An iterative algorithm to approximate a common element of the set of common fixed points for a finite family of strict pseudo-contractions and of the set of solutions for a modified system of variational inequalities

Atid Kangtunyakarn*

"Correspondence beawrock@hotmail.com Department of Mathematics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

In this paper, we introduce a new iterative algorithm for finding a common element of the set of fixed points of a finite family of $\boldsymbol{\kappa}_{i}$-strictly pseudo-contractive mappings and the set of solutions of new variational inequalities problems in Hilbert space. By using our main results, we obtain an interesting theorem involving a finite family of κ-strictly pseudo-contractive mappings and two sets of solutions of the variational inequalities problem.

Keywords: pseudo-contractive mapping; modification of a general system of variational inequalities; S-mapping

1 Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by $\|\cdot\|$ and $\langle\cdot, \cdot\rangle$, respectively. Let C be a nonempty closed convex subset of H. A mapping $S: C \rightarrow C$ is called nonexpansive if

$$
\|S x-S y\| \leq\|x-y\|,
$$

for all $x, y \in C$.
A mapping S is called a κ-strictly pseudo-contractive mapping if there exists $\kappa \in[0,1)$ such that

$$
\|S x-S y\|^{2} \leq\|x-y\|^{2}+\kappa\|(I-T) x-(I-T) y\|^{2},
$$

for all $x, y \in C$.
It is easy to see that every noexpansive mapping is a κ-strictly pseudo-contractive mapping.

[^0]Let $A: C \rightarrow H$. The variational inequality problem is to find a point $u \in C$ such that

$$
\begin{equation*}
\langle A u, v-u\rangle \geq 0 \tag{1.1}
\end{equation*}
$$

for all $v \in C$. The set of solutions of (1.1) is denoted by $\mathrm{VI}(C, A)$.
Variational inequalities were initially studied by Kinderlehrer and Stampacchia [1] and Lions and Stampacchia [2]. Such a problem has been studied by many researchers, and it is connected with a wide range of applications in industry, finance, economics, social sciences, ecology, regional, pure and applied sciences; see, e.g., [3-9].

A mapping A of C into H is called α-inverse-strongly monotone, see [10], if there exists a positive real number α such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}
$$

for all $x, y \in C$.
Let $D_{1}, D_{2}: C \rightarrow H$ be two mappings. In 2008, Ceng et al. [11] introduced a problem for finding $\left(x^{*}, z^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle\lambda_{1} D_{1} z^{*}+x^{*}-z^{*}, x-x^{*}\right\rangle \geq 0, & \forall x \in C \tag{1.2}\\ \left\langle\lambda_{2} D_{2} x^{*}+z^{*}-x^{*}, x-z^{*}\right\rangle \geq 0, & \forall x \in C\end{cases}
$$

which is called a system of variational inequalities where $\lambda_{1}, \lambda_{2}>0$. By a modification of (1.2), we consider the problem for finding $\left(x^{*}, z^{*}\right) \in C \times C$ such that

$$
\left\{\begin{array}{l}
\left\langle x^{*}-\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) z^{*}\right), x-x^{*}\right\rangle \geq 0, \quad \forall x \in C \tag{1.3}\\
\left\langle z^{*}-\left(I-\lambda_{2} D_{2}\right) x^{*}, x-z^{*}\right\rangle \geq 0, \quad \forall x \in C
\end{array}\right.
$$

which is called a modification of system of variational inequalities, for every $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1]$. If $a=0,(1.3)$ reduce to (1.2).

In 2008, Ceng et al. [11] introduce and studied a relaxed extragradient method for finding solutions of a general system of variational inequalities with inverse-strongly monotone mappings in a real Hilbert space as follows.

Theorem 1.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let the mappings $A, B: C \rightarrow H$ be α-inverse-strongly monotone and β-inverse-strongly monotone, respectively. Let $S: C \rightarrow C$ be a nonexpansive mapping such that $F(S) \cap \Omega$, where Ω is the set of fixed points of the mapping $G: C \rightarrow C$, defined by $G(x)=P_{C}\left(P_{C}(x-\mu B x)-\lambda A P_{C}(x-\right.$ $\mu B x)$), for all $x \in C$. Suppose that $x_{1}=u \in C$ and $\left\{x_{n}\right\}$ is generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\mu B x_{n}\right), \tag{1.4}\\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} P_{C}\left(x_{n}-\lambda A x_{n}\right),
\end{array}\right.
$$

where $\lambda \in(0,2 \alpha), \mu \in(0,2 \beta)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are three sequences in $[0,1]$ such that
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1, \quad \forall n \geq 1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$.

Then $\left\{x_{n}\right\}$ converges strongly to $\tilde{x}=P_{F(S) \cap \Omega} u$ and $(\widetilde{x}, \tilde{y})$ is a solution of problem (1.2), where $\tilde{y}=P_{C}(\widetilde{x}-\mu B \widetilde{x})$.

In the last decade, many author studied the problem for finding an element of the set of fixed points of a nonlinear mapping; see, for instance, [12-14].
From the motivation of [11] and the research in the same direction, we prove a strong convergence theorem for finding a common element of the set of fixed points of a finite family of κ_{i}-strictly pseudo-contractive mappings and the set of solutions of a modified general system of variational inequalities problems. Moreover, in the last section, we prove an interesting theorem involving the set of a finite family of κ_{i}-strictly pseudo-contractive mappings and two sets of solutions of variational inequalities problems by using our main results.

2 Preliminaries

In this section, we collect and give some useful lemmas that will be used for our main result in the next section.
Let C be a closed convex subset of a real Hilbert space H, let P_{C} be the metric projection of H onto C, i.e., for $x \in H, P_{C} x$ satisfies the property

$$
\left\|x-P_{C} x\right\|=\min _{y \in C}\|x-y\| .
$$

It is well known that P_{C} is a nonexpansive mapping and satisfies

$$
\left\langle x-y, P_{C} x-P_{C} y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2}, \quad \forall x, y \in H
$$

Obviously, this immediately implies that

$$
\left\|(x-y)-\left(P_{C} x-P_{C} y\right)\right\|^{2} \leq\|x-y\|^{2}-\left\|P_{C} x-P_{C} y\right\|^{2}, \quad \forall x, y \in H .
$$

The following characterizes the projection P_{C}.

Lemma 2.1 (See [15]) Given $x \in H$ and $y \in C$. Then $P_{C} x=y$ if and only if the following inequality holds:

$$
\langle x-y, y-z\rangle \geq 0, \quad \forall z \in C .
$$

Lemma 2.2 (See [16]) Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers satisfying

$$
s_{n+1}=\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} \beta_{n}, \quad \forall n \geq 0,
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy the conditions
(1) $\left\{\alpha_{n}\right\} \subset[0,1], \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(2) $\quad \limsup _{n \rightarrow \infty} \beta_{n} \leq 0 \quad$ or $\quad \sum_{n=1}^{\infty}\left|\alpha_{n} \beta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} s_{n}=0$.

