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Abstract
In this article, we introduce a new general iterative method for solving a common
element of the set of solutions of fixed point for nonexpansive mappings, the set of
solutions of generalized mixed equilibrium problems and the set of solutions of the
variational inclusion for a β-inverse-strongly monotone mapping in a real Hilbert
space. We prove that the sequence converges strongly to a common element of the
above three sets under some mild conditions. Our results improve and extend the
corresponding results of Marino and Xu (J. Math. Anal. Appl. 318:43-52, 2006), Su et al.
(Nonlinear Anal. 69:2709-2719, 2008), Tan and Chang (Fixed Point Theory
Appl. 2011:915629, 2011) and some authors.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H with the inner prod-
uct 〈·, ·〉 and the norm ‖ · ‖, respectively. A mapping S : C → C is said to be nonexpansive
if ‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C. If C is bounded closed convex and S is a nonexpan-
sive mapping of C into itself, then F(S) := {x ∈ C : Sx = x} is nonempty []. A mapping
S : C → C is said to be a k-strictly pseudo-contraction [] if there exists  ≤ k <  such that
‖Sx– Sy‖ ≤ ‖x– y‖ + k‖(I – S)x– (I – S)y‖, ∀x, y ∈ C, where I denotes the identity oper-
ator on C. We denote weak convergence and strong convergence by notations ⇀ and →,
respectively. A mapping A of C into H is calledmonotone if 〈Ax–Ay,x– y〉 ≥ , ∀x, y ∈ C.
A mapping A is called α-inverse-strongly monotone if there exists a positive real number
α such that 〈Ax – Ay,x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C. A mapping A is called α-strongly
monotone if there exists a positive real number α such that 〈Ax – Ay,x – y〉 ≥ α‖x – y‖,
∀x, y ∈ C. It is obvious that any α-inverse-strongly monotone mappings A is a monotone
and 

α
-Lipschitz continuous mapping. A linear bounded operator A is called strongly pos-

itive if there exists a constant γ̄ >  with the property 〈Ax,x〉 ≥ γ̄ ‖x‖, ∀x ∈ H . A self
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mapping f : C → C is called contraction on C if there exists a constant α ∈ (, ) such that
‖f (x) – f (y)‖ ≤ α‖x – y‖, ∀x, y ∈ C.
Let B : H → H be a single-valued nonlinear mapping and M : H → H be a set-valued

mapping. The variational inclusion problem is to find x ∈ H such that

θ ∈ B(x) +M(x), (.)

where θ is the zero vector in H . The set of solutions of (.) is denoted by I(B,M). The
variational inclusion has been extensively studied in the literature. See, e.g. [–] and the
reference therein.
A set-valuedmappingM :H → H is calledmonotone if ∀x, y ∈H , f ∈M(x) and g ∈M(y)

imply 〈x – y, f – g〉 ≥ . A monotone mapping M ismaximal if its graph G(M) := {(f ,x) ∈
H × H : f ∈ M(x)} of M is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping M is maximal if and only if for (x, f ) ∈
H ×H , 〈x – y, f – g〉 ≥  for all (y, g) ∈ G(M) imply f ∈M(x).
Let B be an inverse-stronglymonotonemapping ofC intoH and letNCv be normal cone

to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v – u,w〉 ≥ ,∀u ∈ C}, and define

Mv =

⎧⎨
⎩Bv +NCv, if v ∈ C,

∅, if v /∈ C.

ThenM is a maximal monotone and θ ∈Mv if and only if v ∈VI(C,B) (see []).
Let M : H → H be a set-valued maximal monotone mapping, then the single-valued

mapping JM,λ :H →H defined by

JM,λ(x) = (I + λM)–(x), x ∈H (.)

is called the resolvent operator associated withM, where λ is any positive number and I is
the identity mapping. In the worth mentioning that the resolvent operator is nonexpan-
sive, -inverse-strongly monotone and that a solution of problem (.) is a fixed point of
the operator JM,λ(I – λB) for all λ >  (see []).
Let F be a bifunction of C×C intoR, whereR is the set of real numbers, � : C →H be

a mapping and ψ : C → R be a real-valued function. The generalized mixed equilibrium
problem for finding x ∈ C such that

F(x, y) + 〈�x, y – x〉 +ψ(y) –ψ(x)≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by GMEP(F ,ψ ,�), that is

GMEP(F ,ψ ,�) =
{
x ∈ C : F(x, y) + 〈�x, y – x〉 +ψ(y) –ψ(x)≥ ,∀y ∈ C

}
.

If � ≡  and ψ ≡ , the problem (.) is reduced into the equilibrium problem (see also
[]) for finding x ∈ C such that

F(x, y)≥ , ∀y ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/111
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The set of solutions of (.) is denoted by EP(F), that is

EP(F) =
{
x ∈ C : F(x, y)≥ ,∀y ∈ C

}
.

This problem contains fixed point problems, includes as special cases numerous problems
in physics, optimization and economics. Some methods have been proposed to solve the
equilibrium problem, please consult [–].
If F ≡  and ψ ≡ , the problem (.) is reduced into the Hartmann-Stampacchia vari-

ational inequality [] for finding x ∈ C such that

〈�x, y – x〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by VI(C,�). The variational inequality has been
extensively studied in the literature [].
If F ≡  and � ≡ , the problem (.) is reduced into theminimize problem for finding

x ∈ C such that

ψ(y) –ψ(x)≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by Argmin(ψ). Iterative methods for nonexpan-
sivemappings have recently been applied to solve convexminimization problems. Convex
minimization problems have a great impact and influence in the development of almost all
branches of pure and applied sciences. A typical problem is to minimize a quadratic func-
tion over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H :

θ (x) =


〈Ax,x〉 – 〈x, y〉, ∀x ∈ F(S), (.)

whereA is a linear bounded operator, F(S) is the fixed point set of a nonexpansivemapping
S and y is a given point in H [].
In , Moudafi [] introduced the viscosity approximation method for nonexpan-

sive mapping and prove that if H is a real Hilbert space, the sequence {xn} defined by the
iterative method below, with the initial guess x ∈ C is chosen arbitrarily,

xn+ = αnf (xn) + ( – αn)Sxn, n≥ , (.)

where {αn} ⊂ (, ) satisfies certain conditions, converge strongly to a fixed point of S (say
x̄ ∈ C) which is the unique solution of the following variational inequality:

〈
(I – f )x̄,x – x̄

〉 ≥ , ∀x ∈ F(S). (.)

In , Iiduka and Takahashi [] introduced following iterative process x ∈ C,

xn+ = αnu + ( – αn)SPC(xn – λnAxn), ∀n≥ , (.)

where u ∈ C, {αn} ⊂ (, ) and {λn} ⊂ [a,b] for some a, b with  < a < b < β . They proved
that under certain appropriate conditions imposed on {αn} and {λn}, the sequence {xn}

http://www.fixedpointtheoryandapplications.com/content/2012/1/111


Jitpeera and Kumam Fixed Point Theory and Applications 2012, 2012:111 Page 4 of 27
http://www.fixedpointtheoryandapplications.com/content/2012/1/111

generated by (.) converges strongly to a common element of the set of fixed points of
nonexpansive mapping and the set of solutions of the variational inequality for an inverse-
strongly monotone mapping (say x̄ ∈ C) which solve some variational inequality

〈x̄ – u,x – x̄〉 ≥ , ∀x ∈ F(S). (.)

