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Abstract
Let (X ,�) be a partially ordered set and d be a complete metric on X . The notion of
f -contractive for a set-valued mapping due to Latif and Beg is extended through an
implicit relation. Coincidence and fixed point results are obtained for mappings
satisfying generalized contractions in a partially ordered metric space X . Our results
improve and extend several known results in the existing literature.
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1 Introduction and preliminaries
Let (X,d) be a metric space, P(X) be the class of all non-empty subsets of X, Cl(X) be the
class of all non-empty closed subsets of X and CB(X) be the class of all non-empty closed
and bounded subsets of X. For A,B ∈ CB(X), let

D(A,B) :=max
{
sup
b∈B

d(b,A), sup
a∈A

d(a,B)
}
,

where

d(a,B) := inf
b∈B

d(a,b).

D is called the Hausdorff metric induced by d.
Let f : X → X be any single-valued mapping. Amapping F : X → CB(X) is f -contractive

if there exists a real number κ with  < κ <  such that

D(Fx,Fy)≤ κd(fx, fy) for all x, y ∈ X.

By introducing the notion of f -contractiveness for set-valued mappings, Kaneko [] ob-
tained a result which gives the existence of a coincidence point in a metric space. An im-
proved version of Kaneko’s result was obtained by Latif and Beg []. They proved the fol-
lowing.
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Theorem . [, Theorem .] Let f : X → X be a continuous map with f (X) complete.
Suppose that F : X → CB(X) is a f -contractive map such that F(X) ⊆ f (X). Then there
exists x ∈ X such that fx ∈ Fx.

In [], Kaneko and Sessa proved the following coincidence point result.

Theorem . [] Let (X,d) be a complete metric space f : X → X and F : X → CB(X) be
compatible continuous mappings such that F(X)⊆ f (X) and

D(Fx,Fy)≤ κ max
{
d(fx, fy),d(fx,Fx),d(fy,Fy), /

[
d(fx,Fy) + d(fy,Fx)

]}

for all x, y ∈ X, where  ≤ κ < .
Then there exists x ∈ X such that fx ∈ Fx.
Amapping f : X → X is called K-mapping if there exists a real number κ with  ≤ κ < 


such that

d(fx, fy) ≤ κ
[
d(x, fx) + d(y, fy)

]
for all x, y ∈ X.

Definition . Let F : X → P(X) be a mapping. A point x ∈ X is said to be a fixed point of
F if x ∈ Fx.

Definition . Let F : X → P(X) and f : X → X be mappings. A point x ∈ X is said to be
a coincidence point of F and f if fx ∈ Fx.

Definition . A partial order is a binary relation � over a set X which satisfies the fol-
lowing conditions:
. x � x (reflexivity);
. If x� y and y � x, then x = y (antisymmetry);
. If x� y and y � z, then x� z (transitivity)

for all x, y and z in X.
A set with a partial order � is called a partially ordered set.
Let (X,�) be a partially ordered set and x, y ∈ X. Elements x and y are said to be compa-

rable elements of X if either x� y or y � x.

Recently, there have been so many exciting developments in the field of existence of
a fixed point in partially ordered sets (see [–] and the references cited therein). This
trendwas started by Ran and Reurings in [] where they extended the Banach contraction
principle in partially ordered sets with some application to a matrix equation. Ran and
Reurings [] proved the following seminal result.

Theorem . [] Let (X,�) be a partially ordered set such that every pair x, y ∈ X has an
upper and lower bound. Let d be a complete metric on X and f : X → X be a continuous
monotone (either order-preserving or order-reversing)mapping. Suppose that the following
conditions hold:
. There exists κ ∈ (, ) with

d
(
f (x), f (y)

) ≤ κd(x, y) for all x � y.
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. There exists x ∈ X with x � fx or fx � x.
Then f is a Picard operator (PO), that is, f has a unique fixed point x∗ ∈ X and for each

x ∈ X,

lim
n→∞ f nx = x∗.

Theorem . was further extended and refined in [–, , , ]. These results are
hybrid of the two fundamental classical theorems: Banach’s fixed point theorem (see [])
andTarski’s [] fixed point theorem.Our aim in this paper is to introduce a generalization
of f -contractiveness through an implicit relation. This implicit relation is then used to
obtain the existence of coincidence and common fixed points for a pair of single-valued
mapping and set-valued mapping on a partially ordered metric space. In Section , we
prove a coincidence point theorem where we use an implicit relation only for comparable
elements of a partially ordered set X. Our result generalizes/extends [–, , ] work to
partial ordered sets. Section  deals with the existence of a common fixed point by using
the notion of k–� set-valued mapping, which improves the results of Latif and Beg [] to
partially ordered sets.
We will make use of the following lemma in the proof of our result in the next section.

