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Abstract
In this article, a class of fourth-order difference equations with quasi-differences and
deviating argument is considered. We state a new oscillation theorem for the
sublinear case and we complete the existing results in the literature. Our approach is
based on considering Equation (1) as a system of the four-dimensional difference
system and on the cyclic permutation of the coefficients in the difference equations.

Introduction
In this article, we consider a class of fourth-order nonlinear difference equations of the
form

�
(
an

(
�bn

(
�cn(�xn)γ

)β)α)
+ dnxλ

n+τ = , ()

where α, β , γ , λ are the ratios of odd positive integers, τ ∈ Z is a deviating argument and
{an}, {bn}, {cn}, {dn} are positive real sequences defined for n ∈N = {n,n + , . . .}, n is a
positive integer, and � is the forward difference operator defined by �xn = xn+ – xn.
By a solution of Equation () we mean a real sequence {xn} satisfying Equation () for

n ∈ N. A non-trivial solution {xn} of () is said to be non-oscillatory if it is either eventually
positive or eventually negative, and it is otherwise oscillatory. Equation () is said to be
oscillatory if all its solutions are oscillatory.
In the last few years, great attention has been paid to the study of fourth-order nonlinear

difference equations, see [–] and references therein.
If an = cn = , α = γ =  and τ = , then () takes the form

�(bn(�xn
)β)

+ dnxλ
n+ = . ()

The oscillatory and asymptotic properties of solutions of () have been investigated in [,
, ] under the conditions

∞∑
n=n

n
b/βn

= ∞ and
∞∑

n=n

(
n
bn

)/β

= ∞,

while articles [, , ] deal with cases where at least one of these series is convergent (see
also the references therein).
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Equation () is a special case of nonlinear fourth-order equation with deviating argu-
ment investigated in the recent articles [, ]. In [], necessary and sufficient conditions
for the oscillation of all bounded solutions of () (the so-called B-oscillation) have been
given. In [], oscillation criteria for () have been established using the analysis of non-
oscillatory solutions and by comparison with certain first- and second-order difference
equations.
Equation () with τ =  can be seen as a coupled system of two second-order difference

equations of the form

⎧⎨
⎩�(rn(�xn)α) = –ϕnzη

n+,

�(qn(�zn)β ) = ψnxλ
n+.

()

Indeed, eliminating z from the first equation, this system can be rewritten as

�
(
qn+

(
�

(
ϕ–/η
n

(
�

(
rn(�xn)α

))/η))β)
+ψn+xλ

n+ = . ()

System () is a special case of more general coupled systems. Those oscillatory properties
have been investigated in [].
Our approach here is to consider () as a four-dimensional system. If

yn = cn(�xn)γ , zn = bn(�yn)β , wn = an(�zn)α , ()

then Equation () can be written as the nonlinear system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�xn = Cny/γn ,

�yn = Bnz/βn ,

�zn = Anw/α
n ,

�wn = –Dnxλ
n+τ ,

(S)

where

An = a–/αn , Bn = b–/βn , Cn = c–/γn , Dn = dn.

Obviously, if (x, y, z,w) is a solution of system (S) and one of its components is of one sign,
then all its components are of one sign.
System (S) can be viewed as a discrete analogue of the four-dimensional differential sys-

tem investigated by Kusano et al. [], and by Chanturia []. In that article, the oscillation
of the n-dimensional differential systems was investigated in terms of Property A (which
reads for equations of even order as the oscillation of all solutions) and Property B. Ob-
serve that in [] we have used this approach to study Property B for system (S) assuming
Dn < .
Motivated by these articles, we study the oscillatory properties of solutions of (). First

we show the influence of the deviating argument τ on the existence of quickly oscillatory
solutions and we describe the so called cyclic permutation for (). Ourmain goal is to state
a new oscillation theorem for Equation () in the sublinear case λ < αβγ and to extend the

http://www.advancesindifferenceequations.com/content/2012/1/99
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existing oscillation results in the literature in case where the difference operator in () is
in the canonical form, i.e., when

∞∑
n=n

a–/αn =
∞∑

n=n

b–/βn =
∞∑

n=n

c–/γn = ∞. (H)

Our results are based on the conditions for the non-existence of non-oscillatory solutions
and on the change of summation for double series. Due to our approach considering () as
a four-dimensional system, we extend for any τ ∈ Z some results of [] stated for a delay
τ ≤ . Using cyclic permutation we show how it is possible to extend oscillation criteria
to the case when one of the series in (H) is convergent.