In , Marino and Xu [] introduced a general iterative method for nonexpansive
mapping. They defined the sequence {xn} generated by the algorithm x ∈ C,

xn+ = αnγ f (xn) + (I – αnA)Sxn, n ≥ , (.)

where {αn} ⊂ (, ) and A is a strongly positive linear bounded operator. They proved that
if C = H and the sequence {αn} satisfies appropriate conditions, then the sequence {xn}
generated by (.) converge strongly to a fixed point of S (say x̄ ∈H) which is the unique
solution of the following variational inequality:

〈
(A – γ f )x̄,x – x̄

〉 ≥ , ∀x ∈ F(S), (.)

which is the optimality condition for the minimization problem

min
x∈F(S)



〈Ax,x〉 – h(x), (.)

where h is a potential function for γ f (i.e., h′(x) = γ f (x) for x ∈H).
In , Su et al. [] introduced the following iterative scheme by the viscosity approx-

imation method in a real Hilbert space: x,un ∈H

⎧⎨
⎩F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)SPC(un – λnAun),
(.)

for all n ∈ N, where {αn} ⊂ [, ) and {rn} ⊂ (,∞) satisfy some appropriate conditions.
Furthermore, they proved {xn} and {un} converge strongly to the same point z ∈ F(S) ∩
VI(C,A)∩ EP(F) where z = PF(S)∩VI(C,A)∩EP(F)f (z).
In , Tan and Chang [] introduced following iterative process for {Tn : C → C} is

a sequence of nonexpansive mappings. Let {xn} be the sequence defined by

xn+ = αnxn + ( – αn)
(
SPC

(
( – tn)JM,λ(I – λA)Tn(I –μB)

)
xn

)
, ∀n≥ , (.)

where {αn} ⊂ (, ), λ ∈ (, α] and μ ∈ (, β]. The sequence {xn} defined by (.) con-
verges strongly to a common element of the set of fixed points of nonexpansive mappings,
the set of solutions of the variational inequality and the generalized equilibrium problem.
In this article, we mixed and modified the iterative methods (.), (.) and (.) by

purposing the following new general viscosity iterative method: x,un ∈ C and

⎧⎪⎪⎨
⎪⎪⎩
un = T (F,ψ)

rn (xn – rnBxn),

vn = T (F,ψ)
sn (xn – snBxn),

xn+ = ξnPC[αnγ f (xn) + (I – αnA)SJM,λ(I – λB)un] + ( – ξn)vn, n ≥ ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/111
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where {αn}, {ξn} ⊂ (, ), λ ∈ (, β) such that  < a ≤ λ ≤ b < β , {rn} ∈ (, η) with  <
c≤ d ≤  – η and {sn} ∈ (, ρ) with  < e ≤ f ≤  – ρ satisfy some appropriate conditions.
The purpose of this article, we show that under some control conditions the sequence
{xn} converges strongly to a common element of the set of fixed points of nonexpansive
mappings, the common solutions of the generalized mixed equilibrium problem and the
set of solutions of the variational inclusion in a real Hilbert space.

2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H . Recall that the metric (nearest point)
projection PC fromH onto C assigns to each x ∈H , the unique point in PCx ∈ C satisfying
the property

‖x – PCx‖ =min
y∈C ‖x – y‖.

The following characterizes the projection PC . We recall some lemmas which will be
needed in the rest of this article.

Lemma . The function u ∈ C is a solution of the variational inequality (.) if and only
if u ∈ C satisfies the relation u = PC(u – λ�u) for all λ > .

Lemma . For a given z ∈H, u ∈ C, u = PCz ⇔ 〈u – z, v – u〉 ≥ , ∀v ∈ C.
It is well known that PC is a firmly nonexpansive mapping of H onto C and satisfies

‖PCx – PCy‖ ≤ 〈PCx – PCy,x – y〉, ∀x, y ∈H . (.)

Moreover, PCx is characterized by the following properties: PCx ∈ C and for all x ∈H, y ∈ C,

〈x – PCx, y – PCx〉 ≤ . (.)

Lemma . ([]) Let M :H → H be a maximal monotone mapping and let B :H → H
be a monotone and Lipshitz continuous mapping. Then the mapping L =M + B : H → H

is a maximal monotone mapping.

Lemma. ([]) EachHilbert spaceH satisfiesOpial’s condition, that is, for any sequence
{xn} ⊂ H with xn ⇀ x, the inequality lim infn→∞ ‖xn – x‖ < lim infn→∞ ‖xn – y‖, hold for
each y ∈H with y �= x.

Lemma . ([]) Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, ∀n≥ ,

where {γn} ⊂ (, ) and {δn} is a sequence inR such that
(i)

∑∞
n= γn = ∞;

(ii) lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| <∞.
Then limn→∞ an = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/111
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Lemma . ([]) Let C be a closed convex subset of a real Hilbert space H and let T :
C → C be a nonexpansive mapping. Then I – T is demiclosed at zero, that is,

xn ⇀ x, xn – Txn → 

implies x = Tx.

For solving the generalizedmixed equilibriumproblem, let us assume that the bifunction
F : C ×C →R, the nonlinear mapping � : C → H is continuous monotone and ψ : C →
R satisfies the following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for any x, y ∈ C;
(A) for each fixed y ∈ C, x �→ F(x, y) is weakly upper semicontinuous;
(A) for each fixed x ∈ C, y �→ F(x, y) is convex and lower semicontinuous;
(B) for each x ∈ C and r > , there exist a bounded subset Dx ⊆ C and yx ∈ C such that

for any z ∈ C \Dx,

F(z, yx) +ψ(yx) –ψ(z) +

r
〈yx – z, z – x〉 < , (.)

(B) C is a bounded set.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C × C → R be a bifunction mapping satisfies (A)-(A) and let ψ : C → R is convex
and lower semicontinuous such that C ∩ domψ �= ∅. Assume that either (B) or (B) holds.
For r >  and x ∈ H, then there exists u ∈ C such that

F(u, y) +ψ(y) –ψ(u) +

r
〈y – u,u – x〉 ≥ .

Define a mapping T (F ,ψ)
r :H → C as follows:

T (F ,ψ)
r (x) =

{
u ∈ C : F(u, y) +ψ(y) –ψ(u) +


r
〈y – u,u – x〉 ≥ ,∀y ∈ C

}
(.)

for all x ∈ H. Then, the following hold:
(i) T (F ,ψ)

r is single-valued;
(ii) T (F ,ψ)

r is firmly nonexpansive, i.e., for any x, y ∈H ,

∥∥T (F ,ψ)
r x – T (F ,ψ)

r y
∥∥ ≤ 〈

T (F ,ψ)
r x – T (F ,ψ)

r y,x – y
〉
;

(iii) F(T (F ,ψ)
r ) =MEP(F ,ψ);

(iv) MEP(F ,ψ) is closed and convex.

Lemma . ([]) Assume A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient γ̄ >  and  < ρ ≤ ‖A‖–, then ‖I – ρA‖ ≤  – ργ̄ .

Lemma . ([]) Let H be a real Hilbert space and A :H →H a mapping.
(i) If A is δ-strongly monotone and μ-strictly pseudo-contraction with δ +μ > , then

I –A is contraction with constant
√
( – δ)/μ.

http://www.fixedpointtheoryandapplications.com/content/2012/1/111
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(ii) If A is δ-strongly monotone and μ-strictly pseudo-contraction with δ +μ > , then for
any fixed number τ ∈ (, ), I – τA is contraction with constant  – τ ( –

√
( – δ)/μ).

3 Strong convergence theorems
In this section, we show a strong convergence theoremwhich solves the problemof finding
a common element of F(S),GMEP(F,ψ,B),GMEP(F,ψ,B) and I(B,M) of an inverse-
strongly monotone mapping in a real Hilbert space.

Theorem . Let H be a real Hilbert space, C be a closed convex subset of H. Let F, F
be two bifunctions of C × C into R satisfying (A)-(A) and B,B,B : C → H be β ,η,ρ-
inverse-strongly monotone mappings, ψ,ψ : C →R be convex and lower semicontinuous
function, f : C → C be a contraction with coefficient α ( < α < ), M :H → H be a maxi-
mal monotonemapping and A be a δ-strongly monotone andμ-strictly pseudo-contraction
mapping with δ +μ > , γ is a positive real number such that γ < 

α
( –

√
–δ
μ
). Assume that

either (B) or (B) holds. Let S be a nonexpansive mapping of H into itself such that

� := F(S)∩GMEP(F,ψ,B)∩GMEP(F,ψ,B)∩ I(B,M) �= ∅.

