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Abstract
Let E be a real q-uniformly smooth Banach space which is also uniformly convex and
K be a nonempty, closed and convex subset of E. We obtain a weak convergence
theorem of the explicit averaging cyclic algorithm for a finite family of asymptotically
strictly pseudocontractive mappings of K under suitable control conditions, and elicit
a necessary and sufficient condition that guarantees strong convergence of an
explicit averaging cyclic process to a common fixed point of a finite family of
asymptotically strictly pseudocontractive mappings in q-uniformly smooth Banach
spaces. The results of this paper are interesting extensions of those known results.
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1 Introduction
Let E and E* be a real Banach space and the dual space of E, respectively. Let Jq (q > )
denote the generalized duality mapping from E into E* given by Jq(x) = {f ∈ E* : 〈x, f 〉 =
‖x‖q and ‖f ‖ = ‖x‖q–} for all x ∈ E, where 〈·, ·〉 denotes the generalized duality pairing
between E and E*. In particular, J is called the normalized dualitymapping and it is usually
denoted by J . If E is smooth or E* is strictly convex, then Jq is single-valued. In the sequel,
we will denote the single-valued generalized duality mapping by jq.
Let K be a nonempty subset of E. A mapping T : K → K is called asymptotically

κ-strictly pseudocontractive with sequence {κn}∞n= ⊆ [,∞) such that limn→∞ κn =  (see,
e.g., [–]) if for all x, y ∈ K , there exist a constant κ ∈ [, ) and jq(x – y) ∈ Jq(x – y) such
that

〈
Tnx – Tny, jq(x – y)

〉 ≤ κn‖x – y‖q – κ
∥∥x – y –

(
Tnx – Tny

)∥∥q, ∀n≥ . ()
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If I denotes the identity operator, then () can be written in the form

〈(
I – Tn)x – (

I – Tn)y, jq(x – y)
〉

≥ κ
∥∥(
I – Tn)x – (

I – Tn)y∥∥q – (κn – )‖x – y‖q. ()

The class of asymptotically κ-strictly pseudocontractive mappings was first introduced in
Hilbert spaces by Qihou []. In Hilbert spaces, jq is the identity, and it is shown by Osilike
et al. [] that () (and hence ()) is equivalent to the inequality

∥∥Tnx – Tny
∥∥ ≤ λn‖x – y‖ + λ

∥∥x – y –
(
Tnx – Tny

)∥∥,

where limn→∞ λn = limn→∞[ + (κn – )] = , λ = ( – κ) ∈ [, ).
A mapping T with domain D(T) and range R(T) in E is called strictly pseudocontractive

of Browder-Petryshyn type [] if for all x, y ∈ D(T), there exist κ ∈ [, ) and jq(x – y) ∈
Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q – κ
∥∥x – y – (Tx – Ty)

∥∥q. ()

If I denotes the identity operator, then () can be written in the form

〈
(I – T)x – (I – T)y, jq(x – y)

〉 ≥ κ
∥∥(I – T)x – (I – T)y

∥∥q. ()

In Hilbert spaces, () (and hence ()) is equivalent to the inequality

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥x – y – (Tx – Ty)

∥∥, k = ( – κ) < .

It is shown in [] that the class of asymptotically κ-strictly pseudocontractive mappings
and the class of κ-strictly pseudocontractive mappings are independent.
A mapping T is said to be uniformly L-Lipschitzian if there exists a constant L >  such

that, for all x, y ∈ K ,

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, n≥ .

Let {Tj}N–
j= be N asymptotically strictly pseudocontractive self-mappings of K , and de-

note the common fixed points set of {Tj}N–
j= by F :=

⋂N–
j= F(Tj), where F(Tj) := {x ∈ K :

Tjx = x}. We consider the following explicit averaging cyclic algorithm.
For a given x ∈ K , and a real sequence {αn}∞n= ⊆ (, ), the sequence {xn}∞n= is generated

as follows:

x = αx + ( – α)Tx,

x = αx + ( – α)Tx,

...

xN = αN–xN– + ( – αN–)TN–xN–,

xN+ = αNxN + ( – αN )T
xN ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/167
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xN+ = αN+xN+ + ( – αN+)T
 xN+,

...

xN = αN–xN– + ( – αN–)T
N–xN–,

xN+ = αNxN + ( – αN )T
xN ,

xN+ = αN+xN+ + ( – αN+)T
 xN+,

...