Existence of quickly oscillatory solutions
Prototypes of oscillatory solutions of () are solutions of the form

xn = (–)npn, pn >  for n ∈N.

Such solutions are called quickly oscillatory and the following result can be seen as a nec-
essary condition for their existence.

Theorem  Equation () with τ even has no quickly oscillatory solutions.

Proof Let xn = (–)npn be a quickly oscillatory solution of (). Then

�xn = (–)n+(pn+ + pn).

From the first equation of system (S) we have

yn =
(

�xn
Cn

)γ

= (–)n+qn,

where qn = ( pn+Cn
+ pn

Cn
)γ > . From the second equation of (S) we obtain

zn =
(

�yn
Bn

)β

= (–)nrn,

where rn = ( qn+Bn + qn
Bn )

β > . Repeating argument, we get from the third equation of (S)

wn =
(

�zn
An

)α

= (–)n+sn,

where sn = ( rn+An
+ rn

An
)α > . Consequently, from here and from the fourth equation we have

�wn = (–)n(sn+ + sn) = –Dn(–)(n+τ )λpλ
n+τ = (–)n++τDnpλ

n+τ ,

which gives a conclusion. �

By the method used in the proof of Theorem  we can easily construct equations pos-
sessing a quickly oscillatory solution.

http://www.advancesindifferenceequations.com/content/2012/1/99
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Example  Consider the equation

�(�xn
)β +

β (β + )

τλ
n(β–λ)xλ

n+τ = , ()

where τ is an odd positive integer. This equation has a quickly oscillatory solution xn =
(–)nn. Indeed, pn = n, qn = n, rn = nββ , sn = nββ (β + ) and the value of dn
follows from the relation dn = (sn+ + sn)/pλ

n+τ .
If β ≥ λ, then Equation () has all solutions oscillatory (see, e.g., Proposition  below).

However, if β < λ, then by [, Theorems ., .] Equation () has also non-oscillatory
solutions.

Cyclic permutation
In this section, we describe the left-ordered cyclic permutation of coefficients in ().

Lemma  The following statements are equivalent:
(i) x is a solution of ().
(ii) y = {yn}, where yn = cn(�xn)γ , is a solution of

�

(


d/λ
n

(
�an

(
�bn(�yn)β

)α)/λ) +


c/γn+τ

y/γn+τ = . (R)

(iii) z = {zn}, where zn = bn(�yn)β , is a solution of

�

(
cn+τ

(
�


d/λ
n

(
�an(�zn)α

)/λ)γ )
+


b/βn+τ

z/βn+τ = . (R)

(iv) w = {wn}, where wn = an(�zn)α is a solution of

�

(
bn+τ

(
�cn+τ

(
�


dn

(�wn)/λ
)γ )β)

+


a/αn+τ

w/α
n+τ = . (R)

Proof First we prove that (i) is equivalent to (ii). If we express x from the last equation in
(S) we obtain

xn+τ = –


d/λ
n

(�wn)/λ = –


d/λ
n

(
�an

(
�bn(�yn)β

)α)/λ. ()

Thus, from here and the first equation in (S) we have

�xn+τ = –�

(


d/λ
n

(
�an

(
�bn(�yn)β

)α)/λ) =


c/γn+τ

y/γn+τ ,

which yields Equation (R). To prove that (i) is equivalent to (iii) we use the same process.
Using () and () we have

�xn = –�

(


d/λ
n–τ

(
�an–τ (�zn–τ )α

)/λ).

http://www.advancesindifferenceequations.com/content/2012/1/99
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Substituting this into

�yn = �
(
cn(�xn)γ

)

and using the second equation of (S) we get Equation (R).
To prove that (i) is equivalent to (iv) we proceed as before, expressing �z in terms of w

from the third equation of (S) and from () and comparing both expressions. �

Theorem  Equation () is oscillatory if and only if Equation (Ri) is oscillatory for i ∈
{, , }.

Remark  By Theorem  Equation () is oscillatory if and only if the equation

�
(


d/λ
n

(
�zn

)/λ) +


b/βn+
z/βn+ = 

is oscillatory. Observe that the difference operator in this equation is in the canonical form
if

∑∞
n=n dn = ∞.