Suppose {xn} is a sequence generated by the following algorithm x ∈ C arbitrarily:

⎧⎪⎪⎨
⎪⎪⎩
un = T (F,ψ)

rn (xn – rnBxn),

vn = T (F,ψ)
sn (xn – snBxn),

xn+ = ξnPC[αnγ f (xn) + (I – αnA)SJM,λ(I – λB)un] + ( – ξn)vn, n ≥ ,

(.)

where {αn}, {ξn} ⊂ (, ), λ ∈ (, β) such that  < a ≤ λ ≤ b < β , {rn} ∈ (, η) with  < c ≤
d ≤  – η and {sn} ∈ (, ρ) with  < e ≤ f ≤  – ρ satisfy the following conditions:
(C): limn→∞ αn = , �∞

n=αn = ∞, �∞
n=|αn+ – αn| <∞,

(C):  < lim infn→∞ ξn < lim supn→∞ ξn < , �∞
n=|ξn+ – ξn| <∞,

(C): lim infn→∞ rn >  and limn→∞ |rn+ – rn| = ,
(C): lim infn→∞ sn >  and limn→∞ |sn+ – sn| = .
Then {xn} converges strongly to q ∈ �, where q = P�(γ f + I – A)(q) which solves the fol-

lowing variational inequality:

〈
(γ f –A)q,p – q

〉 ≤ , ∀p ∈ �

which is the optimality condition for the minimization problem

min
q∈�



〈Aq,q〉 – h(q), (.)

where h is a potential function for γ f (i.e., h′(q) = γ f (q) for q ∈ H).

Proof Since B is β-inverse-strongly monotone mappings, we have

∥∥(I – λB)x – (I – λB)y
∥∥ =

∥∥(x – y) – λ(Bx – By)
∥∥

= ‖x – y‖ – λ〈x – y,Bx – By〉 + λ‖Bx – By‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/111
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≤ ‖x – y‖ + λ(λ – β)‖Bx – By‖

≤ ‖x – y‖. (.)

And B, B are η,ρ-inverse-strongly monotone mappings, we have

∥∥(I – rnB)x – (I – rnB)y
∥∥ =

∥∥(x – y) – rn(Bx – By)
∥∥

= ‖x – y‖ – rn〈x – y,Bx – By〉 + rn‖Bx – By‖

≤ ‖x – y‖ + rn(rn – η)‖Bx – By‖

≤ ‖x – y‖. (.)

In similar way, we can obtain

∥∥(I – snB)x – (I – snB)y
∥∥ ≤ ‖x – y‖. (.)

It is clear that if  < λ < β ,  < rn < η,  < sn ≤ ρ then I – λB, I – rnB, I – snB are all
nonexpansive. We will divide the proof into six steps.
Step . We will show {xn} is bounded. Put yn = JM,λ(un – λBun), n ≥ . It follows that

‖yn – q‖ =
∥∥JM,λ(un – λBun) – JM,λ(q – λBq)

∥∥
≤ ‖un – q‖. (.)

By Lemma ., we have un = T (F,ψ)
rn (xn – rnBxn) for all n≥ . Then, we note that

‖un – q‖ =
∥∥T (F,ψ)

rn (xn – rnBxn) – T (F,ψ)
rn (q – rnBq)

∥∥

≤ ∥∥(xn – rnBxn) – (q – rnBq)
∥∥

≤ ‖xn – q‖ + rn(rn – η)‖Bxn – Bq‖

≤ ‖xn – q‖. (.)

In similar way, we can obtain

‖vn – q‖ =
∥∥T (F,ψ)

sn (xn – snBxn) – T (F,ψ)
sn (q – snBq)

∥∥

≤ ∥∥(xn – snBxn) – (q – snBq)
∥∥

≤ ‖xn – q‖ + sn(sn – ρ)‖Bxn – Bq‖

≤ ‖xn – q‖. (.)

Put zn = PC[αnγ f (xn)+ (I–αnA)Syn] for all n≥ . From (.) and Lemma .(ii), we deduce
that

‖xn+ – q‖
=

∥∥ξn(zn – q) + ( – ξn)(vn – q)
∥∥

≤ ξn
∥∥PC

[
αnγ f (xn) + (I – αnA)Syn

]
– PCq

∥∥ + ( – ξn)‖vn – q‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/111
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≤ ξn
∥∥αnγ f (xn) + (I – αnA)Syn – q

∥∥ + ( – ξn)‖vn – q‖
= ξn

∥∥αn
(
γ f (xn) –Aq

)
+ (I – αnA)(Syn – q)

∥∥ + ( – ξn)‖vn – q‖

≤ ξnαn
∥∥γ f (xn) –Aq

∥∥ + ξn

(
 – αn

(
 –

√
 – δ

μ

))
‖yn – q‖ + ( – ξn)‖vn – q‖

≤ ξnαnγα‖xn – q‖ + ξnαn
∥∥γ f (q) –Aq

∥∥ + ξn

(
 – αn

(
 –

√
 – δ

μ

))
‖xn – q‖

+ ( – ξn)‖xn – q‖

=
(
 –

(
 –

√
 – δ

μ
– γα

)
ξnαn

)
‖xn – q‖ + ξnαn

∥∥γ f (q) –Aq
∥∥

≤
(
 –

(
 –

√
 – δ

μ
– γα

)
ξnαn

)
‖xn – q‖

+
(
 –

√
 – δ

μ
– γα

)
ξnαn

‖γ f (q) –Aq‖
( –

√
–δ
μ

– γα)

≤ max

{
‖xn – q‖, ‖γ f (q) –Aq‖

 –
√

–δ
μ

– γα

}
. (.)

It follows from induction that

‖xn – q‖ ≤ max

{
‖x – q‖, ‖γ f (q) –Aq‖

 –
√

–δ
μ

– γα

}
, n≥ .

Therefore {xn} is bounded, so are {vn}, {yn}, {zn}, {Syn}, {f (xn)} and {ASyn}.
Step . We claim that limn→∞ ‖xn+ – xn+‖ = . From (.), we have

‖xn+ – xn+‖ =
∥∥ξn+zn+ + ( – ξn+)vn+ – ξnzn – ( – ξn)vn

∥∥
=

∥∥ξn+(zn+ – zn) + (ξn+ – ξn)zn

+ ( – ξn+)(vn+ – vn) + (ξn+ – ξn)vn
∥∥

≤ ξn+‖zn+ – zn‖ + ( – ξn+)‖vn+ – vn‖
+ |ξn+ – ξn|

(‖zn‖ + ‖vn‖
)
. (.)

We will estimate ‖vn+ – vn‖. On the other hand, from vn– = T (F,ψ)
sn– (xn– – sn–Bxn–) and

vn = T (F,ψ)
sn (xn – snBxn), it follows that

F(vn–, y) + 〈Bxn–, y – vn–〉 +ψ(y) –ψ(vn–)

+


sn–
〈y – vn–, vn– – xn–〉 ≥ , ∀y ∈ C (.)

and

F(vn, y) + 〈Bxn, y – vn〉 +ψ(y) –ψ(vn) +

sn

〈y – vn, vn – xn〉 ≥ , ∀y ∈ C. (.)
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Substituting y = vn in (.) and y = vn– in (.), we get

F(vn–, vn) + 〈Bxn–, vn – vn–〉 +ψ(vn) –ψ(vn–) +


sn–
〈vn – vn–, vn– – xn–〉 ≥ 

and

F(vn, vn–) + 〈Bxn, vn– – vn〉 +ψ(vn–) –ψ(vn) +

sn

〈vn– – vn, vn – xn〉 ≥ .

From (A), we obtain

〈
vn – vn–,Bxn– – Bxn +

vn– – xn–
sn–

–
vn – xn

sn

〉
≥ ,

and then
〈
vn – vn–, sn–(Bxn– – Bxn) + vn– – xn– –

sn–
sn

(vn – xn)
〉
≥ ,

so
〈
vn – vn–, sn–Bxn– – sn–Bxn + vn– – vn + vn – xn– –

sn–
sn

(vn – xn)
〉
≥ .

It follows that
〈
vn – vn–, (I – sn–B)xn – (I – sn–B)xn– + vn– – vn + vn – xn –

sn–
sn

(vn – xn)
〉
≥ ,

〈vn – vn–, vn– – vn〉 +
〈
vn – vn–,xn – xn– +

(
 –

sn–
sn

)
(vn – xn)

〉
≥ .