The algorithm can be expressed in a compact form as

xn+ = αnxn + ( – αn)Tk(n)
i(n) xn, n≥ , ()

where n = (k – )N + i with i = i(n) ∈ I = {, , , . . . ,N – }, k = k(n) ≥  a positive integer
and limn→∞ k(n) = ∞. The cyclic algorithm was first studied by Acedo and Xu [] for the
iterative approximation of common fixed points of a finite family of strictly pseudocon-
tractive mappings in Hilbert spaces, and it is better than implicit iteration methods.
In [] Xiaolong Qin et al. proved the following theorem in a Hilbert space.

Theorem QCKS Let K be a closed and convex subset of a Hilbert space H and N ≥ 
be an integer. Let, for each  ≤ i ≤ N , Ti : K → K be an asymptotically κi-strictly pseudo-
contractive mapping for some  ≤ κi <  and a sequence {kn,i} such that

∑∞
n=(kn,i – ) <

∞. Let κ = max{κi :  ≤ i ≤ N} and κn = max{κn,i :  ≤ i ≤ N}. Assume that F �= ∅. For
any x ∈ K , let {xn} be the sequence generated by the cyclic algorithm (). Assume that the
control sequence {αn} is chosen such that κ +ε ≤ αn ≤  – ε for all n ≥  and a small enough
constant ε ∈ (, ).Then {xn} converges weakly to a common fixed point of the family {Ti}Ni=.

Osilike and Shehu [] extended the result of Theorem QCKS from a Hilbert space to
-uniformly smooth Banach spaces which are also uniformly convex. They proved the
following theorem.

Theorem OS Let E be a real -uniformly smooth Banach space which is also uniformly
convex, and K be a nonempty, closed and convex subset of E. Let {Tj}N–

j= be N asymptoti-
cally λj-strictly pseudocontractive self-mappings of K for some  ≤ λj <  with a sequence
{κ (j)

n }∞n= ⊂ [,∞) such that
∑∞

n=(κ
(j)
n – ) < ∞, ∀j ∈ J = {, , , . . . ,N – }, and F �= ∅. Let

{αn} satisfy the conditions

(i*)  ≤ αn < , n≥ ,

(ii*)  < a ≤  – αn ≤ b <
λ
C

,

where λ =minj∈J{λj} and C is the constant appearing in the inequality () with q = . Let
{xn} be the sequence generated by the cyclic algorithm (). Then {xn} converges weakly to a
common fixed point of the family {Tj}N–

j= .

We would like to point out that the condition (ii*) in Theorem OS excludes the natural
choice  – 

n for αn. This is overcome by this paper. Moreover, we improve and extend the

http://www.fixedpointtheoryandapplications.com/content/2012/1/167
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result of Theorem OS from -uniformly smooth Banach spaces to q-uniformly smooth
Banach spaces which are also uniformly convex. We prove that if {αn} satisfies the condi-
tions

(i) μ ≤ αn < , n≥ ,

(ii)
∞∑
n=

( – αn)
[
qλ –Cq( – αn)q–

]
= ∞,

()

where μ = max{,  – ( qλCq
)


q– }, λ = minj∈J{λj}, then the iterative sequence () converges

weakly to a common fixed point of the family {Tj}N–
j= .

Furthermore, we elicit a necessary and sufficient condition that guarantees strong con-
vergence of the iterative sequence () to a common fixed point of the family {Tj}N–

j= in
q-uniformly smooth Banach spaces.
We will use the notation:
. ⇀ for weak convergence.
. ωW (xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

2 Preliminaries
Let E be a real Banach space. Themodulus of smoothness of E is the function ρE : [,∞) →
[,∞) defined by

ρE(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : ‖x‖ ≤ ,‖y‖ ≤ τ

}
.