Remark  The cyclic permutation for the coupled system () means that equations in
() are considered in the opposite order. Hence, (x, z) is a solution of () if and only if
(u, v) = (–z,x) is a solution of the system

⎧⎨
⎩�(qn(�un)β ) = –ψnvλ

n+,

�(rn(�vn)α) = ϕnuη
n+,

()

which is again system of the form (). Oscillation results of [] for () assume

∑ 
r/αn

= ∞,
∑ 

q/βn
= ∞,

∑
ϕn <∞,

∑
ψn = ∞,

that is () is not in the canonical form. Hence, to compare results of [] and our oscillation
criteria we have to apply results of [] to (), see Remark .

Non-oscillatory solutions
Throughout this and the next sections, we use the convention

n∑
i=n

ui =  if n > n.

The aim of this section is to study non-oscillatory solutions of (). If (S) has a solution
(x, y, z,w), then (–x, –y, –z, –w) is a solution of (S), too. Hence, when studying the non-
existence conditions for non-oscillatory solutions, we can consider solutions such that
xn >  for large n.
We start with the classification of non-oscillatory solutions of (S). This has been pre-

sented in [] without the proof, so we formulate this statement including the proof.

http://www.advancesindifferenceequations.com/content/2012/1/99
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Lemma  Assume (H). Then any solution (x, y, z,w) of system (S) such that xn >  for large
n is one of the following types:
Type (a) xn > , yn > , zn > , wn >  for all large n,
Type (b) xn > , yn > , zn < , wn >  for all large n.

Proof Let (x, y, z,w) be a non-oscillatory solution of (S). Assume that there exists a solution
such that yn > , zn < ,wn <  for largen. Since�zn < , there exists k >  such that zn ≤ –k
for large n. Using the summation of the second equation of system (S) we get

yn – yn =
n–∑
i=n

Biz/βi ≤ –k/β
n–∑
i=n

Bi.

Passing n→ ∞, we get lim yn = –∞, which is a contradiction.
Let there exist a solution so that yn < , zn > , wn >  for large n. Since z is positive

increasing there exists k >  so that zn ≥ k for large n. Summation of the second equation
of system (S) leads to lim yn = +∞, which is a contradiction with the fact yn < .
Let there exist a solution so that yn < , zn <  for large n. Since y is negative decreasing

there exists k >  so that yn ≤ –k for large n. By summation of the first equation of system
(S) and passing n→ ∞, we get a contradiction.
The case when zn >  and wn <  for large n can be treated by the similar way by sum-

mation of the third equation of (S). �

Proposition  Assume (H) and

∞∑
n=n

dn = ∞. ()

Then Equation () is oscillatory.

Proof In view of Lemma  we can assume without loss of generality that xn > , yn > 
and wn > . Hence exists k >  and n >  such that xn ≥ k for n≥ n. By summation of the
fourth equation of system (S) we find that () leads to a contradiction with the positiveness
of wn. �

Hence, under assumptions (H), if () has a non-oscillatory solution, then

∞∑
n=n

dn < ∞. ()

We say that a solution x of () is of type (a) (type (b)) if the corresponding solution (x, y, z,w)
of system (S) is of type (a) (type (b)).
In the next, we give sufficient conditions for the non-existence of both types of non-

oscillatory solutions of (). To this goal, the following lemma will be used.

Lemma  Let k ∈ (, ) and {wn} be a sequence such that wn >  and �wn < . Then

∞∑
n=

–�wn

wk
n

< ∞.

http://www.advancesindifferenceequations.com/content/2012/1/99
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Proof We have

–�wn

wk
n

≤
∫ wn

wn+


tk

dt.

Summing this from N to ∞
∞∑
n=N

–�wn

wk
n

≤
∞∑
n=N

∫ wn

wn+


tk

dt ≤
∫ wN




tk

dt < ∞. �

The non-existence of solutions of type (a) is ensured by the following conditions.