Without loss of generality, let us assume that there exists a real number e such that sn– >
e > , for all n ∈N. Then, we have

‖vn – vn–‖ ≤
〈
vn – vn–,xn – xn– +

(
 –

sn–
sn

)
(vn – xn)

〉

≤ ‖vn – vn–‖
{
‖xn – xn–‖ +

∣∣∣∣ – sn–
sn

∣∣∣∣‖vn – xn‖
}

and hence

‖vn – vn–‖ ≤ ‖xn – xn–‖ + 
sn

|sn – sn–|‖vn – xn‖

≤ ‖xn – xn–‖ + M

e
|sn – sn–|, (.)

whereM = sup{‖vn – xn‖ : n ∈N}. Substituting (.) into (.) that

‖xn+ – xn+‖ ≤ ξn+‖zn+ – zn‖ + ( – ξn+)
{
‖xn+ – xn‖ + M

e
|sn – sn–|

}

+ |ξn+ – ξn|
(‖zn‖ + ‖vn‖

)
. (.)
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We note that

‖zn+ – zn‖ =
∥∥PC

[
αn+γ f (xn+) + (I – αn+A)Syn+

]
– PC

[
αnγ f (xn) – (I – αnA)Syn

]∥∥
≤ ∥∥αn+γ f (xn+) + (I – αn+A)Syn+ –

(
αnγ f (xn) – (I – αnA)Syn

)∥∥
≤ ∥∥αn+γ

(
f (xn+) – f (xn)

)
+ (αn+ – αn)γ f (xn) + (I – αn+A)(Syn+ – Syn)

+ (αn – αn+)ASyn
∥∥

≤ αn+γα‖xn+ – xn‖ + |αn+ – αn|
∥∥γ f (xn)

∥∥
+

(
 – αn+

(
 –

√
 – δ

μ

))
‖yn+ – yn‖

+ |αn+ – αn|‖ASyn‖
≤ αn+γα‖xn+ – xn‖ + |αn+ – αn|

(∥∥γ f (xn)
∥∥ + ‖ASyn‖

)
+

(
 – αn+

(
 –

√
 – δ

μ

))
‖yn+ – yn‖. (.)

Since I – λB be nonexpansive, we have

‖yn+ – yn‖ =
∥∥JM,λ(un+ – λBun+) – JM,λ(un – λBun)

∥∥
≤ ∥∥(un+ – λBun+) – (un – λBun)

∥∥
≤ ‖un+ – un‖. (.)

On the other hand, from un– = T (F,ψ)
rn– (xn– – rn–Bxn–) and un = T (F,ψ)

rn (xn – rnBxn), it
follows that

F(un–, y) + 〈Bxn–, y – un–〉 +ψ(y) –ψ(un–)

+


rn–
〈y – un–,un– – xn–〉 ≥ , ∀y ∈ C (.)

and

F(un, y) + 〈Bxn, y – un〉 +ψ(y) –ψ(un) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C. (.)

Substituting y = un in (.) and y = un– in (.), we get

F(un–,un) + 〈Bxn–,un – un–〉 +ψ(un) –ψ(un–) +


rn–
〈un – un–,un– – xn–〉 ≥ 

and

F(un,un–) + 〈Bxn,un– – un〉 +ψ(un–) –ψ(un) +

rn

〈un– – un,un – xn〉 ≥ .

From (A), we obtain

〈
un – un–,Bxn– – Bxn +

un– – xn–
rn–

–
un – xn

rn

〉
≥ ,
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and then
〈
un – un–, rn–(Bxn– – Bxn) + un– – xn– –

rn–
rn

(un – xn)
〉
≥ ,

so
〈
un – un–, rn–Bxn– – rn–Bxn + un– – un + un – xn– –

rn–
rn

(un – xn)
〉
≥ .

It follows that
〈
un – un–, (I – rn–B)xn – (I – rn–B)xn– + un– – un + un – xn –

rn–
rn

(un – xn)
〉
≥ ,

〈un – un–,un– – un〉 +
〈
un – un–,xn – xn– +

(
 –

rn–
rn

)
(un – xn)

〉
≥ .

Without loss of generality, let us assume that there exists a real number c such that rn– >
c > , for all n ∈N. Then, we have

‖un – un–‖ ≤
〈
un – un–,xn – xn– +

(
 –

rn–
rn

)
(un – xn)

〉

≤ ‖un – un–‖
{
‖xn – xn–‖ +

∣∣∣∣ – rn–
rn

∣∣∣∣‖un – xn‖
}

and hence

‖un – un–‖ ≤ ‖xn – xn–‖ + 
rn

|rn – rn–|‖un – xn‖

≤ ‖xn – xn–‖ + M

c
|rn – rn–|, (.)

whereM = sup{‖un – xn‖ : n ∈N}. Substituting (.) into (.), we have

‖yn – yn–‖ ≤ ‖xn – xn–‖ + M

c
|rn – rn–|. (.)

Substituting (.) into (.), we obtain that

‖zn+ – zn‖ ≤ αn+γα‖xn+ – xn‖ + |αn+ – αn|
(∥∥γ f (xn)

∥∥ + ‖ASyn‖
)

+
(
 – αn+

(
 –

√
 – δ

μ

)){
‖xn – xn–‖ + M

c
|rn – rn–|

}
. (.)

And substituting (.), (.) into (.), we get

‖xn+ – xn+‖ ≤ ξn+

{
αn+γα‖xn+ – xn‖ + |αn+ – αn|

(∥∥γ f (xn)
∥∥ + ‖ASyn‖

)

+
(
 – αn+

(
 –

√
 – δ

μ

))
‖xn – xn–‖ + M

c
|rn – rn–|

}

+ ( – ξn+)
{
‖xn – xn–‖ + M

e
|sn – sn–|

}
+ |ξn+ – ξn|

(‖zn‖ + ‖vn‖
)
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≤
(
 –

((
 –

√
 – δ

μ

)
– γα

)
ξn+αn+

)
‖xn+ – xn‖ +

(|αn+ – αn|

+ |ξn+ – ξn|
)
M +

M

e
|sn – sn–| + M

c
|rn – rn–|, (.)

whereM >  is a constant satisfying

sup
n

{∥∥γ f (xn)
∥∥ + ‖ASyn‖,‖zn‖ + ‖vn‖

} ≤ M.

This together with (C)-(C) and Lemma ., imply that

lim
n→∞‖xn+ – xn+‖ = . (.)

From (.), we also have ‖yn+ – yn‖ →  as n→ ∞.
Step . We show the followings:
(i) limn→∞ ‖Bun – Bq‖ = ;
(ii) limn→∞ ‖Bxn – Bq‖ = ;
(iii) limn→∞ ‖Bxn – Bq‖ = .

For q ∈ � and q = JM,λ(q – λBq), then we get

‖yn – q‖ =
∥∥JM,λ(un – λBun) – JM,λ(q – λBq)

∥∥

≤ ∥∥(un – λBun) – (q – λBq)
∥∥

≤ ‖un – q‖ + λ(λ – β)‖Bun – Bq‖

≤ ‖xn – q‖ + λ(λ – β)‖Bun – Bq‖. (.)

It follows that

‖zn – q‖ =
∥∥PC

(
αnγ f (xn) + (I – αnA)Syn

)
– PC(q)

∥∥

≤ ∥∥αn
(
γ f (xn) –Aq

)
+ (I – αnA)(Syn – q)

∥∥

≤ αn
∥∥γ f (xn) –Aq

∥∥ +
(
 – αn

(
 –

√
 – δ

μ

))
‖yn – q‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

≤ αn
∥∥γ f (xn) –Aq

∥∥ + αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+
(
 – αn

(
 –

√
 – δ

μ

)){‖xn – q‖ + λ(λ – β)‖Bun – Bq‖}

≤ αn
∥∥γ f (xn) –Aq

∥∥ + αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ‖xn – q‖ +
(
 – αn

(
 –

√
 – δ

μ

))
λ(λ – β)‖Bun – Bq‖. (.)
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By the convexity of the norm ‖ · ‖, we have

‖xn+ – q‖ =
∥∥ξnzn + ( – ξn)vn – q

∥∥

≤ ∥∥ξn(zn – q) + ( – ξn)(vn – q)
∥∥

≤ ξn‖zn – q‖ + ( – ξn)‖vn – q‖. (.)

