Ens.
The basins of attraction of the equilibrium points are given as

B(E) =
{
(x, y) : region bounded byW s(Ex̄–) andW s(Eȳ–)

}
,

B(Ex̄+) =
{
(x, y) : region belowW s(Ex̄–)∪W s(ESE)

}
,

B(Eȳ+) =
{
(x, y) : region aboveW s(Eȳ–)∪W s(Ens)

}
,

B(Ens) =
{
(x, y) : region bounded byW s(ESE) andW s(Ens)

}
.

The basins of attraction of the saddle equilibrium points E are the corresponding stable
manifoldsW s(E).
The same result holds if ESW is replaced with ENE.

Proof Local stability of the equilibrium points follows fromTheorem . The existence and
the properties of four manifolds W s(Ex̄–), W s(Eȳ–), W s(ESE), W s(Ens) follow from Theo-
rem .
The four regions B(E), B(Ex̄+), B(Eȳ+), B(Ens) are invariant by Theorem  and in view

of Theorem  every solution converges to an equilibrium point. Since the equilibrium
points E, Ex̄+ , Eȳ+ are locally asymptotically stable, Ens is non-hyperbolic of stable type
and Ex̄– , Eȳ– , ESE are saddle points, the result follows. �

Theorem  Assume that a > , b >  and that system () has nine equilibrium points.
Four of these equilibrium points are locally asymptotically stable, E, Ex̄+ , Eȳ+ , ENE, four
are saddle points, Ex̄– , Eȳ– , ENW, ESE, and one is a repeller, ESW.
The basins of attraction of the equilibrium points are given as

B(E) =
{
(x, y) : region bounded byW s(Ex̄–) andW s(Eȳ–)

}
,

B(Ex̄+) =
{
(x, y) : region belowW s(Ex̄–)∪W s(ESE)

}
,

B(Eȳ+) =
{
(x, y) : region aboveW s(Eȳ–)∪W s(ENW)

}
,

B(ENE) =
{
(x, y) : region bounded byW s(ESE) andW s(ENW)

}
.

The basins of attraction of the saddle equilibrium points E are the corresponding stable
manifoldsW s(E).

Proof Local stability of the equilibrium points follows from Theorem . The existence
and the properties of four manifolds W s(Ex̄–), W s(Eȳ–), W s(ESE), W s(ENW) follow from
Theorem .
The four regions B(E), B(Ex̄+), B(Eȳ+), B(ENE) are invariant by Theorem  and in view

of Theorem  every solution converges to an equilibrium point. Since the equilibrium
points E, Ex̄+ , Eȳ+ , ENE are locally asymptotically stable and Ex̄– , Eȳ– , ENW, and ESE are
saddle points, the result follows. �

See Figure  for visual illustration of Theorems , .
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Figure 6 Global stability and basins of attraction of system (6) in cases of eight and nine equilibrium
points.
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30. Kulenović, MRS, Merino, O: Global bifurcation for competitive systems in the plane. Discrete Contin. Dyn. Syst., Ser. B

12, 133-149 (2009)
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