Lemma  Equation () has no solution of type (a) if any of the following conditions hold:
(i)

∞∑
n=n

dn

(n+τ–∑
i=n


c/γi

)λ

= ∞; ()

(ii)

∞∑
n=n

dn

(n+τ–∑
i=n


c/γi

( i–∑
j=n


b/βj

)/γ )λ

= ∞; ()

(iii) λ < αβγ and

∞∑
n=n

dn

(n+τ–∑
i=n


c/γi

( i–∑
j=n


b/βj

( j–∑
k=n


a/αk

)/β)/γ )λ

= ∞. ()

Proof Let (x, y, z,w) be a type (a) solution of system (S), i.e., all components of the solution
are positive. Since z is positive increasing, there exists k >  such that z/βn ≥ k for large n,
say n≥ n. From the first and the second equations of system (S) we get

xj ≥
j–∑
i=n

Ciy/γi , yj ≥
j–∑
i=n

Biz/βi ≥ k
j–∑
i=n

Bi,

so

xj ≥
j–∑
n=n

Cn

( n–∑
k=n

Bkz/βk

)/γ

≥ k/γ
j–∑
n=n

Cn

( n–∑
k=n

Bk

)/γ

. ()

Let () or () hold. By summation of the fourth equation of system (S) and using ()
we get

–wn +wn =
n–∑
i=n

–�wi ≥ kλ/βγ kλ/γ
n–∑
i=n

Di

(i+τ–∑
j=n

Cj

( j–∑
k=n

Bk

)/γ )λ

.

Passing n→ ∞ we get the contradiction with the boundedness of w.

http://www.advancesindifferenceequations.com/content/2012/1/99
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Let condition (iii) hold. Taking into account that wn is positive and decreasing, we get
by summation of the third equation of system (S)

zj ≥
j–∑
i=n

Aiw/α
i ≥ w/α

j–

j–∑
i=n

Ai.

Thus

–�wn =Dnxλ
n+τ ≥ Dn

(n+τ–∑
m=n

Cm

(m–∑
k=n

Bk

(
w/α
k–

k–∑
i=n

Ai

)/β)/γ )λ

.

Hence

–�wn

wn–λ/αβγ
≥ Dn

(n+τ–∑
m=n

Cm

(m–∑
k=n

Bk

( k–∑
i=n

Ai

)/β)/γ )λ

.

Summing this inequality from n to ∞ we have

∞∑
n=n

–�wn

wλ/αβγ
n–

≥
∞∑

n=n

Dn

(n+τ–∑
i=n

Ci

( i–∑
j=n

Bj

( j–∑
k=n

Ak

)/β)/γ )λ

.

By Lemma  the expression on the left side is finite, which is a contradiction with ().
�

The non-existence of solutions of type (b) is ensured by the following conditions.

Lemma  Let () hold. Equation () has no solution of type (b) if any of the following
conditions hold:

(i)

T :=
∞∑

n=n


a/αn

( ∞∑
k=n

dk

)/α

= ∞, ()

(ii) T < ∞ and

∞∑
n=n


b/βn

( ∞∑
k=n


a/αk

( ∞∑
i=k

di

)/α)/β

= ∞, ()

(iii) λ < αβγ , T <∞ and

∞∑
n=n


b/βn

(n+τ–∑
k=n


c/γk

)λ/(αβ)( ∞∑
k=n


a/αk

( ∞∑
i=k

di

)/α)/β

= ∞. ()

Proof Let (x, y, z,w) be a solution of (S) satisfying xn > , yn > , zn < , wn > . Since the
components w and –z are positive and decreasing, we have

lim
n→∞wn = w∞, w∞ ≥ , lim

n→∞ zn = z∞, z∞ ≤ .

http://www.advancesindifferenceequations.com/content/2012/1/99
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By summation of the fourth equation of (S) we have

wn = w∞ +
∞∑
k=n

Dkxλ
k+τ ≥ xλ

n+τ

∞∑
k=n

Dk .

If (i) holds, then by summation of the third equation of (S)

zm ≥ zn + xλ/α
n+τ

m–∑
n=n

An

( ∞∑
k=n

Dk

)/α

,

which gives a contradiction with the boundedness of z.
Assume (ii). Then

–zn = –z∞ +
∞∑
i=n

Aiw/α
i ≥ xλ/α

n+τ

∞∑
i=n

Ai

( ∞∑
j=i

Dj

)/α

. ()

Using this and the fact that y is positive decreasing, we get

yn = yn +
n–∑
k=n

Bk(–zk)/β ≥
n–∑
k=n

Bk

( ∞∑
i=k

Ai

( ∞∑
j=i

Dj

)/α)/β

,

which leads to a contradiction with ().
Assume (iii). From the first equation of system (S) we have for large n

xn ≥ y/γn–

n–∑
i=n

Ci.