Lemma . [] Let A,B ∈ CB(X) and a ∈ A. Then for ε > , there exists an element b ∈ B
such that d(a,b) <D(A,B) + ε.

Throughout the next two sections, we take (X,�) as a partially ordered set with a com-
plete metric d.

2 Implicit relation and coincidence points
Implicit relations in metric spaces have been considered by several authors in connection
with solving nonlinear functional equations (see, for instance, [–, ] and the refer-
ences cited therein). First, we give some implicit relations for subsequent use.
Let R+ be the set of nonnegative real numbers and T be the set of continuous real-valued

functions T : R
+ → R satisfying the following conditions:

T: T(t, t, . . . , t) is non-increasing in t, t, . . . , t.
T: there exists a real number κ with  < κ <  and ε >  such that the inequalities

u≤ w + ε

and

T(w, v, v,u,u + v, )≤ 

imply

w≤ κv.

T: T(w, , , v, v, )≤  implies w≤ κv.

Next, we give some examples for T satisfying T-T.
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Example . T(t, . . . , t) = t – α(max{t, t, t, /(t + t)}), where  < α < .

T: is obvious.
T: Let u > , then choose ε >  such that αu + ε < u (this is possible since  < α < ). As

T(w, v, v,u,u+v, ) ≤ , thereforew–α(max{u, v})≤ . Now let u≤ w+ε. If u≥ v, then
u ≤ αu + ε < u. Hence a contradiction. Thus u < v and w ≤ αv. If u = , then w ≤ αv.
Thus T is satisfied.

T: Since T(w, , , v, v, )≤ , therefore w – αv≤ . It further implies that w≤ αv.

Example . T(t, . . . , t) = t – α(max{t, t+t , t+t }), where  < α < .

T: is obvious.
T: Let u > , then choose ε >  so that αu + ε < u. Since T(w, v, v,u,u + v, ) ≤ , there-

fore w – α(max{u, v}) ≤ . Now let u ≤ w + ε. If u ≥ v, then u ≤ αu + ε < u. Hence a
contradiction. Thus u < v and w ≤ αv. If u = , then w≤ αv. Thus T is satisfied.

T: Since T(w, , , v, v, )≤ , therefore w – α
 v≤ . It further implies that w≤ α

 v≤ κv.

Example . T(t, . . . , t) = t – αmax{t, t, t} – ( – α)(at + bt), where  < α <  ,  ≤
a,b < /.

T: is obvious.
T: Let u > , then choose ε >  so that (α+a(–α))u+ ε < u (this is possible since  < α+

a(–α) < ). SinceT(w, v, v,u,u+v, ) ≤ , thereforew–αmax{u, v}–(–α)a(u+v) ≤
. Now let u≤ w + ε. If u≥ v, then u≤ [α + a( – α)]u + ε < u, hence a contradiction.
Thus u < v and w≤ (α + a( – α))v. Thus T is satisfied with κ = α + a( – α).

T: Since T(w, , , v, v, )≤ , therefore w– αv– ( – α)av≤ . It further implies that w ≤
[α + a( – α)]v≤ κv.

Theorem . Let f : X → X and F : X → CB(X) satisfying

T
(
D(Fx,Fy),d(fx, fy),d(fx,Fx),d(fy,Fy),d(fx,Fy),d(fy,Fx)

) ≤  (A)

for all comparable elements x, y of X and for some T ∈ T . If the following conditions are
satisfied:
. F(X) ⊆ f (X) and f (X) is closed;
. If fq ∈ Fx, then x � q;
. If yn ∈ Fxn is such that yn → y = fp, then xn � p for all n,

then there exists p with fp ∈ Fp.

Proof Let x ∈ X, then by using assumptions  and , we can choose x ∈ X with x � x
such that y = fx ∈ Fx. Since y ∈ Fx, then for any ε > , from Lemma ., there exists
y ∈ Fx such that

d(y, y) ≤ D(Fx,Fx) + ε. (.)

Using assumptions  and , since y ∈ Fx ⊆ f (X), there exists x ∈ X such that y = fx ∈
Fx and so x � x.
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Now using (A), we have

T
(
D(Fx,Fx),d(fx, fx),d(fx,Fx),d(fx,Fx),d(fx,Fx),d(fx,Fx)

) ≤ .