Substituting (.), (.) into (.), we obtain

‖xn+ – q‖

≤ ξn

{
αn

∥∥γ f (xn) –Aq
∥∥ + αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ‖xn – q‖ +
(
 – αn

(
 –

√
 – δ

μ

))
λ(λ – β)‖Bun – Bq‖

}
+ ( – ξn)‖xn – q‖

≤ ξnαn
∥∥γ f (xn) –Aq

∥∥ + ξnαn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ξn‖xn – q‖ + ξn

(
 – αn

(
 –

√
 – δ

μ

))
λ(λ – β)‖Bun – Bq‖

+ ( – ξn)‖xn – q‖.

So, we obtain

ξn

(
 – αn

(
 –

√
 – δ

μ

))
λ(β – λ)‖Bun – Bq‖

≤ ξnαn
∥∥γ f (xn) –Aq

∥∥ + εn

+ ‖xn – xn+‖
(‖xn – q‖ + ‖xn+ – q‖),

where εn = ξnαn( – αn( –
√

–δ
μ
))‖γ f (xn) –Aq‖‖yn – q‖. Since conditions (C)-(C) and

limn→∞ ‖xn+ – xn‖ = , then we obtain that ‖Bun – Bq‖ →  as n→ ∞. We consider this
inequality in (.) that

‖zn – q‖ ≤ αn
∥∥γ f (xn) –Aq

∥∥ +
(
 – αn

(
 –

√
 – δ

μ

))
‖yn – q‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖. (.)

Substituting (.) and (.) into (.), we have

‖zn – q‖ ≤ αn
∥∥γ f (xn) –Aq

∥∥ +
(
 – αn

(
 –

√
 – δ

μ

))

× {‖xn – q‖ + rn(rn – η)‖Bxn – Bq‖
}
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+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

= αn
∥∥γ f (xn) –Aq

∥∥ +
(
 – αn

(
 –

√
 – δ

μ

))
‖xn – q‖

+
(
 – αn

(
 –

√
 – δ

μ

))
rn(rn – η)‖Bxn – Bq‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

≤ αn
∥∥γ f (xn) –Aq

∥∥ + ‖xn – q‖

+
(
 – αn

(
 –

√
 – δ

μ

))
rn(rn – η)‖Bxn – Bq‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖. (.)

Substituting (.) and (.) into (.), we obtain

‖xn+ – q‖ ≤ ξn

{
αn

∥∥γ f (xn) –Aq
∥∥ + ‖xn – q‖

+
(
 – αn

(
 –

√
 – δ

μ

))
rn(rn – η)‖Bxn – Bq‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

}

+ ( – ξn)‖xn – q‖

= ξnαn
∥∥γ f (xn) –Aq

∥∥

+ξn‖xn – q‖ + ξn

(
 – αn

(
 –

√
 – δ

μ

))
rn(rn – η)‖Bxn – Bq‖

+ ξnαn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ( – ξn)‖xn – q‖. (.)

So, we also have

ξn

(
 – αn

(
 –

√
 – δ

μ

))
rn(η – rn)‖Bxn – Bq‖

≤ ξnαn
∥∥γ f (xn) –Aq

∥∥ + εn

+ ‖xn – xn+‖
(‖xn – q‖ + ‖xn+ – q‖),

where εn = ξnαn( – αn( –
√

–δ
μ
))‖γ f (xn) – Aq‖‖yn – q‖. Since conditions (C)-(C),

limn→∞ ‖xn+ – xn‖ = , then we obtain that ‖Bxn – Bq‖ →  as n → ∞. Substituting
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(.) into (.), we have

‖zn – q‖

≤ αn
∥∥γ f (xn) –Aq

∥∥

+
(
 – αn

(
 –

√
 – δ

μ

)){‖xn – q‖ + λ(λ – β)‖Bun – Bq‖}

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

≤ αn
∥∥γ f (xn) –Aq

∥∥ + ‖xn – q‖

+
(
 – αn

(
 –

√
 – δ

μ

))
λ(λ – β)‖Bun – Bq‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖. (.)

Substituting (.) and (.) into (.), we obtain

‖xn+ – q‖

≤ ξn

{
αn

∥∥γ f (xn) –Aq
∥∥ + ‖xn – q‖

+
(
 – αn

(
 –

√
 – δ

μ

))
λ(λ – β)‖Bun – Bq‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

}

+ ( – ξn)
{‖xn – q‖ + sn(sn – ρ)‖Bxn – Bq‖

}
= ξnαn

∥∥γ f (xn) –Aq
∥∥

+ ξn‖xn – q‖ + ξn

(
 – αn

(
 –

√
 – δ

μ

))
λ(λ – β)‖Bun – Bq‖

+ ξnαn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ( – ξn)‖xn – q‖ + ( – ξn)sn(sn – ρ)‖Bxn – Bq‖

= ξnαn
∥∥γ f (xn) –Aq

∥∥

+ ‖xn – q‖ + ξn

(
 – αn

(
 –

√
 – δ

μ

))
λ(λ – β)‖Bun – Bq‖

+ ξnαn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ( – ξn)sn(sn – ρ)‖Bxn – Bq‖. (.)
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So, we also have

( – ξn)sn(ρ – sn)‖Bxn – Bq‖

≤ ξnαn
∥∥γ f (xn) –Aq

∥∥ + εn + ‖xn – xn+‖
(‖xn – q‖ + ‖xn+ – q‖)

+ ξn

(
 – αn

(
 –

√
 – δ

μ

))
λ(λ – β)‖Bun – Bq‖,

where εn = ξnαn(–αn(–
√

–δ
μ
))‖γ f (xn)–Aq‖‖yn–q‖. Since conditions (C), (C), (C),

limn→∞ ‖xn+ –xn‖ =  and limn→∞ ‖Bun –Bq‖ = , then we obtain that ‖Bxn –Bq‖ → 
as n→ ∞.
Step . We show the followings:
(i) limn→∞ ‖xn – un‖ = ;
(ii) limn→∞ ‖un – yn‖ = ;
(iii) limn→∞ ‖yn – Syn‖ = .

Since T (F,ψ)
rn is firmly nonexpansive, we observe that

‖un – q‖ =
∥∥T (F,ψ)

rn (xn – rnBxn) – T (F,ψ)
rn (q – rnBq)

∥∥

≤ 〈
(xn – rnBxn) – (q – rnBq),un – q

〉
=



(∥∥(xn – rnBxn) – (q – rnBq)

∥∥ + ‖un – q‖

–
∥∥(xn – rnBxn) – (q – rnBq) – (un – q)

∥∥)
≤ 


(‖xn – q‖ + ‖un – q‖ – ∥∥(xn – un) – rn(Bxn – Bq)

∥∥)
=



(‖xn – q‖ + ‖un – q‖ – ‖xn – un‖

+ rn〈Bxn – Bq,xn – un〉 – rn‖Bxn – Bq‖
)
.

Hence, we have

‖un – q‖ ≤ ‖xn – q‖ – ‖xn – un‖ + rn‖Bxn – Bq‖‖xn – un‖. (.)

Since JM,λ is -inverse-strongly monotone, we compute

‖yn – q‖ =
∥∥JM,λ(un – λBun) – JM,λ(q – λBq)

∥∥

≤ 〈
(un – λBun) – (q – λBq), yn – q

〉
=



(∥∥(un – λBun) – (q – λBq)

∥∥ + ‖yn – q‖

–
∥∥(un – λBun) – (q – λBq) – (yn – q)

∥∥)
=



(‖un – q‖ + ‖yn – q‖ – ∥∥(un – yn) – λ(Bun – Bq)

∥∥)
≤ 


(‖un – q‖ + ‖yn – q‖ – ‖un – yn‖

+ λ〈un – yn,Bun – Bq〉 – λ‖Bun – Bq‖), (.)
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which implies that

‖yn – q‖ ≤ ‖un – q‖ – ‖un – yn‖ + λ‖un – yn‖‖Bun – Bq‖. (.)