E is uniformly smooth if and only if limτ→[ρE(τ )/τ ] = .
Let q > . E is said to be q-uniformly smooth (or to have a modulus of smoothness of

power type q > ) if there exists a constant c >  such that ρE(τ ) ≤ cτ q. Hilbert spaces, Lp
(or lp) spaces ( < p < ∞) and the Sobolev spacesWp

m ( < p < ∞) are q-uniformly smooth.
Hilbert spaces are -uniformly smooth while

Lp (or lp) or Wp
m is

⎧⎨
⎩p-uniformly smooth if  < p ≤ ,

-uniformly smooth if p ≥ .

Theorem HKX ([, p.]) Let q >  and let E be a real q-uniformly smooth Banach
space. Then there exists a constant Cq >  such that, for all x, y ∈ E,

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+Cq‖y‖q. ()

E is said to have a Fréchet differentiable norm if, for all x ∈U = {x ∈ E : ‖x‖ = },

lim
t→

‖x + ty‖ – ‖x‖
t

exists and is attained uniformly in y ∈ U . In this case, there exists an increasing function
b : [,∞)→ [,∞) with limt→+[b(t)/t] =  such that, for all x,h ∈ E,



‖x‖ + 〈

h, j(x)
〉 ≤ 


‖x + h‖ ≤ 


‖x‖ + 〈

h, j(x)
〉
+ b

(‖h‖). ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/167
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It is well known (see, for example, [, p.]) that a q-uniformly smooth Banach space
has a Fréchet differentiable norm.

Lemma . ([, p.]) Let E be a real q-uniformly smooth Banach space which is also
uniformly convex. Let K be a nonempty, closed and convex subset of E and T : K → K be
an asymptotically κ-strictly pseudocontractive mapping with a nonempty fixed point set.
Then (I –T) is demiclosed at zero, that is, if whenever {xn} ⊂D(T) such that {xn} converges
weakly to x ∈D(T) and {(I – T)xn} converges strongly to , then Tx = x.

Lemma . ([, p.]) Let {an}∞n=, {bn}∞n=, {δn}∞n= be sequences of nonnegative real num-
bers satisfying the following inequality:

an+ ≤ ( + δn)an + bn, ∀n≥ .

If
∑∞

n= δn < ∞ and
∑∞

n= bn < ∞, then limn→∞ an exists. If, in addition, {an}∞n= has a sub-
sequence which converges strongly to zero, then limn→∞ an = .

Lemma . ([, p.]) Let E be a real Banach space, K be a nonempty subset of E and
T : K → K be an asymptotically κ-strictly pseudocontractivemapping.Then T is uniformly
L-Lipschitzian.

Lemma . Let E be a real q-uniformly smooth Banach space which is also uniformly
convex, and let K be a nonempty, closed and convex subset of E. Let, for each  ≤ j ≤ N – ,
Tj : K → K be an asymptotically λj-strictly pseudocontractive mapping with F �= ∅. Let
{xn}∞n= be the sequence satisfying the following conditions:
(a) limn→∞ ‖xn – p‖ exists for every p ∈ F ;
(b) limn→∞ ‖xn – Tjxn‖ = , for each ≤ j ≤ N – ;
(c) limn→∞ ‖txn + ( – t)p – p‖ exists for all t ∈ [, ] and for all p,p ∈ F .

Then the sequence {xn} converges weakly to a common fixed point of the family {Tj}N–
j= .

Proof Since limn→∞ ‖xn – p‖ exists, then {xn} is bounded. By (b) and Lemma ., we have
ωW (xn) ⊂ F . Assume that p,p ∈ ωW (xn) and that {xni} and {xmj} are subsequences of
{xn} such that xni ⇀ p and xmj ⇀ p, respectively. Since E is a real q-uniformly smooth
Banach space, which is also uniformly convex, then E has a Fréchet differentiable norm.
Set x = p – p, h = t(xn – p) in (), we obtain



‖p – p‖ + t

〈
xn – p, j(p – p)

〉 ≤ 

∥∥txn + ( – t)p – p

∥∥

≤ 

‖p – p‖ + b

(
t‖xn – p‖

)
+ t

〈
xn – p, j(p – p)

〉
,

where b is an increasing function. Since ‖xn – p‖ ≤ M, ∀n≥ , for someM > , then



‖p – p‖ + t

〈
xn – p, j(p – p)

〉 ≤ 

∥∥txn + ( – t)p – p

∥∥

≤ 

‖p – p‖ + b(tM) + t

〈
xn – p, j(p – p)

〉
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/167
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Therefore,



‖p – p‖ + t lim sup

n→∞
〈
xn – p, j(p – p)

〉 ≤ 


lim
n→∞

∥∥txn + ( – t)p – p
∥∥

≤ 

‖p – p‖ + b(tM)

+ t lim inf
n→∞

〈
xn – p, j(p – p)

〉
.