Using the facts that d(fx,Fx) ≤ d(fx, y), d(fx,Fx) ≤ d(y, y),

d(fx,Fx) ≤ d(fx, y) ≤ d(fx, y) + d(y, y),d
(
fx,F(x)

) ≤ d(y, y),

and by T, we have

T
(
D(Fx,Fx),d(fx, y),d(fx, y),d(y, y),d(fx, y) + d(y, y), 

) ≤ ,

that is,

T(w, v, v,u,u + v, )≤ ,

where w =D(Fx,Fx), v = d(fx, y), u = d(y, y). By using T, we have (w≤ κv),

D(Fx,Fx) ≤ κd(fx, y). (.)

Using (.) in (.), we have

d(y, y) ≤ κd(fx, y) + ε.

Since y ∈ Fx, then for κ > , from Lemma ., there exists y ∈ Fx such that

d(y, y) ≤ D(Fx,Fx) + κ . (.)

Using assumptions  and , since y ∈ Fx ⊆ f (X), there exists x ∈ X such that y = fx ∈
Fx and so x � x.
Now, since x � x, by using (A), we have

T
(
D(Fx,Fx),d(fx, fx),d(fx,Fx),d(fx,Fx),d(fx,Fx),d(fx,Fx)

) ≤ ,

by T we have

T
(
D(Fx,Fx),d(y, y),d(y, y),d(y, y),d(y, y) + d(y, y), 

) ≤ ,

that is,

T(w, v, v,u,u + v, )≤ ,

where w =D(Fx,Fx), v = d(y, y), u = d(y, y). Therefore, by using T, we have (w≤ κv)

D(Fx,Fx) ≤ κd(y, y). (.)

And so from (.) and (.), we have

d(y, y) ≤ D(Fx,Fx) + κ ≤ κd(y, y) + κ . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/229
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Again, since y ∈ Fx, then for κ > , from Lemma ., there exists y ∈ Fx such that

d(y, y) ≤ D(Fx,Fx) + κ. (.)

Using assumptions  and , since y ∈ Fx ⊆ f (X), there exists x ∈ X such that y = fx ∈
Fx and so x � x.
Now, since x � x, by using (A) we have

T
(
D(Fx,Fx),d(fx, fx),d(fx,Fx),d(fx,Fx),d(fx,Fx),d(fx,Fx)

) ≤ ,

by T we have

T
(
D(Fx,Fx),d(y, y),d(y, y),d(y, y),d(y, y) + d(y, y), 

) ≤ ,

that is,

T(w, v, v,u,u + v, )≤ ,

where w =D(Fx,Fx), v = d(y, y), u = d(y, y). Therefore, by using T, we have (w≤ κv)

D(Fx,Fx) ≤ κd(y, y). (.)

Now, using (.), (.) and (.), we have

d(y, y) ≤ κd(y, y) + κ ≤ κd(y, y) + κ. (.)

Continuing in this way, we obtain a sequence {xn} with xn � xn+ such that yn = fxn+ ∈ Fxn
for n≥  and

d(yn, yn+) < κnd(y, y) + nκn, (.)
∞∑
n=

d(yn, yn+) < d(y, y)
∞∑
n=

κn +
∞∑
n=

nκn < ∞. (.)

Hence, {yn} is a Cauchy sequence. So, there exists a point y in the complete metric space
X such that

lim
n→∞ yn = lim

n→∞ f (xn+) = y ∈ lim
n→∞F(xn).

Now, since f (X) is closed, there exists p ∈ X such that y = fp ∈ f (X) and by assumption ,
xn � p for all n.
Now, using (A), we have

T
(
D(Fxn,Fp),d(fxn, fp),d(fxn,Fxn),d(fp,Fp),d(fxn,Fp),d(fp,Fxn)

) ≤ .

Now, taking limit as n → ∞ and using T, also the facts that d(fxn, fp) = d(yn–, y) → ,
d(fxn,Fxn) ≤ d(yn–, yn) → , d(fp,Fxn) ≤ d(y, yn) → , we have

T
(
lim
n→∞D(Fxn,Fp), , ,d(y,Fp),d(y,Fp), 

)
≤ ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/229
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that is,

T(w, , , v, v, ).

By using T, we get

lim
n→∞D(Fxn,Fp) ≤ κ

(
d(y,Fp)

)
.