Lemma 2.3 (See [17]) Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be bounded sequences in a Banach space X and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Suppose that

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) z_{n}
$$

for all integer $n \geq 0$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0$.

Definition 2.1 (See [18]) Let C be a nonempty convex subset of a real Hilbert space. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of κ_{i}-strict pseudo-contractions of C into itself. For each $j=1,2, \ldots, N$, let $\alpha_{j}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \alpha_{3}^{j}\right) \in I \times I \times I$, where $I \in[0,1]$ and $\alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}=1$. Define the mapping $S: C \rightarrow C$ as follows:

$$
\begin{align*}
& U_{0}=I, \\
& U_{1}=\alpha_{1}^{1} T_{1} U_{0}+\alpha_{2}^{1} U_{0}+\alpha_{3}^{1} I, \\
& U_{2}=\alpha_{1}^{2} T_{2} U_{1}+\alpha_{2}^{2} U_{1}+\alpha_{3}^{2} I, \\
& U_{3}=\alpha_{1}^{3} T_{3} U_{2}+\alpha_{2}^{3} U_{2}+\alpha_{3}^{3} I, \tag{2.1}\\
& \vdots \\
& U_{N-1}=\alpha_{1}^{N-1} T_{N-1} U_{N-2}+\alpha_{2}^{N-1} U_{N-2}+\alpha_{3}^{N-1} I, \\
& S=U_{N}=\alpha_{1}^{N} T_{N} U_{N-1}+\alpha_{2}^{N} U_{N-1}+\alpha_{3}^{N} I .
\end{align*}
$$

This mapping is called S-mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$.

Lemma 2.4 (See [18]) Let C be a nonempty closed convex subset of a real Hilbert space. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of κ-strict pseudo-contractive mappings of C into C with $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and $\kappa=\max \left\{\kappa_{i}: i=1,2, \ldots, N\right\}$ and let $\alpha_{j}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \alpha_{3}^{j}\right) \in I \times I \times I, j=$ $1,2,3, \ldots, N$, where $I=[0,1], \alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}=1, \alpha_{1}^{j}, \alpha_{3}^{j} \in(\kappa, 1)$ for all $j=1,2, \ldots, N-1$ and $\alpha_{1}^{N} \in(\kappa, 1], \alpha_{3}^{N} \in[\kappa, 1), \alpha_{2}^{j} \in[\kappa, 1)$ for all $j=1,2, \ldots, N$. Let S be a mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$. Then $F(S)=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ and S is a nonexpansive mapping.

Lemma 2.5 (See [19]) Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E and let $S: C \rightarrow C$ be a nonexpansive mapping. Then $I-S$ is demi-closed at zero.

Lemma 2.6 In a real Hilbert space H, the following inequality holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle
$$

for all $x, y \in H$.
Lemma 2.7 Let C be a nonempty closed convex subset of a Hilbert space H and let $D_{1}, D_{2}: C \rightarrow H$ be mappings. For every $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1]$, the following statements are equivalent:
(a) $\left(x^{*}, z^{*}\right) \in C \times C$ is a solution of problem (1.3),
(b) x^{*} is a fixed point of the mapping $G: C \rightarrow C$, i.e., $x^{*} \in F(G)$, defined by

$$
G(x)=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x\right),
$$

where $z^{*}=P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}$.
$\operatorname{Proof}(\mathrm{a}) \Rightarrow(\mathrm{b})$ Let $\left(x^{*}, z^{*}\right) \in C \times C$ be a solution of problem (1.3). For every $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1]$, we have

$$
\left\{\begin{array}{l}
\left\langle x^{*}-\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) z^{*}\right), x-x^{*}\right\rangle \geq 0, \quad \forall x \in C \\
\left\langle z^{*}-\left(I-\lambda_{2} D_{2}\right) x^{*}, x-z^{*}\right\rangle \geq 0, \quad \forall x \in C
\end{array}\right.
$$

From the properties of P_{C}, we have

$$
\left\{\begin{array}{l}
x^{*}=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) z^{*}\right) \\
z^{*}=P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}
\end{array}\right.
$$

It implies that

$$
x^{*}=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}\right)=G\left(x^{*}\right) .
$$

Hence, we have $x^{*} \in F(G)$, where $z^{*}=P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}$.
(b) \Rightarrow (a) Let $x^{*} \in F(G)$ and $z^{*}=P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}$. Then, we have

$$
\begin{aligned}
x^{*} & =G\left(x^{*}\right)=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}\right) \\
& =P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) z^{*}\right) .
\end{aligned}
$$

From the properties of P_{C}, we have

$$
\left\{\begin{array}{l}
\left\langle x^{*}-\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) z^{*}\right), x-x^{*}\right\rangle \geq 0, \quad \forall x \in C \\
\left\langle z^{*}-\left(I-\lambda_{2} D_{2}\right) x^{*}, x-z^{*}\right\rangle \geq 0, \quad \forall x \in C
\end{array}\right.
$$

Hence, we have $\left(x^{*}, z^{*}\right) \in C \times C$ is a solution of (1.3).

3 Main results

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H and let $D_{1}, D_{2}: C \rightarrow H$ be d_{1}, d_{2}-inverse strongly monotone mappings, respectively. Define the mapping $G: C \rightarrow C$ by $G(x)=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x\right)$ for all $x \in C$, $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1)$. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of κ-strict pseudo-contractive mappings of C into C with $\mathcal{F}=\bigcap_{i=1}^{N} F\left(T_{i}\right) \cap F(G) \neq \emptyset$ and $\kappa=\max \left\{\kappa_{i}: i=1,2, \ldots, N\right\}$ and let $\alpha_{j}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \alpha_{3}^{j}\right) \in I \times I \times I, j=1,2,3, \ldots, N$, where $I=[0,1], \alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}=1, \alpha_{1}^{j}, \alpha_{3}^{j} \in(\kappa, 1)$ for all $j=1,2, \ldots, N-1$ and $\alpha_{1}^{N} \in(\kappa, 1], \alpha_{3}^{N} \in[\kappa, 1), \alpha_{2}^{j} \in[\kappa, 1)$ for all $j=1,2, \ldots, N$. Let S be a mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$. Suppose that $x_{1}, u \in C$ and let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}, \tag{3.1}\\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(a x_{n}+(1-a) y_{n}-\lambda_{1} D_{1}\left(a x_{n}+(1-a) y_{n}\right)\right), \\
\quad \forall n \geq 1,
\end{array}\right.
$$

where $\lambda_{1} \in\left(0,2 d_{1}\right), \lambda_{2} \in\left(0,2 d_{2}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Assume that the following conditions hold:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$.

Then $\left\{x_{n}\right\}$ converges strongly to $x_{0}=P_{\mathcal{F}} u$ and $\left(x_{0}, y_{0}\right)$ is a solution of (1.3), where $y_{0}=P_{C}(I-$ $\left.\lambda_{2} D_{2}\right) x_{0}$.