Hence, lim supn→∞〈xn – p, j(p – p)〉 ≤ lim infn→∞〈xn – p, j(p – p)〉 + b(tM)/t. Since
limt→+[b(tM)/t] = , then limn→∞〈xn – p, j(p – p)〉 exists. Since limn→∞〈xn – p, j(p –
p)〉 = 〈p – p, j(p – p)〉, for all p ∈ ωW (xn). Set p = p. We have 〈p – p, j(p – p)〉 = ,
that is, p = p. Hence, ωW (xn) is a singleton, so that {xn} converges weakly to a common
fixed point of the family {Tj}N–

j= . �

3 Main results
Theorem . Let E be a real q-uniformly smooth Banach space which is also uniformly
convex and K be a nonempty, closed and convex subset of E. Let N ≥  be an integer
and J = {, , , . . . ,N – }. Let, for each j ∈ J , Tj : K → K be an asymptotically λj-strictly
pseudocontractive mapping for some  ≤ λj <  with sequences {κn,j}∞n= ⊂ [,∞) such that∑∞

n=(κn – ) < ∞, where κn =maxj∈J{κn,j}, and F :=
⋂N–

j= F(Tj) �= ∅. Let λ =minj∈J{λj}. Let
{αn} satisfy the conditions () and {xn} be the sequence generated by the cyclic algorithm
(). Then {xn} converges weakly to a common fixed point of the family {Tj}N–

j= .

Proof Pick a p ∈ F . We firstly show that limn→∞ ‖xn – p‖ exists. To see this, using () and
(), we obtain

‖xn+ – p‖q =
∥∥xn – p – ( – αn)

[
xn – p –

(
Tk(n)
i(n) xn – p

)]∥∥q

≤ ‖xn – p‖q +Cq( – αn)q
∥∥xn – p –

(
Tk(n)
i(n) xn – p

)∥∥q

– q( – αn)
〈
xn – p –

(
Tk(n)
i(n) xn – p

)
, jq(xn – p)

〉
≤ ‖xn – p‖q +Cq( – αn)q

∥∥xn – p –
(
Tk(n)
i(n) xn – p

)∥∥q

– q( – αn)
{
λi(n)

∥∥xn – p –
(
Tk(n)
i(n) xn – p

)∥∥q

– (κk(n),i(n) – )‖xn – p‖q}
=

[
 + q( – αn)(κk(n),i(n) – )

]‖xn – p‖q

– ( – αn)
[
qλi(n) –Cq( – αn)q–

]∥∥xn – Tk(n)
i(n) xn

∥∥q

≤ [
 + q( – αn)(κk(n) – )

]‖xn – p‖q

– ( – αn)
[
qλ –Cq( – αn)q–

]∥∥xn – Tk(n)
i(n) xn

∥∥q, ()

where κk(n) =maxi∈J{κk(n),i(n)}. Since μ ≤ αn <  for all n, where μ =max{,  – ( qλCq
)


q– }, we

get ( – αn)[qλ –Cq( – αn)q–]≥ . Therefore, () implies

‖xn+ – p‖q ≤ [
 + q( – αn)(κk(n) – )

]‖xn – p‖q. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/167
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Let δn =  + q( – αn)(κk(n) – ). Since
∑∞

n=(κn – ) <∞, we have

∞∑
n=

(δn – ) = q
∞∑
n=

( – αn)(κk(n) – )≤ qN
∞∑
n=

(κn – ) <∞,

then () implies limn→∞ ‖xn –p‖ exists by Lemma . (and hence the sequence {‖xn –p‖}
is bounded, that is, there exists a constantM >  such that ‖xn – p‖ <M).
Then we prove limn→∞ ‖xn – Tjxn‖ = , ∀j ∈ J . In fact, it follows from () that

( – αn)
[
qλ –Cq( – αn)q–

]∥∥xn – Tk(n)
i(n) xn

∥∥q ≤ ‖xn – p‖q – ‖xn+ – p‖q

+ q( – αn)(κk(n) – )‖xn – p‖q.