Thus using the second equation of system (S) and ()

–�yn = Bn(–zn)/β ≥ Bnyλ/αβγ
n+τ–

(n+τ–∑
i=n

Ci

)λ/αβ( ∞∑
i=n

Ai

( ∞∑
j=i

Dj

)/α)/β

,

so

–�yn
yλ/αβγ
n+τ–

≥ Bn

(n+τ–∑
i=n

Ci

)λ/αβ( ∞∑
i=n

Ai

( ∞∑
j=i

Dj

)/α)/β

.

Since αβγ > λ we get by Lemma 

∞ >
∞∑

n=n

–�yn
yλ/αβγ
n+τ–

≥
∞∑

n=n

Bn

(n+τ–∑
i=n

Ci

)λ/αβ( ∞∑
i=n

Ai

( ∞∑
j=i

Dj

)/α)/β

,

which is a contradiction. �

Remark  The condition (H) is not needed in Lemmas  and .

http://www.advancesindifferenceequations.com/content/2012/1/99
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Remark  (i) Lemmas  and  can be viewed as a discrete counterpart of similar results
for differential systems of the nth-order, see [, Propositions ., .].
(ii) Oscillation criteria established in [] are based on a different approach than that ap-

plied here, namely by comparing () with certain first- and second-order difference equa-
tions whose oscillatory properties are known. Comparing conditions for the nonexistence
of solutions of types (a) and (b), part (iii) of Lemmas  and  extends Corollaries . and .
in [], respectively, where it is assumed that τ ≤  and (H). Moreover, assuming (H), part
(ii) of Lemmas  and  can be obtained fromTheorems . and . in [], respectively, but
our proofs are different.

Combining conditions in Lemmas  and , we get oscillation criteria in case where the
operator in () is in the canonical form. This, together with the application of the cyclic
permutation method, will form the content of the following two sections.

Oscillation criteria
In this section, we establish oscillation criteria for () which are based on conditions for
the non-existence of the non-oscillatory solutions given in the previous section.
First we discuss conditions () and (). Assume (H), () and consider the double series

P =
∞∑
n=

dn

( n∑
k=


c/γk

)λ

, T =
∞∑
n=


a/αn

( ∞∑
k=n

dk

)/α

.

If P = ∞ and T = ∞, then by Lemmas , , , Equation () with τ ≥  is oscillatory.
In a special case when α = γ = λ =  and an = cn we have P = ∞ if and only if T = ∞.
The interesting case occurs when α = λ �=  or α �= λ. The problem of comparison of

conditions () and () leads to the problem of a change of summation for double series.
This problem has been investigated for the case α = λ and α �= λ in [, ], respectively.
For brevity, denote the following cases of parameters α, λ:
(C) α > λ or α = λ ≥ ;
(C) α < λ or α = λ ≤ .

Put

S =
∞∑
n=

dn

( n∑
k=


a/αk

)λ

.

In cases (C) and (C) the following change of summation holds.

Lemma  ([, ])
(i) Assume case (C). If S = ∞, then T = ∞.
(ii) Assume case (C). If T = ∞, then S = ∞.

Remark  Observe that the opposite implications in Lemma  in general need not hold.
For example, choosing

S =
∞∑
n=


n(n – )

( n∑
k=



)λ

and T =
∞∑
n=

( ∞∑
k=n


k(k – )

)/α

we have S = ∞ and T < ∞ for λ ≥  and α < ; the opposite case holds for λ <  and α ≥ .

http://www.advancesindifferenceequations.com/content/2012/1/99
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Using Lemma  we obtain the following result.

Theorem  Assume (H) and (). Equation () with τ ≥  is oscillatory if any of the follow-
ing conditions holds:

(i) Case (C), P = ∞ and

lim inf
c/γn

a/αn
> ; ()

(ii) Case (C), T = ∞ and

lim sup
c/γn

a/αn
< ∞.

Proof Claim (i). Clearly, condition P = ∞ implies the validity of () for any τ ≥ . Hence,
by Lemma , Equation () with τ ≥  has no type (a) solution. By comparison theorem for
series and in view of (), we have S = ∞. Using Lemma  we get T = ∞. By Lemma 
Equation () has no type (b) solutions. Now, the conclusion follows from Lemma . Claim
(ii) can be proved by a similar way. �

In the general case, when Theorem  cannot be applied, by Lemma , part (ii) and
Lemma , parts (i), (ii) the following result holds.