Proof First, we show that $P_{C}\left(I-\lambda_{1} D_{1}\right)$ and $P_{C}\left(I-\lambda_{2} D_{2}\right)$ are nonexpansive mappings for every $\lambda_{1} \in\left(0,2 d_{1}\right), \lambda_{2} \in\left(0,2 d_{2}\right)$. Let $x, y \in C$. Since D_{1} is d_{1}-inverse strongly monotone and $\lambda_{1}<2 d_{1}$, we have

$$
\begin{align*}
\left\|\left(I-\lambda_{1} D_{1}\right) x-\left(I-\lambda_{1} D_{1}\right) y\right\|^{2} & =\left\|x-y-\lambda_{1}\left(D_{1} x-D_{1} y\right)\right\|^{2} \\
& =\|x-y\|^{2}-2 \lambda_{1}\left\langle x-y, D_{1} x-D_{1} y\right\rangle+\lambda_{1}^{2}\left\|D_{1} x-D_{1} y\right\|^{2} \\
& \leq\|x-y\|^{2}-2 d_{1} \lambda_{1}\left\|D_{1} x-D_{1} y\right\|^{2}+\lambda_{1}^{2}\left\|D_{1} x-D_{1} y\right\|^{2} \\
& =\|x-y\|^{2}+\lambda_{1}\left(\lambda_{1}-2 d_{1}\right)\left\|D_{1} x-D_{1} y\right\|^{2} \\
& \leq\|x-y\|^{2} . \tag{3.2}
\end{align*}
$$

Thus ($I-\lambda_{1} D_{1}$) is a nonexpansive mapping. By using the same method as (3.2), we have $\left(I-\lambda_{2} D_{2}\right)$ is a nonexpansive mapping. Hence, $P_{C}\left(I-\lambda_{1} D_{1}\right), P_{C}\left(I-\lambda_{2} D_{2}\right)$ are nonexpansive mappings. It is easy to see that the mapping G is a nonexpansive mapping. Let $x^{*} \in \mathcal{F}$. Then we have $x^{*}=S x^{*}$ and

$$
x^{*}=G\left(x^{*}\right)=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}\right) .
$$

Put $w_{n}=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right)$ and $y^{*}=P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}$, we can rewrite (3.1) by

$$
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S w_{n}, \quad \forall n \geq 1,
$$

and $x^{*}=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) y^{*}\right)$.
From the definition of x_{n}, we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|= & \left\|\alpha_{n}\left(u-x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\gamma_{n}\left(S w_{n}-x^{*}\right)\right\| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left\|w_{n}-x^{*}\right\| \\
= & \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n} \| P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right) \\
& -P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}\right) \| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n} \| a\left(x_{n}-x^{*}\right) \\
& +(1-a)\left(P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}-P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}\right) \| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|+(1-a)\left\|x_{n}-x^{*}\right\|\right) \\
= & \alpha_{n}\left\|u-x^{*}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \max \left\{\left\|u-x^{*}\right\|,\left\|x_{1}-x^{*}\right\|\right\} .
\end{aligned}
$$

By induction we can conclude that $\left\|x_{n}-x^{*}\right\| \leq \max \left\{\left\|u-x^{*}\right\|,\left\|x_{1}-x^{*}\right\|\right\}$ for all $n \in \mathbb{N}$. It implies that $\left\{x_{n}\right\}$ is bounded and so are $\left\{y_{n}\right\}$ and $\left\{w_{n}\right\}$.

Next, we show that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.
Let

$$
\begin{equation*}
x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n}, \tag{3.3}
\end{equation*}
$$

where $z_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}$.
Since $x_{n+1}-\beta_{n} x_{n}=\alpha_{n} u+\gamma_{n} S w_{n}$ and (3.3), we have

$$
\begin{aligned}
z_{n+1}-z_{n}= & \frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1} u+\gamma_{n+1} S w_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} u+\gamma_{n} S w_{n}}{1-\beta_{n}} \\
& -\frac{\gamma_{n+1} S w_{n}}{1-\beta_{n+1}}+\frac{\gamma_{n+1} S w_{n}}{1-\beta_{n+1}} \\
= & \left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right) u+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left(S w_{n+1}-S w_{n}\right) \\
& +\left(\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right) S w_{n} \\
= & \left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right) u+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left(S w_{n+1}-S w_{n}\right) \\
& +\left(\frac{\alpha_{n}}{1-\beta_{n}}-\frac{\alpha_{n+1}}{1-\beta_{n+1}}\right) S w_{n} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\| \leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\|u\|+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|S w_{n+1}-S w_{n}\right\| \\
& +\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left\|S w_{n}\right\| \\
= & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\|u\|+\left\|S w_{n}\right\|\right)+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|w_{n+1}-w_{n}\right\| \\
= & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\|u\|+\left\|S w_{n}\right\|\right) \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}} \| P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n+1}+(1-a) y_{n+1}\right) \\
& -P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right) \| \\
\leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\|u\|+\left\|S w_{n}\right\|\right) \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|a\left(x_{n+1}-x_{n}\right)+(1-a)\left(y_{n+1}-y_{n}\right)\right\| \\
\leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\|u\|+\left\|S w_{n}\right\|\right) \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left(a\left\|x_{n+1}-x_{n}\right\|+(1-a)\left\|P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n+1}-P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}\right\|\right) \\
\leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\|u\|+\left\|S w_{n}\right\|\right) \\
& +\left\|x_{n+1}-x_{n}\right\| .
\end{aligned}
$$

From conditions (ii) and (iii), we have

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

From Lemma 2.3 and (3.3) we have $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$. Since $x_{n+1}-x_{n}=\left(1-\beta_{n}\right)\left(z_{n}-x_{n}\right)$, then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.4}
\end{equation*}
$$

From the definition of w_{n}, we have

$$
\begin{aligned}
\left\|w_{n+1}-w_{n}\right\| & \leq\left\|P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n+1}+(1-a) y_{n+1}\right)-P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right)\right\| \\
& \leq a\left\|x_{n+1}-x_{n}\right\|+(1-a)\left\|y_{n+1}-y_{n}\right\| \\
& =a\left\|x_{n+1}-x_{n}\right\|+(1-a)\left\|P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n+1}-P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}\right\| \\
& \leq a\left\|x_{n+1}-x_{n}\right\|+(1-a)\left\|x_{n+1}-x_{n}\right\| \\
& =\left\|x_{n+1}-x_{n}\right\| .
\end{aligned}
$$

From (3.4), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n+1}-w_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

From the definition of x_{n}, we have

$$
x_{n+1}-x_{n}=\alpha_{n}\left(u-x_{n}\right)+\gamma_{n}\left(S w_{n}-x_{n}\right) .
$$

From (3.4), conditions (ii) and (iii), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S w_{n}-x_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