Next, since yn ∈ Fxn,

d(yn,Fv)≤ D(Fxn,Fp),

taking limit as n→ ∞, we obtain

d(y,Fp) ≤ lim
n→∞D(Fxn,Fp)≤ κd(y,Fp).

From above, we have κ > , a contradiction. So, d(y,Fp) = . Therefore, d(y,Fp) =  and
fp = y ∈ Fp = Fp. �

Remark . In assumptions  and  of Theorem ., we need only comparability of the
elements. Theorem . with Example . partially improve [, Theorem .].

Corollary . Let f : X → X and F : X → CB(X) satisfy

D(Fx,Fy)≤ κd(fx, fy)

for some κ with  < κ <  and for all comparable elements x, y of X.
Also, assume that the following conditions are satisfied:
. F(X) ⊆ f (X) and f (X) is closed.
. If fq ∈ Fx, then x � q.
. If yn ∈ Fxn is such that yn → y = fp, then xn � p for all n.

Then there exists p such that fp ∈ Fp.

Proof Let T(t, . . . , t) := t – κt, then it is obvious that T ∈ T . Therefore, the proof is
complete from Theorem .. �

Corollary . Let f : X → X and F : X → CB(X) satisfy

D(Fx,Fy)≤ κ max
{
d(fx, fy),d(fx,Fx),d(fy,Fy), /

[
d(fx,Fy) + d(fy,Fx)

]}

for some κ with  < κ <  and for all comparable elements x, y of X. Also, assume that the
following conditions are satisfied:
. F(X) ⊆ f (X) and f (X) is closed.
. If fq ∈ Fx, then x � q.
. If yn ∈ Fxn is such that yn → y = fp, then xn � p for all n.

Then fv ∈ Fv.

http://www.fixedpointtheoryandapplications.com/content/2012/1/229
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Remark . Corollary . extends Latif and Beg [, Theorem .], the result of Kaneko
and Sessa [] in a partially ordered set. Corollary . also extends the results of [–, ]
to a partially ordered set.

3 Common fixed points
In this section, we define K– � set-valued mappings on partially ordered metric spaces,
and by using the definitions, we obtain the existence of common fixed points. Let A and
B be two non-empty subsets of (X,�), the relations between A and B are denoted and
defined as follows:

A≺ B: if for every a ∈ A there exists b ∈ B such that a� b.

Definition . LetM be a non-empty subset of X and F :M → P(X). A mapping F is said
to be K– � set-valued if there exists  ≤ κ < 

 , and for any x ∈ M, ux ∈ Fx there exists a
uy ∈ Fy with ux � uy such that

d(ux,uy)≤ κ
[
d(x,ux) + d(y,uy)

]

for all y ∈M with x � y.
For K– � set-valued mappings, we just required comparability of the elements, but or-

der does not matter.

Theorem . Let M be a non-empty closed subset of X and F : M → Cl(M) be a K– �
set-valued mapping satisfying:
. There exists x inM such that {x} ≺ Fx;
. If xn → x is a sequence inM whose consecutive terms are comparable, then xn � x for

all n.
Then there exists x ∈ M with x ∈ Fx.

Proof Let x ∈ M. Then by assumption , there exists x ∈ Fx such that x � x. Now,
since F is a K– � set-valued mapping, there is x ∈ Fx with x � x such that

d(x,x)≤ κ
[
d(x,x) + d(x,x)

]
,

which gives

( – κ)d(x,x)≤ κd(x,x),

and consequently

d(x,x)≤ κ

 – κ
d(x,x).

Continuing in this way, we obtain a sequence {xn} whose consecutive terms are compara-
ble and

d(xn,xn+) ≤
[

κ

 – κ

]n

d(x,x).

http://www.fixedpointtheoryandapplications.com/content/2012/1/229
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Take  ≤ h = κ
–κ

< , then we have

d(xn,xn+) ≤ hnd(x,x). (.)

Next, we will show that {xn} is a Cauchy sequence in X. Let m > n. Then

d(xn,xm) ≤ d(xn,xn+) + d(xn+,xn+) + d(xn+,xn+) + · · · + d(xm–,xm)

≤ [
hn + hn+ + hn+ + · · · + hm–]d(x,x)

= hn
[
 + h + h + · · · + hm–n–]d(x,x)

= hn
 – hm–n

 – h
d(x,x)

<
hn

 – h
d(x,x)

because h ∈ (, ),  – hm–n < .
Therefore, d(xn,xm) →  as n → ∞, which further implies that {xn} is a Cauchy se-

quence. So, there exists some point (say) x in the complete metric space X such that
xn → x. By using assumption , xn � x for all n.
Further, sinceM is closed, x ∈ M. Now we want to show that x ∈ Fx.
Since xn ∈ Fxn– with xn– � xn also xn � x for all n and F is a k–� set-valued mapping,

there exists un ∈ Fx with xn � un such that

d(xn,un)≤ κ
[
d(xn–,xn) + d(x,un)

]
. (.)