Theorem  ([, Theorem .]) Assume (H), () and τ ∈ Z. If () and either () or ()
hold, then Equation () is oscillatory.

In the sublinear case, this result can be improved using part (iii) of Lemmas  and  as
follows.

Theorem  Assume λ < αβγ , (H), () and τ ∈ Z. If () and either () or () hold, then
Equation () is oscillatory.

Remark  Theorems , ,  can be compared with the results of [] using coupled system
(). Application of Theorem  or Theorem ′ of [] to system () leads to conditions (),
() or (), (), respectively. Observe that Theorem ′ of [] ensures oscillation of ()
provided λ < , () and certain additional assumptions on α, β , γ .

The following examples illustrate our results and show that conditions in Theorem  are
optimal.

Example  Consider the equation

�
(
�xn

)α + dnxλ
n+τ = , ()

where τ ≥  and () holds. Then

P =
∞∑
n=

nλdn, T =
∞∑
n=

( ∞∑
k=n

dk

)/α
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and by Theorems  and  we get that Equation () is oscillatory if any of the following
conditions is satisfied

(i) λ < α or α = λ ≥ , P = ∞;
(ii) λ > α or α = λ ≤ , T = ∞;
(iii) λ < α,

∑∞
n= nλdn = ∞, T <∞ and

∞∑
n=

nλ/α
∞∑
j=n

( ∞∑
k=j

dk

)/α

= ∞.

The claim (iii) of Example  is not true for α = λ =  as the next example shows.

Example  Consider the Euler-type difference equation

�xn +


(n + )(n + )(n + )(n + )
xn+ =  (n≥ ). ()

One can check that xn = n(n+ )(n+)(n+) is a positive solution of () and
∑∞

n= ndn =
∞.

Another oscillation criteria can be obtained using the cyclic permutation described in
Lemma  and Theorem . For instance, in the case when

∞∑
n=n

a–/αn = ∞,
∞∑

n=n

b–/βn < ∞,
∞∑

n=n

c–/γn =
∞∑

n=n

dn = ∞,

we can apply Theorems - to Equation (R). We show the application of Theorem  to a
special case of () in the next section.

Applications
Consider equation

�(bn(�xn
)β)

+ dnxλ
n+τ = , ()

where τ ∈ Z and

∞∑
n=n


b/βn

< ∞ and
∞∑

n=n

dn = ∞. ()

Then the cyclic permutated Equation (R) to () is

�
(


d/λ
n

(
�zn

)/λ) +


b/βn+τ

z/βn+τ = , ()

whose difference operator is in the canonical form. In Equation (), we have α = , β =
/λ, γ = , λ = /β , thus the condition λ < αβγ reads λ < β and the series P and T as

P̄ =
∞∑

n=n

(
n

bn+τ

)/β

, T̄ =
∞∑

n=n

∞∑
k=n


b/βk+τ

=
∞∑

n=n

n – n + 
b/βn+τ

.
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Since limn→∞ n+τ
n = , we have P̄ = ∞ if and only if

P̃ =
∞∑

n=n

(
n
bn

)/β

= ∞.

Similarly, since limn→∞ n+τ
n–n+

= , we get T̄ = ∞ if and only if

T̃ =
∞∑

n=n

n
b/βn

= ∞.

Observe that if β ≥  and P̃ = ∞, then T̃ = ∞, while if β ≤  and T̃ = ∞, then P̃ = ∞.
Hence, under these assumptions both series P̃, T̃ are divergent and Equation () with
τ ≥  is oscillatory by Theorem .
Applying Theorem  to Equation () and using Theorem , we get the following result.

Corollary  Assume () and λ < β , τ ∈R. If

∞∑
n=n


b/βn+τ

(n+τ–∑
j=n

jλdj

)/β

= ∞

and either T̃ = ∞ or

∞∑
n=n

nλ/βdn

( ∞∑
k=n

k
b/βk

)λ

= ∞,

then Equation () is oscillatory.

Remark  Corollary  completes the oscillation criteria for Equation () with τ =  given
in [, ] where instead of the condition

∑
dn = ∞ it is assumed that both series P̃, T̃ are

divergent or convergent, respectively.
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