Then

∞∑
n=

( – αn)
[
qλ –Cq( – αn)q–

]∥∥xn–Tk(n)
i(n) xn

∥∥q<‖x –p‖q+Mq
∞∑
n=

(δk(n) – )<∞. ()

Since
∑∞

n=( – αn)[qλ – Cq( – αn)q–] = ∞, then () implies that lim infn→∞ ‖xn –
Tk(n)
i(n) xn‖ = . Thus limn→∞ ‖xn – Tk(n)

i(n) xn‖ = .
For all n > N , we have k(n) –  = k(n –N) and i(n) = i(n – N). By Lemma ., we know

that Tj is uniformly Lj-Lipschitzian, then there exists a constant L =maxj∈J{Lj}, such that

∥∥Tn
j x – Tn

j y
∥∥ ≤ L‖x – y‖, ∀n≥ ,∀x, y ∈ K and ∀j ∈ J .

Thus

‖xn – Ti(n)xn‖ ≤ ∥∥xn – Tk(n)
i(n) xn

∥∥ +
∥∥Tk(n)

i(n) xn – Ti(n)xn
∥∥

≤ ∥∥xn – Tk(n)
i(n) xn

∥∥ + L
∥∥Tk(n)–

i(n) xn – xn
∥∥

≤ ∥∥xn – Tk(n)
i(n) xn

∥∥ + L
∥∥Tk(n)–

i(n) xn – Tk(n)–
i(n–N)xn–N

∥∥
+ L

∥∥Tk(n)–
i(n–N)xn–N – xn–N–

∥∥ + L‖xn–N– – xn‖
≤ ∥∥xn – Tk(n)

i(n) xn
∥∥ + L‖xn – xn–N‖

+ L
∥∥Tk(n–N)

i(n–N) xn–N – xn–N–
∥∥ + L‖xn–N– – xn‖.

Observe that

‖xn – xn+‖ = ( – αn)
∥∥xn – Tk(n)

i(n) xn
∥∥ →  as n→ ∞.

Consequently,

‖xn – xn+l‖ →  as n→ ∞, for all integer l.

Observe also that

∥∥xn– – Tk(n)
i(n) xn

∥∥ ≤ ‖xn – xn–‖ +
∥∥xn – Tk(n)

i(n) xn
∥∥ →  as n→ ∞.

http://www.fixedpointtheoryandapplications.com/content/2012/1/167
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Hence,

lim
n→∞‖xn – Ti(n)xn‖ = .

Consequently, for all j ∈ J , we have

‖xn – Tn+jxn‖ ≤ ‖xn – xn+j‖ + ‖xn+j – Tn+jxn+j‖ + L‖xn – xn+j‖ →  as n→ ∞.

Thus,

lim
n→∞‖xn – Tjxn‖ = , ∀j ∈ J .

Now we prove that for all p,p ∈ F , limn→∞ ‖txn + ( – t)p – p‖ exists for all t ∈
[, ]. Let an(t) = ‖txn + ( – t)p – p‖. It is obvious that limn→∞ an() = ‖p – p‖ and
limn→∞ an() = limn→∞ ‖xn – p‖ exist. So, we only need to consider the case of t ∈ (, ).
Define An : K → K by

Anx = αnx + ( – αn)Tk(n)
i(n) x, x ∈ K .

Then for all x, y ∈ K

‖Anx –Any‖q ≤ ‖x – y‖q – q( – αn)
〈(
I – Tk(n)

i(n)
)
x –

(
I – Tk(n)

i(n)
)
y, jq(x – y)

〉
+Cq( – αn)q

∥∥x – y –
(
Tk(n)
i(n) x – Tk(n)

i(n) y
)∥∥q

≤ [
 + q( – αn)(κk(n) – )

]‖x – y‖q

– ( – αn)
[
qλ –Cq( – αn)q–

]∥∥x – y –
(
Tk(n)
i(n) x – Tk(n)

i(n) y
)∥∥q.