Substitute (.) into (.), we have

‖yn – q‖ ≤ {‖xn – q‖ – ‖xn – un‖ + rn‖Bxn – Bq‖‖xn – un‖
}

– ‖un – yn‖ + λ‖un – yn‖‖Bun – Bq‖. (.)

Substitute (.) into (.), we have

‖zn – q‖ ≤ αn
∥∥γ f (xn) –Aq

∥∥ +
(
 – αn

(
 –

√
 – δ

μ

)){‖xn – q‖ – ‖xn – un‖

+ rn‖Bxn – Bq‖‖xn – un‖ – ‖un – yn‖ + λ‖un – yn‖‖Bun – Bq‖}
+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

≤ αn
∥∥γ f (xn) –Aq

∥∥ + ‖xn – q‖ – ‖xn – un‖

+ 
(
 – αn

(
 –

√
 – δ

μ

))
rn‖Bxn – Bq‖‖xn – un‖ – ‖un – yn‖

+ 
(
 – αn

(
 –

√
 – δ

μ

))
λ‖un – yn‖‖Bun – Bq‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖. (.)

Since T (F,ψ)
sn is firmly nonexpansive, we observe that

‖vn – q‖ =
∥∥T (F,ψ)

sn (xn – snBxn) – T (F,ψ)
sn (q – snBq)

∥∥

≤ 〈
(xn – snBxn) – (q – snBq), vn – q

〉
=



(∥∥(xn – snBxn) – (q – snBq)

∥∥ + ‖vn – q‖

–
∥∥(xn – snBxn) – (q – snBq) – (vn – q)

∥∥)
≤ 


(‖xn – q‖ + ‖vn – q‖ – ∥∥(xn – vn) – sn(Bxn – Bq)

∥∥)
=



(‖xn – q‖ + ‖vn – q‖ – ‖xn – vn‖

+ sn〈Bxn – Bq,xn – vn〉 – sn‖Bxn – Bq‖
)
.

Hence, we have

‖vn – q‖ ≤ ‖xn – q‖ – ‖xn – vn‖ + sn‖Bxn – Bq‖‖xn – vn‖. (.)
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Substitute (.) and (.) into (.), we obtain

‖xn+ – q‖

≤ ξn‖zn – q‖ + ( – ξn)‖vn – q‖

≤ ξn

{
αn

∥∥γ f (xn) –Aq
∥∥ + ‖xn – q‖ – ‖xn – un‖ – ‖un – yn‖

+ 
(
 – αn

(
 –

√
 – δ

μ

))
rn‖Bxn – Bq‖‖xn – un‖

+ 
(
 – αn

(
 –

√
 – δ

μ

))
λ‖un – yn‖‖Bun – Bq‖

+ αn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

}

+ ( – ξn)
{‖xn – q‖ – ‖xn – vn‖ + sn‖Bxn – Bq‖‖xn – vn‖

}
≤ ξnαn

∥∥γ f (xn) –Aq
∥∥ + ξn‖xn – q‖ – ‖xn – un‖ – ‖un – yn‖

+ ξn
(
 – αn

(
 –

√
 – δ

μ

))
rn‖Bxn – Bq‖‖xn – un‖

+ ξn
(
 – αn

(
 –

√
 – δ

μ

))
λ‖un – yn‖‖Bun – Bq‖

+ ξnαn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ( – ξn)‖xn – q‖ – ‖xn – vn‖ + ( – ξn)sn‖Bxn – Bq‖‖xn – vn‖. (.)

Then, we derive

‖xn – un‖ + ‖un – yn‖ + ‖xn – vn‖

≤ ξnαn
∥∥γ f (xn) –Aq

∥∥ + ‖xn – q‖ – ‖xn+ – q‖

+ ξn
(
 – αn

(
 –

√
 – δ

μ

))
rn‖Bxn – Bq‖‖xn – un‖

+ ξn
(
 – αn

(
 –

√
 – δ

μ

))
λ‖un – yn‖‖Bun – Bq‖

+ ξnαn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ( – ξn)sn‖Bxn – Bq‖‖xn – vn‖
≤ ξnαn

∥∥γ f (xn) –Aq
∥∥ + ‖xn+ – xn‖

(‖xn – q‖ + ‖xn+ – q‖)
+ ξn

(
 – αn

(
 –

√
 – δ

μ

))
rn‖Bxn – Bq‖‖xn – un‖
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+ ξn
(
 – αn

(
 –

√
 – δ

μ

))
λ‖un – yn‖‖Bun – Bq‖

+ ξnαn

(
 – αn

(
 –

√
 – δ

μ

))∥∥γ f (xn) –Aq
∥∥‖yn – q‖

+ ( – ξn)sn‖Bxn – Bq‖‖xn – vn‖. (.)

By conditions (C)-(C), limn→∞ ‖xn+ – xn‖ = , limn→∞ ‖Bun –Bq‖ = , limn→∞ ‖Bxn –
Bq‖ =  and limn→∞ ‖Bxn – Bq‖ = . So, we have ‖xn – un‖ → , ‖un – yn‖ → ,
‖xn – vn‖ →  as n → ∞. We note that xn+ – xn = ξn(zn – xn) + ( – ξn)(vn – xn). From
limn→∞ ‖xn – vn‖ = , limn→∞ ‖xn+ – xn‖ = , and hence

lim
n→∞‖zn – xn‖ = . (.)

It follows that

‖xn – yn‖ ≤ ‖xn – un‖ + ‖un – yn‖ → , as n→ ∞. (.)

Since

‖zn – yn‖ ≤ ‖zn – xn‖ + ‖xn – yn‖.

So, by (.) and limn→∞ ‖xn – yn‖ = , we obtain

lim
n→∞‖zn – yn‖ = . (.)

Therefore, we observe that

‖Syn – zn‖ =
∥∥PCSyn – PC

(
αnγ f (xn) + (I – αnA)Syn

)∥∥
≤ ∥∥Syn – αnγ f (xn) – (I – αnA)Syn

∥∥
= αn

∥∥γ f (xn) –ASyn
∥∥. (.)

By condition (C), we have ‖Syn – zn‖ →  as n→ ∞. Next, we observe that

‖Syn – yn‖ ≤ ‖Syn – zn‖ + ‖zn – yn‖.

By (.) and (.), we have ‖Syn – yn‖ →  as n → ∞.
Step .We show that q ∈ � := F(S)∩GMEP(F,ψ,B)∩GMEP(F,ψ,B)∩ I(B,M) and

lim supn→∞〈(γ f – A)q,Syn – q〉 ≤ . It is easy to see that P�(γ f + (I – A)) is a contraction
of H into itself. In fact, from Lemma ., we have

∥∥P�

(
γ f + (I –A)

)
x – P�

(
γ f + (I –A)

)
y
∥∥

≤ ∥∥(
γ f + (I –A)

)
x –

(
γ f + (I –A)

)
y
∥∥

≤ γ
∥∥f (x) – f (y)

∥∥ + (I –A)‖x – y‖
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≤ γα‖x – y‖ +
(
 –

(
 –

√
 – δ

μ

))
‖x – y‖

=
(√

 – δ

μ
+ γα

)
‖x – y‖.

Hence H is complete, there exists a unique fixed point q ∈ H such that q = P�(γ f + (I –
A))(q). By Lemma . we obtain that 〈(γ f –A)q,w – q〉 ≤  for all w ∈ �.
Next, we show that lim supn→∞〈(γ f – A)q,Syn – q〉 ≤ , where q = P�(γ f + I – A)(q) is

the unique solution of the variational inequality 〈(γ f – A)q,p – qr〉 ≥ , ∀p ∈ �. We can
choose a subsequence {yni} of {yn} such that

lim sup
n→∞

〈
(γ f –A)q,Syn – q

〉
= lim

i→∞
〈
(γ f –A)q,Syni – q

〉
.

As {yni} is bounded, there exists a subsequence {ynij } of {yni}which converges weakly to w.
We may assume without loss of generality that yni ⇀ w. We claim that w ∈ �. Since ‖yn –
Syn‖ →  and by Lemma ., we have w ∈ F(S).
Next, we show that w ∈ GMEP(F,ψ,B). Since un = T (F,ψ)

rn (xn – rnBxn), we know that

F(un, y) +ψ(y) –ψ(un) + 〈Bxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C.