From the definition of y_{n}, we have

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\|=\left\|P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n+1}-P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\| . \tag{3.7}
\end{equation*}
$$

From (3.4) and (3.7), we derive

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

From the nonexpansiveness of $P_{C}\left(I-\lambda_{1} D_{1}\right)$ and $P_{C}\left(I-\lambda_{2} D_{2}\right)$, we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|S w_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|w_{n}-x^{*}\right\|^{2} \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left\|P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right)-P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) y^{*}\right)\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|y_{n}-y^{*}\right\|^{2}\right) \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}-P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|\left(I-\lambda_{2} D_{2}\right) x_{n}-\left(I-\lambda_{2} D_{2}\right) x^{*}\right\|^{2}\right) \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|\left(x_{n}-x^{*}\right)-\lambda_{2}\left(D_{2} x_{n}-D_{2} x^{*}\right)\right\|^{2}\right) \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left(\left\|x_{n}-x^{*}\right\|^{2}-2 \lambda_{2}\left(x_{n}-x^{*}, D_{2} x_{n}-D_{2} x^{*}\right)\right.\right. \\
& \left.\left.+\lambda_{2}^{2}\left\|D x_{n}-D x^{*}\right\|^{2}\right)\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left(\left\|x_{n}-x^{*}\right\|^{2}-2 \lambda_{2} d_{2}\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2}\right.\right. \\
& \left.\left.+\lambda_{2}^{2}\left\|D x_{n}-D x^{*}\right\|^{2}\right)\right) \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left(\left\|x_{n}-x^{*}\right\|^{2}\right.\right. \\
& \left.\left.-\lambda_{2}\left(2 d_{2}-\lambda_{2}\right)\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(\left\|x_{n}-x^{*}\right\|^{2}-\lambda_{2}(1-a)\left(2 d_{2}-\lambda_{2}\right)\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\lambda_{2} \gamma_{n}(1-a)\left(2 d_{2}-\lambda_{2}\right)\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2}
\end{aligned}
$$

It implies that

$$
\begin{align*}
\lambda_{2} \gamma_{n}(1-a)\left(2 d_{2}-\lambda_{2}\right)\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right) \\
& \times\left\|x_{n+1}-x_{n}\right\| . \tag{3.9}
\end{align*}
$$

From (3.4), (3.9) conditions (ii) and (iii), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|D_{2} x_{n}-D_{2} x^{*}\right\|=0 \tag{3.10}
\end{equation*}
$$

Put $h^{*}=a x^{*}+(1-a) y^{*}$ and $h_{n}=a x_{n}+(1-a) y_{n}$. From the definition of x_{n}, we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|w_{n}-x^{*}\right\|^{2} \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|P_{C}\left(I-\lambda_{1} D_{1}\right) h_{n}-P_{C}\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|^{2} \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|\left(h_{n}-h^{*}\right)-\lambda_{1}\left(D_{1} h_{n}-D_{1} h^{*}\right)\right\|^{2} \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(\left\|h_{n}-h^{*}\right\|^{2}-2 \lambda_{1}\left(h_{n}-h^{*}, D_{1} h_{n}-D_{1} h^{*}\right\rangle+\lambda_{1}^{2}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left(\left\|h_{n}-h^{*}\right\|^{2}-2 \lambda_{1} d_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|^{2}\right. \\
& \left.+\lambda_{1}^{2}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|^{2}\right) \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(\left\|h_{n}-h^{*}\right\|^{2}-\lambda_{1}\left(2 d_{1}-\lambda_{1}\right)\left\|D_{1} h_{n}-D_{1} h^{*}\right\|^{2}\right) \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left(\left\|a\left(x_{n}-x^{*}\right)+(1-a)\left(y_{n}-y^{*}\right)\right\|^{2}\right. \\
& \left.-\lambda_{1}\left(2 d_{1}-\lambda_{1}\right)\left\|D_{1} h_{n}-D_{1} h^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}\right. \\
& +(1-a)\left\|P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}-P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}\right\|^{2} \\
& \left.-\lambda_{1}\left(2 d_{1}-\lambda_{1}\right)\left\|D_{1} h_{n}-D_{1} h^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\lambda_{1} \gamma_{n}\left(2 d_{1}-\lambda_{1}\right)\left\|D_{1} h_{n}-D_{1} h^{*}\right\|^{2},
\end{aligned}
$$

which implies that

$$
\begin{align*}
& \lambda_{1} \gamma_{n}\left(2 d_{1}-\lambda_{1}\right)\left\|D_{1} h_{n}-D_{1} h^{*}\right\|^{2} \leq \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right) \\
& \times\left\|x_{n+1}-x_{n}\right\| . \tag{3.11}
\end{align*}
$$

From (3.4), (3.11), conditions (ii) and (iii), we can conclude

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|=0 \tag{3.12}
\end{equation*}
$$

Next, we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S w_{n}-w_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

From the definition of y_{n}, we have

$$
\begin{aligned}
\left\|y_{n}-y^{*}\right\|^{2}= & \left\|P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}-P_{C}\left(I-\lambda_{2} D_{2}\right) x^{*}\right\|^{2} \\
\leq & \left\langle x_{n}-\lambda_{2} D_{2} x_{n}-\left(x^{*}-\lambda_{2} D_{2} x^{*}\right), y_{n}-y^{*}\right\rangle \\
= & \frac{1}{2}\left(\left\|x_{n}-\lambda_{2} D_{2} x_{n}-\left(x^{*}-\lambda_{2} D_{2} x^{*}\right)\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2}\right. \\
& \left.-\left\|x_{n}-\lambda_{2} D_{2} x_{n}-\left(x^{*}-\lambda_{2} D_{2} x^{*}\right)-\left(y_{n}-y^{*}\right)\right\|^{2}\right) \\
= & \frac{1}{2}\left(\left\|x_{n}-\lambda_{2} D_{2} x_{n}-\left(x^{*}-\lambda_{2} D_{2} x^{*}\right)\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2}\right. \\
& \left.-\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)-\lambda_{2}\left(D_{2} x_{n}-D_{2} x^{*}\right)\right\|^{2}\right) \\
= & \frac{1}{2}\left(\left\|x_{n}-\lambda_{2} D_{2} x_{n}-\left(x^{*}-\lambda_{2} D_{2} x^{*}\right)\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2}\right. \\
& -\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|^{2}+2 \lambda_{2}\left\langle x_{n}-y_{n}-\left(x^{*}-y^{*}\right), D_{2} x_{n}-D_{2} x^{*}\right\rangle \\
& \left.-\lambda_{1}^{2}\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2}\right) .
\end{aligned}
$$