By the choice of αn, we have ( – αn)[qλ – Cq( – αn)q–] ≥ , so it follows that ‖Anx –
Any‖q ≤ [ + q( –αn)(κk(n) – )]‖x– y‖q = δn‖x– y‖q. For the convenience of the following
discussion, set ηn = (δn)


q , then ‖Anx –Any‖ ≤ ηn‖x – y‖.

Set Sn,m = An+m–An+m– · · ·An,m ≥ . We have

‖Sn,mx – Sn,my‖ ≤
(n+m–∏

j=n

ηj

)
‖x – y‖ for all x, y ∈ K ,

and

Sn,mxn = xn+m, Sn,mp = p for all p ∈ F .

Set bn,m = ‖Sn,m(txn + ( – t)p) – tSn,mxn – ( – t)Sn,mp‖. If ‖xn – p‖ =  for some n, then
xn = p for any n ≥ n so that limn→∞ ‖xn – p‖ = , in fact, {xn} converges strongly to
p ∈ F . Thus we may assume ‖xn – p‖ >  for any n ≥ . Let δ denote the modulus of
convexity of E. It is well known (see, for example, [, p.]) that

∥∥tx + ( – t)y
∥∥ ≤  – min

{
t, ( – t)

}
δ
(‖x – y‖)

≤  – t( – t)δ
(‖x – y‖) ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/167
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for all t ∈ [, ] and for all x, y ∈ E such that ‖x‖ ≤ , ‖y‖ ≤ . Set

wn,m =
Sn,mp – Sn,m(txn + ( – t)p)

t(
∏n+m–

j=n ηj)‖xn – p‖
, zn,m =

Sn,m(txn + ( – t)p) – Sn,mxn
( – t)(

∏n+m–
j=n ηj)‖xn – p‖

.

Then ‖wn,m‖ ≤  and ‖zn,m‖ ≤  so that it follows from () that

t( – t)δ
(‖wn,m – zn,m‖) ≤  –

∥∥twn,m + ( – t)zn,m
∥∥. ()

Observe that

‖wn,m – zn,m‖ = bn,m
t( – t)(

∏n+m–
j=n ηj)‖xn – p‖

and

∥∥twn,m + ( – t)zn,m
∥∥ =

‖Sn,mxn – Sn,mp‖
(
∏n+m–

j=n ηj)‖xn – p‖
,

it follows from () that

t( – t)

(n+m–∏
j=n

ηj

)
‖xn – p‖δ

(
bn,m

t( – t)(
∏n+m–

j=n ηj)‖xn – p‖
)

≤
(n+m–∏

j=n

ηj

)
‖xn – p‖ – ‖Sn,mxn – Sn,mp‖

=

(n+m–∏
j=n

ηj

)
‖xn – p‖ – ‖xn+m – p‖. ()

Since E is uniformly convex, then δ(s)/s is nondecreasing, and since (
∏n+m–

j=n ηj)‖xn –
p‖ ≤ (

∏n+m–
j=n ηj)ηn–‖xn– – p‖ ≤ · · · ≤ (

∏n+m–
j=n ηj)(

∏n–
j= ηj)‖x – p‖ = (

∏n+m–
j= ηj)‖x –

p‖, hence it follows from () that

(
∏n+m–

j= ηj)‖x – p‖


δ

(


(
∏n+m–

j= ηj)‖x – p‖
bn,m

)

≤
(n+m–∏

j=n

ηj

)
‖xn – p‖ – ‖xn+m – p‖

(
since t( – t) ≤ 


for all t ∈ [, ]

)
.

Since limn→∞
∏n+m–

j= ηj exits and limn→∞
∏n+m–

j= ηj �= . Also since limn→∞
∏n+m–

j=n ηj = 
and limn→∞ ‖xn – p‖ exists, then the continuity of δ and δ() =  yield limn→∞ bn,m = 
uniformly for allm ≥ . Observe that

an+m(t) ≤ ∥∥txn+m + ( – t)p – p +
(
Sn,m

(
txn + ( – t)p

)
– tSn,mxn – ( – t)Sn,mp

)∥∥
+

∥∥Sn,m(
txn + ( – t)p

)
– tSn,mxn – ( – t)Sn,mp

∥∥
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=
∥∥Sn,m(

txn + ( – t)p
)
– Sn,mp

∥∥ + bn,m

≤
(n+m–∏

j=n

ηj

)∥∥txn + ( – t)p – p
∥∥ + bn,m =

(n+m–∏
j=n

ηj

)
an(t) + bn,m.