It follows by (A) that

ψ(y) –ψ(un) + 〈Bxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ F(y,un), ∀y ∈ C.

Hence,

ψ(y) –ψ(uni ) + 〈Bxni , y – uni〉 +

rni

〈y – uni ,uni – xni〉 ≥ F(y,uni ), ∀y ∈ C. (.)

For t ∈ (, ] and y ∈ H , let yt = ty + ( – t)w. From (.), we have

〈yt – uni ,Byt〉
≥ 〈yt – uni ,Byt〉 –ψ(yt) +ψ(uni ) – 〈Bxni , yt – uni〉

–

rni

〈yt – uni ,uni – xni〉 + F(yt ,uni )

= 〈yt – uni ,Byt – Buni〉 + 〈yt – uni ,Buni – Bxni〉 –ψ(yt) +ψ(uni )

–

rni

〈yt – uni ,uni – xni〉 + F(yt ,uni ).

From ‖uni – xni‖ → , we have ‖Buni – Bxni‖ → . Further, from (A) and the weakly
lower semicontinuity of ψ,

uni–xni
rni

→  and uni ⇀ w, we have

〈yt –w,Byt〉 ≥ –ψ(yt) +ψ(w) + F(yt ,w). (.)
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From (A), (A) and (.), we have

 = F(yt , yt) –ψ(yt) +ψ(yt)

≤ tF(yt , y) + ( – t)F(yt ,w) + tψ(y) + ( – t)ψ(w) –ψ(yt)

= t
[
F(yt , y) +ψ(y) –ψ(yt)

]
+ ( – t)

[
F(yt ,w) +ψ(w) –ψ(yt)

]
≤ t

[
F(yt , y) +ψ(y) –ψ(yt)

]
+ ( – t)〈yt –w,Byt〉

= t
[
F(yt , y) +ψ(y) –ψ(yt)

]
+ ( – t)t〈y –w,Byt〉,

and hence

 ≤ F(yt , y) +ψ(y) –ψ(yt) + ( – t)〈y –w,Byt〉.

Letting t → , we have, for each y ∈ C,

F(w, y) +ψ(y) –ψ(w) + 〈y –w,Bw〉 ≥ .

This implies that w ∈ GMEP(F,ψ,B). By following the same arguments, we can show
that w ∈GMEP(F,ψ,B).
Lastly, we show that w ∈ I(B,M). In fact, since B is a β-inverse-strongly monotone, B is

monotone and Lipschitz continuous mapping. It follows from Lemma . that M + B is a
maximal monotone. Let (v, g) ∈G(M +B), since g –Bv ∈M(v). Again since yni = JM,λ(uni –
λBuni ), we have uni – λBuni ∈ (I + λM)(yni ), that is,


λ
(uni – yni – λBuni ) ∈M(yni ). By virtue

of the maximal monotonicity ofM + B, we have

〈
v – yni , g – Bv –


λ
(uni – yni – λBuni )

〉
≥ ,

and hence

〈v – yni , g〉 ≥
〈
v – yni ,Bv +


λ
(uni – yni – λBuni )

〉
= 〈v – yni ,Bv – Byni〉 + 〈v – yni ,Byni – Buni〉

+
〈
v – yni ,


λ
(uni – yni )

〉
.

It follows from limn→∞ ‖un – yn‖ = , we have limn→∞ ‖Bun – Byn‖ =  and yni ⇀ w that

lim sup
n→∞

〈v – yn, g〉 = 〈v –w, g〉 ≥ .

It follows from themaximalmonotonicity ofB+M that θ ∈ (M+B)(w), that is,w ∈ I(B,M).
Therefore, w ∈ �. It follows that

lim sup
n→∞

〈
(γ f –A)q,Syn – q

〉
= lim

i→∞
〈
(γ f –A)q,Syni – q

〉
=

〈
(γ f –A)q,w – q

〉 ≤ .
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Step . We prove xn → q. By using (.) and together with Schwarz inequality, we
have

‖xn+ – q‖ =
∥∥ξnPC

[(
αnγ f (xn) + (I – αnA)Syn

)
– q

]
+ ( – ξn)(vn – q)

∥∥

≤ ξn
∥∥PC

[(
αnγ f (xn) + (I – αnA)Syn

)
– PC(q)

]∥∥ + ( – ξn)‖vn – q‖

≤ ξn
∥∥αn

(
γ f (xn) –Aq

)
+ (I – αnA)(Syn – q)

∥∥ + ( – ξn)‖xn – q‖

≤ ξn(I – αnA)‖Syn – q‖ + ξnα

n
∥∥γ f (xn) –Aq

∥∥

+ ξnαn
〈
(I – αnA)(Syn – q),γ f (xn) –Aq

〉
+ ( – ξn)‖xn – q‖

≤ ξn

(
 – αn

(
 –

√
 – δ

μ

))

‖yn – q‖ + ξnα

n
∥∥γ f (xn) –Aq

∥∥

+ ξnαn
〈
Syn – q,γ f (xn) –Aq

〉
– ξnα

n
〈
A(Syn – q),γ f (xn) –Aq

〉
+ ( – ξn)‖xn – q‖

≤ ξn

(
 – αn

(
 –

√
 – δ

μ

))

‖xn – q‖ + ξnα

n
∥∥γ f (xn) –Aq

∥∥

+ ξnαn
〈
Syn – q,γ f (xn) – γ f (q)

〉
+ ξnαn

〈
Syn – q,γ f (q) –Aq

〉
– ξnα

n
〈
A(Syn – q),γ f (xn) –Aq

〉
+ ( – ξn)‖xn – q‖

≤ ξn

(
 – αn

(
 –

√
 – δ

μ

))

‖xn – q‖ + ξnα

n
∥∥γ f (xn) –Aq

∥∥

+ ξnαn‖Syn – q‖∥∥γ f (xn) – γ f (q)
∥∥ + ξnαn

〈
Syn – q,γ f (q) –Aq

〉
– ξnα

n
〈
A(Syn – q),γ f (xn) –Aq

〉
+ ( – ξn)‖xn – q‖

≤ ξn

(
 – αn

(
 –

√
 – δ

μ

))

‖xn – q‖ + ξnα

n
∥∥γ f (xn) –Aq

∥∥

+ ξnγααn‖yn – q‖‖xn – q‖ + ξnαn
〈
Syn – q,γ f (q) –Aq

〉
– ξnα

n
〈
A(Syn – q),γ f (xn) –Aq

〉
+ ( – ξn)‖xn – q‖

≤
(

ξn – ξnαn

(
 –

√
 – δ

μ

)
+ ξnα


n

(
 –

√
 – δ

μ

))
‖xn – q‖

+ ξnα

n
∥∥γ f (xn) –Aq

∥∥ + ξnγααn‖xn – q‖

+ ξnαn
〈
Syn – q,γ f (q) –Aq

〉
– ξnα

n
〈
A(Syn – q),γ f (xn) –Aq

〉
+ ( – ξn)‖xn – q‖

≤
(
 – ξnαn

(
 –

√
 – δ

μ

)
+ ξnγααn

)
‖xn – q‖

+ αn

{
ξnαn

∥∥γ f (xn) –Aq
∥∥

+ ξn
〈
Syn – q,γ f (q) –Aq

〉
– ξnαn

∥∥A(Syn – q)
∥∥∥∥γ f (xn) –Aq

∥∥
+ ξnαn

(
 –

√
 – δ

μ

)

‖xn – q‖
}
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=
(
 – 

((
 –

√
 – δ

μ

)
– γα

)
ξnαn

)
‖xn – q‖ + αn

{
ξnαn

∥∥γ f (xn) –Aq
∥∥

+ ξn
〈
Syn – q,γ f (q) –Aq

〉
– ξnαn

∥∥A(Syn – q)
∥∥∥∥γ f (xn) –Aq

∥∥
+ ξnαn

(
 –

√
 – δ

μ

)

‖xn – q‖
}
.