It implies that

$$
\begin{align*}
\left\|y_{n}-y^{*}\right\| \leq & \left\|x_{n}-\lambda_{2} D_{2} x_{n}-\left(x^{*}-\lambda_{2} D_{2} x^{*}\right)\right\|^{2}-\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|^{2} \\
& +2 \lambda_{2}\left(x_{n}-y_{n}-\left(x^{*}-y^{*}\right), D_{2} x_{n}-D_{2} x^{*}\right\rangle-\lambda_{1}^{2}\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2} \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|^{2} \\
& +2 \lambda_{2}\left\langle x_{n}-y_{n}-\left(x^{*}-y^{*}\right), D_{2} x_{n}-D_{2} x^{*}\right\rangle \\
& -\lambda_{1}^{2}\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2} . \tag{3.14}
\end{align*}
$$

From the nonexpansiveness of $P_{C}\left(I-\lambda_{1} D_{1}\right)$ and (3.14), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|S w_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left\|w_{n}-x^{*}\right\|^{2} \\
= & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left\|P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right)-P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) y^{*}\right)\right\|^{2} \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|y_{n}-y^{*}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left(\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|^{2}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+2 \lambda_{2}\left(x_{n}-y_{n}-\left(x^{*}-y^{*}\right), D_{2} x_{n}-D_{2} x^{*}\right\rangle-\lambda_{1}^{2}\left\|D_{2} x_{n}-D_{2} x^{*}\right\|^{2}\right)\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\gamma_{n}\left(a\left\|x_{n}-x^{*}\right\|^{2}+(1-a)\left\|x_{n}-x^{*}\right\|^{2}-(1-a)\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|^{2}\right. \\
& \left.+2 \lambda_{2}\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|\left\|D_{2} x_{n}-D_{2} x^{*}\right\|\right) \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\gamma_{n}(1-a)\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|^{2} \\
& +2 \lambda_{2}\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|\left\|D_{2} x_{n}-D_{2} x^{*}\right\| .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\gamma_{n}(1-a)\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|^{2} \leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
& +2 \lambda_{2}\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|\left\|D_{2} x_{n}-D_{2} x^{*}\right\| \\
\leq & \alpha_{n}\left\|u-x^{*}\right\|^{2}+\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right)\left\|x_{n+1}-x_{n}\right\| \\
& +2 \lambda_{2}\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|\left\|D_{2} x_{n}-D_{2} x^{*}\right\| .
\end{aligned}
$$

From condition (ii), (3.4) and (3.10), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|=0 \tag{3.15}
\end{equation*}
$$

From the definition of $w_{n}, x^{*}, h_{n}, h^{*}$, we have

$$
w_{n}=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right)=P_{C}\left(I-\lambda_{1} D_{1}\right) h_{n}
$$

and

$$
x^{*}=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) y^{*}\right)=P_{C}\left(I-\lambda_{1} D_{1}\right) h^{*}
$$

From the properties of P_{C}, we have

$$
\begin{aligned}
\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\|^{2}= & \left\|y_{n}-y^{*}-\left(w_{n}-x^{*}\right)\right\|^{2} \\
= & \| y_{n}-a x_{n}+a x_{n}-a y_{n}+a y_{n}-\lambda_{1} D_{1}\left(a x_{n}+(1-a) y_{n}\right) \\
& +\lambda_{1} D_{1}\left(a x_{n}+(1-a) y_{n}-y^{*}+a x^{*}-a x^{*}+a y^{*}-a y^{*}\right. \\
& +\lambda_{1} D_{1}\left(a x^{*}+(1-a) y^{*}\right) \\
& -\lambda_{1} D_{1}\left(a x^{*}+(1-a) y^{*}\right)-\left(w_{n}-x^{*}\right) \|^{2} \\
= & \| a x_{n}+(1-a) y_{n}-\lambda_{1} D_{1}\left(a x_{n}+(1-a) y_{n}\right) \\
& -\left(a x^{*}+(1-a) y^{*}-\lambda_{1} D_{1}\left(a x^{*}+(1-a) y^{*}\right)\right)-\left(w_{n}-x^{*}\right) \\
& +\lambda_{1}\left(D_{1}\left(a x_{n}+(1-a) y_{n}\right)-D_{1}\left(a x^{*}+(1-a) y^{*}\right)\right) \\
& +a\left(y_{n}-x_{n}-y^{*}+x^{*}\right) \|^{2} \\
= & \|\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right)-\left(I-\lambda_{1} D_{1}\right)\left(a x^{*}+(1-a) y^{*}\right) \\
& -\left(w_{n}-x^{*}\right)+\lambda_{1}\left(D_{1}\left(a x_{n}+(1-a) y_{n}\right)-D_{1}\left(a x^{*}+(1-a) y^{*}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +a\left(y_{n}-x_{n}-y^{*}+x^{*}\right) \|^{2} \\
& =\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*} \\
& -\left(P_{C}\left(I-\lambda_{1} D_{1}\right) h_{n}-P_{C}\left(I-\lambda_{1} D_{1}\right) h^{*}\right)+\lambda_{1}\left(D_{1} h_{n}-D_{1} h^{*}\right) \\
& +a\left(y_{n}-x_{n}-y^{*}+x^{*}\right) \|^{2} \\
& \leq \|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}-\left(P_{C}\left(I-\lambda_{1} D_{1}\right) h_{n}\right. \\
& \left.-P_{C}\left(I-\lambda_{1} D_{1}\right) h^{*}\right) \|^{2} \\
& +2\left(\lambda_{1}\left(D_{1} h_{n}-D_{1} h^{*}\right)+a\left(y_{n}-x_{n}-y^{*}+x^{*}\right),\right. \\
& \left.y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\rangle \\
& \leq\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|^{2} \\
& -\left\|P_{C}\left(I-\lambda_{1} D_{1}\right) h_{n}-P_{C}\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|^{2} \\
& +2\left(\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|+a\left\|y_{n}-x_{n}-y^{*}+x^{*}\right\|\right) \\
& \times\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\| \\
& =\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|^{2}-\left\|w_{n}-x^{*}\right\|^{2} \\
& +2\left(\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|+a\left\|y_{n}-x_{n}-y^{*}+x^{*}\right\|\right) \\
& \times\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\| \\
& \leq\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|^{2}-\left\|S w_{n}-S x^{*}\right\|^{2} \\
& +2\left(\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|+a\left\|y_{n}-x_{n}-y^{*}+x^{*}\right\|\right) \\
& \times\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\| \\
& \leq\left(\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|+\left\|S w_{n}-S x^{*}\right\|\right) \\
& \times\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}-\left(S w_{n}-x^{*}\right)\right\| \\
& +2\left(\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|+a\left\|y_{n}-x_{n}-y^{*}+x^{*}\right\|\right) \\
& \times\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\| \\
& =\left(\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|+\left\|S w_{n}-S x^{*}\right\|\right) \\
& \times\left\|h_{n}-h^{*}-\lambda_{1}\left(D_{1} h_{n}-D_{1} h^{*}\right)-\left(S w_{n}-x^{*}\right)\right\| \\
& +2\left(\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|+a\left\|y_{n}-x_{n}-y^{*}+x^{*}\right\|\right) \\
& \times\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\| \\
& =\left(\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|+\left\|S w_{n}-S x^{*}\right\|\right) \\
& \left.\times \| x_{n}-S w_{n}+\left(x^{*}-h^{*}\right)-\left(x_{n}-h_{n}\right)-\lambda_{1}\left(D_{1} h_{n}-D_{1} h^{*}\right)\right) \| \\
& +2\left(\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|+a\left\|y_{n}-x_{n}-y^{*}+x^{*}\right\|\right) \\
& \times\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\| \\
& \leq\left(\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|+\left\|S w_{n}-S x^{*}\right\|\right) \\
& \times\left(\left\|x_{n}-S w_{n}\right\|+\left\|\left(x^{*}-h^{*}\right)-\left(x_{n}-h_{n}\right)\right\|\right. \\
& \left.+\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2\left(\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|+a\left\|y_{n}-x_{n}-y^{*}+x^{*}\right\|\right) \\
& \times\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\| \\
= & \left(\left\|\left(I-\lambda_{1} D_{1}\right) h_{n}-\left(I-\lambda_{1} D_{1}\right) h^{*}\right\|+\left\|S w_{n}-S x^{*}\right\|\right) \\
& \times\left(\left\|x_{n}-S w_{n}\right\|+(1-a)\left\|x^{*}-y^{*}-x_{n}+y_{n}\right\|\right. \\
& \left.+\lambda_{1} \| D_{1} h_{n}-D_{1} h^{*}\right) \| \\
& +2\left(\lambda_{1}\left\|D_{1} h_{n}-D_{1} h^{*}\right\|+a\left\|y_{n}-x_{n}-y^{*}+x^{*}\right\|\right) \\
& \times\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\| .
\end{aligned}
$$