Now

d(x,un)≤ d(x,xn) + d(xn,un),

and using (.), we have

d(x,un)≤ 
 – κ

[
d(x,xn) + κd(xn–,xn)

]
.

Letting n → ∞, we obtain un → x.
As un ∈ Fx and Fx is closed, so x ∈ Fx. �

Example . Let M = {(, ), (,  ), (, – ), ( – ,  )} be a subset of X = R with usual order
defined as follows: for (u, v), (x, y) ∈ X, (u, v) ≤ (x, y) if and only if u ≤ x, y ≤ v. Let d be a
metric on X defined as follows:

d(x, y) = d
(
(x,x), (y, y)

)
:=max

{| x – y |, | x – y |}

for all x, y ∈ X, so that (X,d) is a complete metric space. Define F :M → Cl(M) as follows:

F(x, y) =

⎧⎨
⎩

{(, )} if x≥ y,

{(, ), (, – )} if x < y,

(, – ) ≤ (, )≤ (,  ) and (– ,

 ) ≤ (,  ).
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Consider x = (, – ) ≤ (, ) = y for ux = (, ) ∈ Fx, there exists uy = (, ) ∈ Fy such that
ux ≤ uy.
Next  = d((, ), (, ))≤ κ[d((, – ), (, )) + d((, ), (, ))] = κ

 .
Similarly, for other comparable elements of M, one can see that F is a K– ≤ set-valued

mapping.
Further (, ) ∈ M is such that {,} ≺ F(, ). Also, assumption  of Theorem . is

satisfied and (, ) is the fixed point of F .

Theorem . Let M be a non-empty closed subset of X and Fn :M → Cl(M) be a sequence
of mappings satisfying the following:
(B): For any two mappings Fi, Fj and for any x ∈M, ux ∈ Fix, there exists a uy ∈ Fjy with

ux � uy such that

d(ux,uy)≤ κ
[
d(x,ux) + d(y,uy)

]

for all y ∈M with x � y and for some  ≤ κ < 
 .

Assume that the following conditions also hold:
. For each x ∈M, {x} ≺ Fx.
. If xn → x is a sequence in X whose consecutive terms are comparable, then xn � x for

all n.
Then there exists x ∈ M with x ∈ ∩Fnx.

Proof Let x ∈ M. Then by assumption , there exists x ∈ Fx such that x � x. Now,
using (B), there is x ∈ Fx with x � x such that

d(x,x)≤ κ
[
d(x,x) + d(x,x)

]
,

which gives

d(x,x)≤ κ

 – κ
d(x,x). (.)

Next, for this x, there exists x ∈ Fx with x � x such that

d(x,x)≤ κ
[
d(x,x) + d(x,x)

]
.

Using (.), we obtain

d(x,x)≤
[

κ

 – κ

]

d(x,x).

Continuing in this way, we obtain a sequence xn whose consecutive terms are comparable
and

d(xn,xn+) ≤
[

κ

 – κ

]n

d(x,x).

Take  ≤ h = κ
–κ

< , then we have

d(xn,xn+) ≤ hnd(x,x). (.)
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Therefore, {xn} is a Cauchy sequence in a complete metric space X, so xn → x. By using
assumption , xn � x for all n.
Further, since M is closed, x ∈ M. Let Fm be any arbitrary member of Fn. Now, since

xn ∈ Fnxn– with xn– � xn. Also, xn � x for all n. By using (B), there exists un ∈ Fmx such
that

d(xn,un)≤ κ
[
d(xn–,xn) + d(x,un)

]
. (.)

Now

d(x,un)≤ d(x,xn) + d(xn,un),

which gives

d(x,un)≤ 
 – κ

[
d(x,xn) + κd(xn–,xn)

]
.

Letting n → ∞, we have un → x.
As un ∈ Fmx and Fmx is closed, so x ∈ Fmx, i.e., x ∈ Fnx. �

Remark . Theorems . and . improve/extend [, Theorems . and .].
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4. Karapinar, E: Ćirić types non-unique fixed point theorems on partial metric spaces. J. Nonlinear Sci. Appl. 5, 74-83

(2012)
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