Since {xn} is bounded, where η ≥ ξn‖γ f (xn)–Aq‖ –ξn‖A(Syn–q)‖‖γ f (xn)–Aq‖+ξn(–√
–δ
μ
)‖xn – q‖ for all n≥ . It follows that

‖xn+ – q‖ ≤
(
 – 

((
 –

√
 – δ

μ

)
– γα

)
ξnαn

)
‖xn – q‖ + αnςn, (.)

where ςn = ξn〈Syn – q,γ f (q) – Aq〉 + ηαn. By lim supn→∞〈(γ f – A)q,Syn – q〉 ≤ , we get
lim supn→∞ ςn ≤ . Applying Lemma ., we can conclude that xn → q. This completes
the proof. �

Corollary . Let H be a real Hilbert space, C be a closed convex subset of H. Let F, F
be two bifunctions of C × C into R satisfying (A)-(A) and B,B,B : C → H be β ,η,ρ-
inverse-strongly monotone mappings, ψ,ψ : C →R be convex and lower semicontinuous
function, f : C → C be a contraction with coefficient α ( < α < ), M :H → H be a max-
imal monotone mapping. Assume that either (B) or (B) holds. Let S be a nonexpansive
mapping of H into itself such that

� := F(S)∩GMEP(F,ψ,B)∩GMEP(F,ψ,B)∩ I(B,M) �= ∅.

Suppose {xn} is a sequence generated by the following algorithm x ∈ C arbitrarily:

⎧⎪⎪⎨
⎪⎪⎩
un = T (F,ψ)

rn (xn – rnBxn),

vn = T (F,ψ)
sn (xn – snBxn),

xn+ = ξnPC[αnf (xn) + (I – αn)SJM,λ(I – λB)un] + ( – ξn)vn,

where {αn}, {ξn} ⊂ (, ), λ ∈ (, β) such that  < a ≤ λ ≤ b < β , {rn} ∈ (, η) with  < c ≤
d ≤  – η and {sn} ∈ (, ρ) with  < e ≤ f ≤  – ρ satisfy the conditions (C)-(C).
Then {xn} converges strongly to q ∈ �, where q = P�(f + I)(q) which solves the following

variational inequality:

〈
(f – I)q,p – q

〉 ≤ , ∀p ∈ �.

Proof Putting A ≡ I and γ ≡  in Theorem ., we can obtain desired conclusion imme-
diately. �

Corollary . Let H be a real Hilbert space, C be a closed convex subset of H. Let F, F
be two bifunctions of C × C into R satisfying (A)-(A) and B,B,B : C → H be β ,η,ρ-
inverse-strongly monotone mappings, ψ,ψ : C →R be convex and lower semicontinuous
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function. Assume that either (B) or (B) holds. Let S be a nonexpansive mapping of H into
itself such that

� := F(S)∩GMEP(F,ψ,B)∩GMEP(F,ψ,B)∩ I(B,M) �= ∅.

Suppose {xn} is a sequence generated by the following algorithm x ∈ C arbitrarily:

⎧⎪⎪⎨
⎪⎪⎩
un = T (F,ψ)

rn (xn – rnBxn),

vn = T (F,ψ)
sn (xn – snBxn),

xn+ = ξnPC[αnu + (I – αn)SJM,λ(I – λB)un] + ( – ξn)vn,

where {αn}, {ξn} ⊂ (, ), λ ∈ (, β) such that  < a ≤ λ ≤ b < β , {rn} ∈ (, η) with  < c ≤
d ≤  – η and {sn} ∈ (, ρ) with  < e ≤ f ≤  – ρ satisfy the conditions (C)-(C).
Then {xn} converges strongly to q ∈ �, where q = P�(q) which solves the following varia-

tional inequality:

〈u – q,p – q〉 ≤ , ∀p ∈ �.

Proof Putting f ≡ u ∈ C is a constant in Corollary ., we can obtain desired conclusion
immediately. �

Corollary . Let H be a real Hilbert space, C be a closed convex subset of H. Let F, F
be two bifunctions of C × C into R satisfying (A)-(A) and B,B,B : C → H be β ,η,ρ-
inverse-strongly monotone mappings, ψ,ψ : C →R be convex and lower semicontinuous
function, f : C → C be a contraction with coefficient α ( < α < ) and A is δ-strongly mono-
tone and μ-strictly pseudo-contraction with δ +μ > , γ is a positive real number such that
γ < 

α
( –

√
–δ
μ
). Assume that either (B) or (B) holds. Let S be a nonexpansive mapping

of C into itself such that

� := F(S)∩GMEP(F,ψ,B)∩GMEP(F,ψ,B)∩VI(C,B) �= ∅.

Suppose {xn} is a sequence generated by the following algorithm x ∈ C arbitrarily:

⎧⎪⎪⎨
⎪⎪⎩
un = T (F,ψ)

rn (xn – rnBxn),

vn = T (F,ψ)
sn (xn – snBxn),

xn+ = ξnPC[αnγ f (xn) + (I – αnA)SPC(I – λB)un] + ( – ξn)vn,

where {αn}, {ξn} ⊂ (, ), λ ∈ (, β) such that  < a ≤ λ ≤ b < β , {rn} ∈ (, η) with  < c ≤
d ≤  – η and {sn} ∈ (, ρ) with  < e ≤ f ≤  – ρ satisfy the conditions (C)-(C).
Then {xn} converges strongly to q ∈ �, where q = P�(γ f + I – A)(q) which solves the fol-

lowing variational inequality:

〈
(γ f –A)q,p – q

〉 ≤ , ∀p ∈ �.

Proof Taking JM,λ = PC in Theorem ., we can obtain desired conclusion immediately. �
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Corollary . Let H be a real Hilbert space, C be a closed convex subset of H. Let f : C →
C be a contraction with coefficient α ( < α < ), A is δ-strongly monotone and μ-strictly
pseudo-contraction with δ + μ > , γ is a positive real number such that γ < 

α
( –

√
–δ
μ
).

Let S be a nonexpansive mapping of C into itself such that

� := F(S) �= ∅.

Suppose {xn} is a sequence generated by the following algorithm x ∈ C arbitrarily:

xn+ = αnγ f (xn) + (I – αnA)Sxn,

where {αn} ⊂ (, ) and satisfy the condition limn→∞ αn = . Then {xn} converges strongly
to q ∈ �, where q = P�(γ f + I –A)(q) which solves the following variational inequality:

〈
(γ f –A)q,p – q

〉 ≤ , ∀p ∈ �.

Proof Taking ξn ≡ , PC ≡ I and B,B,B ≡  in Corollary ., we can obtain desired con-
clusion immediately. �

Remark . Corollary . generalizes and improves the result of Marino and Xu [].

Corollary . Let H be a real Hilbert space, C be a closed convex subset of H. Let F,
F be two bifunctions of C × C into R satisfying (A)-(A) and B,B : C → H be η,ρ-
inverse-strongly monotone mappings, ψ,ψ : C →R be convex and lower semicontinuous
function, f : C → C be a contraction with coefficient α ( < α < ). Assume that either (B)
or (B) holds. Let S be a nonexpansive mapping of C into itself such that

� := F(S)∩GMEP(F,ψ,B)∩GMEP(F,ψ,B) �= ∅.

Suppose {xn} is a sequence generated by the following algorithm x ∈ C arbitrarily:

⎧⎪⎪⎨
⎪⎪⎩
un = T (F,ψ)

rn (xn – rnBxn),

vn = T (F,ψ)
sn (xn – snBxn),

xn+ = ξnPC[αnf (xn) + (I – αn)Sun] + ( – ξn)vn,

where {αn}, {ξn} ⊂ (, ), {rn} ∈ (, η) with  < c≤ d ≤  – η and {sn} ∈ (, ρ) with  < e ≤
f ≤  – ρ satisfy the conditions (C)-(C).
Then {xn} converges strongly to q ∈ �, where q = P�(f + I)(q) which solves the following

variational inequality:

〈
(f – I)q,p – q

〉 ≤ , ∀p ∈ �.

Proof Taking γ ≡ , A ≡ I , JM,λ ≡ I and B ≡  in Theorem ., we can obtain desired
conclusion immediately. �

Remark . Corollary . generalizes and improves the result of Yao and Liou [].
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