From (3.6), (3.12) and (3.15), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-w_{n}+\left(x^{*}-y^{*}\right)\right\|=0 \tag{3.16}
\end{equation*}
$$

Since

$$
\left\|x_{n}-w_{n}\right\| \leq\left\|x_{n}-y_{n}-\left(x^{*}-y^{*}\right)\right\|+\left\|y_{n}+\left(x^{*}-y^{*}\right)-w_{n}\right\|
$$

and (3.15), (3.16), then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-w_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

From (3.6) and (3.17), we can conclude that

$$
\lim _{n \rightarrow \infty}\left\|S w_{n}-w_{n}\right\|=0
$$

Next we show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-x_{0}, x_{n}-x_{0}\right\rangle \leq 0, \tag{3.18}
\end{equation*}
$$

where $x_{0}=P_{\mathcal{F}} u$. To show this inequality, take a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle u-x_{0}, x_{n}-x_{0}\right\rangle=\lim _{k \rightarrow \infty}\left\langle u-x_{0}, x_{n_{k}}-x_{0}\right\rangle
$$

Without loss of generality, we may assume that $x_{n_{k}} \rightharpoonup \omega$ as $k \rightarrow \infty$, where $\omega \in C$. From (3.17), we have $w_{n_{k}} \rightharpoonup \omega$ as $k \rightarrow \infty$. From Lemma 2.5 and (3.13), we have

$$
\omega \in F(S) .
$$

From Lemma 2.4, we have $F(S)=\bigcap_{i=1}^{N} F\left(T_{i}\right)$. Then we obtain

$$
\omega \in \bigcap_{i=1}^{N} F\left(T_{i}\right) .
$$

From the nonexpansiveness of the mapping G and the definition of w_{n}, we have

$$
\begin{aligned}
\left\|w_{n}-G w_{n}\right\| & =\left\|P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}\right)-G\left(w_{n}\right)\right\| \\
& =\left\|G x_{n}-G w_{n}\right\| \\
& \leq\left\|x_{n}-w_{n}\right\| .
\end{aligned}
$$

From (3.17), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-G w_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

From $w_{n_{k}} \rightharpoonup \omega$ as $k \rightarrow \infty$, (3.19) and Lemma 2.5, we have

$$
\omega \in F(G)
$$

Hence, we can conclude that $\omega \in \mathcal{F}$.
Since $x_{n_{k}} \rightharpoonup \omega$ as $k \rightarrow \infty$ and $\omega \in \mathcal{F}$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-x_{0}, x_{n}-x_{0}\right\rangle=\lim _{k \rightarrow \infty}\left\langle u-x_{0}, x_{n_{k}}-x_{0}\right\rangle=\left\langle u-x_{0}, \omega-x_{0}\right\rangle \leq 0 . \tag{3.20}
\end{equation*}
$$

From the definition of x_{n} and $x_{0}=P_{\mathcal{F}} u$, we have

$$
\begin{aligned}
\left\|x_{n+1}-x_{0}\right\|^{2} & =\left\|\alpha_{n}\left(u-x_{0}\right)+\beta_{n}\left(x_{n}-x_{0}\right)+\gamma_{n}\left(S w_{n}-x_{0}\right)\right\|^{2} \\
& \leq\left\|\beta_{n}\left(x_{n}-x_{0}\right)+\gamma_{n}\left(S w_{n}-x_{0}\right)\right\|^{2}+2 \alpha_{n}\left\langle u-x_{0}, x_{n+1}-x_{0}\right\rangle \\
& \leq \beta_{n}\left\|x_{n}-x_{0}\right\|^{2}+\gamma_{n}\left\|G x_{n}-x_{0}\right\|^{2}+2 \alpha_{n}\left\langle u-x_{0}, x_{n+1}-x_{0}\right\rangle \\
& \leq \beta_{n}\left\|x_{n}-x_{0}\right\|^{2}+\gamma_{n}\left\|x_{n}-x_{0}\right\|^{2}+2 \alpha_{n}\left\langle u-x_{0}, x_{n+1}-x_{0}\right\rangle \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x_{0}\right\|^{2}+2 \alpha_{n}\left\langle u-x_{0}, x_{n+1}-x_{0}\right\rangle .
\end{aligned}
$$

From condition (ii), (3.18) and Lemma 2.2, we can conclude that the sequence $\left\{x_{n}\right\}$ converges strongly to $x_{0}=P_{\mathcal{F}} u$. This completes the proof.