Hence lim supn→∞ an(t) ≤ lim infn→∞ an(t), this ensures that limn→∞ an(t) exists for all
t ∈ (, ).
Now apply Lemma . to conclude that {xn} converges weakly to a common fixed point

of the family {Tj}N–
j= . �

Theorem . Let E be a real q-uniformly smooth Banach space, and let K be a nonempty,
closed and convex subset of E. Let N ≥  be an integer and J = {, , , . . . ,N –}. Let, for each
j ∈ J , Tj : K → K be an asymptotically λj-strictly pseudocontractive mapping for some  ≤
λj <  with sequences {κn,j}∞n= ⊂ [,∞) such that

∑∞
n=(κn –) <∞,where κn =maxj∈J{κn,j},

and F :=
⋂N–

j= F(Tj) �= ∅. Let λ = minj∈J{λj}. Let {αn} satisfy the conditions () and {xn}
be the sequence generated by the cyclic algorithm (). Then {xn} converges strongly to a
common fixed point of the family {Tj}N–

j= if and only if

lim inf
n→∞ d(xn,F) = ,

where d(xn,F) = infp∈F ‖xn – p‖.

Proof It follows from () that

‖xn+ – p‖q ≤ δn‖xn – p‖q.

Thus [d(xn+ – p)]q ≤ δn[d(xn – p)]q, and it follows from Lemma . that limn→∞ d(xn,F)
exists.
Now if {xn} converges strongly to a common fixed point p of the family {Tj}N–

j= , then
limn→∞ ‖xn – p‖ = . Since

 ≤ d(xn,F) ≤ ‖xn – p‖,

we have lim infn→∞ d(xn,F) = .
Conversely, suppose lim infn→∞ d(xn,F) = , then the existence of limn→∞ d(xn,F) im-

plies that limn→∞ d(xn,F) = . Thus, for arbitrary ε > , there exists a positive integer n
such that d(xn,F) < ε

 for any n≥ n.
From (), we have

‖xn+ – p‖q ≤ ‖xn – p‖q +Mq(δn – ), n ≥ ,

and for someM > , ‖xn – p‖ <M. Now, an induction yields

‖xn – p‖q ≤ ‖xn– – p‖q +Mq(δn– – )

≤ ‖xn– – p‖q +Mq(δn– – ) +Mq(δn– – )

≤ · · · ≤ ‖xl – p‖q +Mq
n–∑
j=l

(δj – ), n –  ≥ l ≥ .

http://www.fixedpointtheoryandapplications.com/content/2012/1/167
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Since
∑∞

n=(δn–) <∞, then there exists a positive integer n such that
∑∞

j=n(δj–) < ( ε
M )q,

∀n≥ n. Choose N =max{n,n}, then for all n,m ≥ N +  and for all p ∈ F , we have

‖xn – xm‖ ≤ ‖xn – p‖ + ‖xm – p‖

≤
[
‖xN – p‖q +Mq

n–∑
j=N

(δj – )

] 
q

+

[
‖xN – p‖q +Mq

m–∑
j=N

(δj – )

] 
q

≤
[
‖xN – p‖q +Mq

∞∑
j=N

(δj – )

] 
q

+

[
‖xN – p‖q +Mq

∞∑
j=N

(δj – )

] 
q

= 

[
‖xN – p‖q +Mq

∞∑
j=N

(δj – )

] 
q

.

Taking infimum over all p ∈ F , we obtain

‖xn – xm‖ ≤ 

{[
d(xN ,F)

]q +Mq
∞∑
j=N

(δj – )

} 
q

< 
[(

ε



)q

+Mq
(

ε

M

)q] 
q
< ε.

Thus {xn}∞n= is Cauchy. Suppose limn→ xn = u. Then for all j ∈ J we have

 ≤ ‖u – Tju‖ ≤ ‖u – xn‖ + ‖xn – Tjxn‖ + L‖xn – u‖ →  as n→ ∞.

Thus u ∈ F(Tj), ∀j ∈ J , and hence u ∈ F . �
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