Remark 3.2 (1) If we take $a=0$, then the iterative scheme (3.1) reduces to the following scheme:

$$
\left\{\begin{array}{l}
x_{1}, \quad u \in C \tag{3.21}\\
y_{n}=P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n} \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(I-\lambda_{1} D_{1}\right) y_{n}, \quad \forall n \geq 1
\end{array}\right.
$$

which is an improvement to (1.4). From Theorem 3.1, we obtain that the sequence $\left\{x_{n}\right\}$ generated by (3.21) converges strongly to $x_{0}=P_{\bigcap_{i=1}^{N} F\left(T_{i}\right) \cap F(G)} u$, where the mapping $G: C \rightarrow$ C defined by $G x=P_{C}\left(I-\lambda_{1} D_{1}\right) P_{C}\left(I-\lambda_{2} D_{2}\right) x$ for all $x \in C$ and $\left(x_{0}, y_{0}\right)$ is a solution of (1.2) where $y_{0}=P_{C}\left(I-\lambda_{2} D_{2}\right) x_{0}$.
(2) If we take $N=1, \alpha_{1}^{1}=1$ and $T_{1}=T$, then the iterative scheme (3.1) reduces to the following scheme:

$$
\left\{\begin{array}{l}
x_{1}, \quad u \in C, \tag{3.22}\\
y_{n}=P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}, \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} T P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x_{n}+(1-a) y_{n}\right), \quad \forall n \geq 1,
\end{array}\right.
$$

From Theorem 3.1, we obtain that the sequence $\left\{x_{n}\right\}$ generated by (3.22) converges strongly to $x_{0}=P_{F(T) \cap F(G)} u$, where the mapping $G: C \rightarrow C$ defined by $G(x)=P_{C}(I-$ $\left.\lambda_{1} D_{1}\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x\right)$ for all $x \in C$ and $\left(x_{0}, y_{0}\right)$ is a solution of (1.3) where $y_{0}=P_{C}\left(I-\lambda_{2} D_{2}\right) x_{0}$.

4 Applications

In this section we prove a strong convergence theorem involving variational inequalities problems by using our main result. We need the following lemmas to prove the desired results.

Lemma 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let T, S : $C \rightarrow C$ be nonexpansive mappings. Define a mapping $B^{A}: C \rightarrow C$ by $B^{A} x=T(\alpha I+(1-$ $\alpha) S$) x for every $x \in C$ and $\alpha \in(0,1)$. Then $F\left(B^{A}\right)=F(T) \cap F(S)$ and B^{A} is a nonexpansive mapping.

Proof It is easy to see that $F(T) \cap F(S) \subseteq F\left(B^{A}\right)$. Let $x_{0} \in F\left(B^{A}\right)$ and $x^{*} \in F(T) \cap F(S)$. By the definition of B^{A}, we have

$$
\begin{align*}
\left\|x_{0}-x^{*}\right\|^{2} & =\left\|B x_{0}-x^{*}\right\|^{2}=\left\|T(\alpha I+(1-\alpha) S) x_{0}-x^{*}\right\|^{2} \\
& \leq\left\|\alpha x_{0}+(1-\alpha) S x_{0}-x^{*}\right\|^{2} \\
& =\alpha\left\|x_{0}-x^{*}\right\|^{2}+(1-\alpha)\left\|S x_{0}-x^{*}\right\|^{2}-\alpha(1-\alpha)\left\|x_{0}-S x_{0}\right\|^{2} \\
& \leq \alpha\left\|x_{0}-x^{*}\right\|^{2}+(1-\alpha)\left\|x_{0}-x^{*}\right\|^{2}-\alpha(1-\alpha)\left\|x_{0}-S x_{0}\right\|^{2} \\
& =\left\|x_{0}-x^{*}\right\|^{2}-\alpha(1-\alpha)\left\|x_{0}-S x_{0}\right\|^{2} . \tag{4.1}
\end{align*}
$$

From (4.1), it implies that

$$
\alpha(1-\alpha)\left\|x_{0}-S x_{0}\right\|^{2} \leq 0
$$

Then we have $x_{0}=S x_{0}$, that is, $x_{0} \in F(S)$. By the definition of B^{A}, we have

$$
x_{0}=B^{A} x_{0}=T\left(\alpha x_{0}+(1-\alpha) S x_{0}\right)=T x_{0} .
$$

It follows that $x_{0} \in F(T)$. Then we have $x_{0} \in F(T) \cap F(S)$. Hence $F\left(B^{A}\right) \subseteq F(T) \cap F(S)$.
Next, we show that B^{A} is a nonexpansive mapping. Let $x, y \in C$, since

$$
\begin{aligned}
\left\|B^{A} x-B^{A} y\right\|^{2} & =\|T(\alpha I+(1-\alpha) S) x-T(\alpha I+(1-\alpha) S) y\|^{2} \\
& \leq\|(\alpha I+(1-\alpha) S) x-(\alpha I+(1-\alpha) S) y\|^{2}
\end{aligned}
$$

$$
\begin{align*}
& =\|\alpha(x-y)+(1-\alpha)(S x-S y)\|^{2} \\
& \leq \alpha\|x-y\|^{2}+(1-\alpha)\|S x-S y\|^{2} \\
& \leq\|x-y\|^{2} . \tag{4.2}
\end{align*}
$$

Then we have B^{A} is a nonexpansive mapping.

Lemma 4.2 (See [15]) Let H be a real Hibert space, let C be a nonempty closed convex subset of H and let A be a mapping of C into H. Let $u \in C$. Then for $\lambda>0$,

$$
u=P_{C}(I-\lambda A) u \quad \Leftrightarrow \quad u \in \operatorname{VI}(C, A),
$$

where P_{C} is the metric projection of H onto C.

Lemma 4.3 Let C be a nonempty closed convex subset of a real Hilbert space H and let $D_{1}, D_{2}: C \rightarrow H$ be d_{1}, d_{2}-inverse strongly monotone mappings, respectively, which $\operatorname{VI}\left(C, D_{1}\right) \cap \operatorname{VI}\left(C, D_{2}\right) \neq \emptyset$. Define a mapping $G: C \rightarrow C$ as in Lemma 2.7 for every $\lambda_{1} \in$ $\left(0,2 d_{1}\right), \lambda_{2} \in\left(0,2 d_{2}\right)$ and $a \in(0,1)$. Then $F(G)=\mathrm{VI}\left(C, D_{1}\right) \cap \mathrm{VI}\left(C, D_{2}\right)$.

Proof First, we show that $\left(I-\lambda_{1} D_{1}\right),\left(I-\lambda_{2} D 2\right)$ are nonexpansive. Let $x, y \in C$. Since D_{1} is d_{1}-inverse strongly monotone and $\lambda_{1}<2 d_{1}$, we have

$$
\begin{align*}
&\left\|\left(I-\lambda_{1} D_{1}\right) x-\left(I-\lambda_{1} D_{1}\right) y\right\|^{2} \\
&=\left\|x-y-\lambda_{1}\left(D_{1} x-D_{1} y\right)\right\|^{2} \\
&=\|x-y\|^{2}-2 \lambda_{1}\left\langle x-y, D_{1} x-D_{1} y\right\rangle+\lambda_{1}^{2}\left\|D_{1} x-D_{1} y\right\|^{2} \\
& \leq\|x-y\|^{2}-2 d_{1} \lambda_{1}\left\|D_{1} x-D_{1} y\right\|^{2}+\lambda_{1}^{2}\left\|D_{1} x-D_{1} y\right\|^{2} \\
&=\|x-y\|^{2}+\lambda_{1}\left(\lambda_{1}-2 d_{1}\right)\left\|D_{1} x-D_{1} y\right\|^{2} \\
& \leq\|x-y\|^{2} . \tag{4.3}
\end{align*}
$$

Thus $\left(I-\lambda_{1} D_{1}\right)$ is nonexpansive. By using the same method as (4.3), we have $\left(I-\lambda_{2} D_{2}\right)$ is a nonexpansive mapping. Hence $P_{C}\left(I-\lambda_{1} D_{1}\right), P_{C}\left(I-\lambda_{2} D_{2}\right)$ are nonexpansive mappings. From

$$
G(x)=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x\right)
$$

for every $x \in C$ and Lemma 4.1, we have

$$
\begin{equation*}
F(G)=F\left(P_{C}\left(I-\lambda_{1} D_{1}\right)\right) \cap F\left(P_{C}\left(I-\lambda_{2} D_{2}\right)\right) . \tag{4.4}
\end{equation*}
$$

From Lemma 4.2, we have

$$
F(G)=\mathrm{VI}\left(C, D_{1}\right) \cap \mathrm{VI}\left(C, D_{2}\right) .
$$

Theorem 4.4 Let C be a nonempty closed convex subset of a real Hilbert space H and let $D_{1}, D_{2}: C \rightarrow H$ be d_{1}, d_{2}-inverse strongly monotone mappings, respectively. Define the
mapping $G: C \rightarrow C$ by $G(x)=P_{C}\left(I-\lambda_{1} D_{1}\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} D_{2}\right) x\right)$ for all $x \in C, \lambda_{1}, \lambda_{2}>0$ and $a \in(0,1)$. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of κ-strict pseudo-contractive mappings of C into C with $\mathcal{F}=\bigcap_{i=1}^{N} F\left(T_{i}\right) \cap \mathrm{VI}\left(C, D_{1}\right) \cap \mathrm{VI}\left(C, D_{2}\right) \neq \emptyset$ and $\kappa=\max \left\{\kappa_{i}: i=1,2, \ldots, N\right\}$ and let $\alpha_{j}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \alpha_{3}^{j}\right) \in I \times I \times I, j=1,2,3, \ldots, N$, where $I=[0,1], \alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}=1, \alpha_{1}^{j}, \alpha_{3}^{j} \in(\kappa, 1)$ for all $j=1,2, \ldots, N-1$ and $\alpha_{1}^{N} \in(\kappa, 1], \alpha_{3}^{N} \in[\kappa, 1), \alpha_{2}^{j} \in[\kappa, 1)$ for all $j=1,2, \ldots, N$. Let S be a mapping generated by $T_{1}, T_{2}, \ldots, T_{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$. Suppose that $x_{1}, u \in C$ and let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(I-\lambda_{2} D_{2}\right) x_{n}, \tag{4.5}\\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(a x_{n}+(1-a) y_{n}-\lambda_{1} D_{1}\left(a x_{n}+(1-a) y_{n}\right)\right), \\
\quad \forall n \geq 1,
\end{array}\right.
$$

where $\lambda_{1} \in\left(0,2 d_{1}\right), \lambda_{2} \in\left(0,2 d_{2}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Assume that the following conditions hold:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$.

Then $\left\{x_{n}\right\}$ converges strongly to $x_{0}=P_{\mathcal{F}} u$.

Proof From Lemma 4.3 and Theorem 3.1 we can conclude the desired conclusion.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

This research was supported by the Research Administration Division of King Mongkut's Institute of Technology Ladkrabang.

Received: 14 February 2013 Accepted: 17 May 2013 Published: 4 June 2013

References

1. Kinderlehrer, D, Stampacchia, G: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)
2. Lions, JL, Stampacchia, G: Variational inequalities. Commun. Pure Appl. Math. 20, 493-517 (1967)
3. Chang, SS, Joseph Lee, HW, Chan, CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 70, 3307-3319 (2009)
4. Nadezhkina, N, Takahashi, W: Weak convergence theorem by an extragradientmethod for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191-201 (2006)
5. Yao, JC, Chadli, O: Pseudomonotone complementarity problems and variational inequalities. In: Crouzeix, JP, Haddjissas, N, Schaible, S (eds.) Handbook of Generalized Convexity and Monotonicity, pp. 501-558. Springer, New York (2005)
6. Yao, Y, Yao, JC: On modified iterative method for nonexpansive mappings and monotone mappings. Appl. Math. Comput. 186(2), 1551-1558 (2007)
7. Ceng, $\mathrm{LC}, \mathrm{Yao}, \mathrm{JC}$: Strong convergence theorems for variational inequalities and fixed point problems of asymptotically strict pseudocontractive mappings in the intermediate sense. Acta Appl. Math. 115, 167-191 (2011)
8. Sahu, DR, Wong, NC, Yao, JC: A unified hybrid iterative method for solving variational inequalities involving generalized pseudo-contractive mappings. SIAM J. Control Optim. 50, 2335-2354 (2012)
9. Zeng, LC, Ansari, QH, Wong, NC, Yao, JC: An extragradient-like approximation method for variational inequalities and fixed point problems. Fixed Point Theory Appl. 2011, Article ID 22 (2011). doi:10.1186/1687-1812-2011-22
10. liduka, H, Takahashi, W: Weak convergence theorem by Ces'aro means for nonexpansive mappings and inverse-strongly monotone mappings. J. Nonlinear Convex Anal. 7, 105-113 (2006)
11. Ceng, LC, Wang, CY, Yao, JC: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67, 375-390 (2008)
12. Ceng, LC, Ansari, QH, Yao, JC: Strong and weak convergence theorems for asymptotically strict pseudocontractive mappings in intermediate sense. J. Nonlinear Convex Anal. 11, 283-308 (2010)
13. Ceng, LC, Petruşel, A, Yao, JC: Iterative approximation of fixed points for asymptotically strict pseudocontractive type mappings in the intermediate sense. Taiwan. J. Math. 15, 587-606 (2011)
14. Ceng, LC, Shyu, DS, Yao, JC: Relaxed composite implicit iteration process for common fixed points of a finite family of strictly pseudocontractive mappings. Fixed Point Theory Appl. 2009, Article ID 402602 (2009). doi:10.1155/2009/402602
15. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
16. Xu, HK: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116(3), 659-678 (2003)
17. Suzuki, T: Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227-239 (2005)
18. Kangtunyakarn, A, Suantai, S: Strong convergence of a new iterative scheme for a finite family of strict pseudo-contractions. Comput. Math. Appl. 60, 680-694 (2010)
19. Browder, FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pure Math. 18, 78-81 (1976)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online
High visibility within the field

- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```


[^0]: © 2013 Kangtunyakarn; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1687-1812-2013-143
 Cite this article as: Kangtunyakarn: An iterative algorithm to approximate a common element of the set of common fixed points for a finite family of strict pseudo-contractions and of the set of solutions for a modified system of variational inequalities. Fixed Point Theory and Applications 2013 2013:143.

