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Abstract

Background: Technological advances have seen a burgeoning industry for accelerometer-based wearable activity
monitors targeted at the consumer market. The purpose of this study was to determine the convergent validity of a
selection of consumer-level accelerometer-based activity monitors.

Methods: 21 healthy adults wore seven consumer-level activity monitors (Fitbit One, Fitbit Zip, Jawbone UP, Misfit Shine,
Nike Fuelband, Striiv Smart Pedometer and Withings Pulse) and two research-grade accelerometers/multi-sensor devices
(BodyMedia SenseWear, and ActiGraph GT3X+) for 48-hours. Participants went about their daily life in free-living conditions
during data collection. The validity of the consumer-level activity monitors relative to the research devices for step count,
moderate to vigorous physical activity (MVPA), sleep and total daily energy expenditure (TDEE) was quantified using
Bland-Altman analysis, median absolute difference and Pearson’s correlation.

Results: All consumer-level activity monitors correlated strongly (r > 0.8) with research-grade devices for step count and
sleep time, but only moderately-to-strongly for TDEE (r = 0.74-0.81) and MVPA (r = 0.52-0.91). Median absolute differences
were generally modest for sleep and steps (<10% of research device mean values for the majority of devices) moderate
for TDEE (<30% of research device mean values), and large for MVPA (26-298%). Across the constructs examined, the Fitbit
One, Fitbit Zip and Withings Pulse performed most strongly.

Conclusions: In free-living conditions, the consumer-level activity monitors showed strong validity for the measurement
of steps and sleep duration, and moderate valid for measurement of TDEE and MVPA. Validity for each construct ranged
widely between devices, with the Fitbit One, Fitbit Zip and Withings Pulse being the strongest performers.
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Background
Physical activity has important health benefits, including
reducing the risk of cardiovascular disease, some can-
cers, type-2 diabetes, osteoporosis, anxiety and depres-
sion [1-3]. However, many adults are insufficiently
active. In Australia, for example, 67% undertake less
than 150 minutes of moderate to vigorous physical activ-
ity (MVPA) per week [4]. Low-cost techniques that assist
people to increase their physical activity are required.
Pedometers have been an effective, low-cost tool, used

extensively by researchers, clinicians and individuals to
* Correspondence: carol.maher@unisa.edu.au
Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom
Institute, University of South Australia, GPO Box 2471, 5001 Adelaide,
Australia

© 2015 Ferguson et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
monitor and intervene on physical activity for the past
two decades [5]. Conversely, accelerometers have been
widely used predominant in research settings to describe
physical activity, sedentary behaviour, sleep and total
daily energy expenditure (TDEE) [6,7], due to their ex-
pense and difficulty of use (requiring proprietary soft-
ware and expertise for data collection and analysis). In
recent years, technological advances have seen the cost
of accelerometer-based technology fall, and as a result,
the emergence of accelerometer-based devices aimed for
the consumer market.
Corporations such as Nike and Fitbit are at the forefront

of this market, with wearable technology recognised as a
leading technology trend in 2014-15 by many technology
commentators and experts [8,9]. Such devices typically cost
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$USD50-100, making them considerably cheaper than
research-grade accelerometers. Many consumer-level de-
vices have displays for immediate feedback and associated
free mobile and internet-based applications, providing
users with feedback on a variety of metrics including step
count, calories burned, stairs climbed, distance travelled,
active time and sleep. Some devices also offer the ability to
interact with other users via online social networks, which
has been shown to have potential benefits for positive
health behaviour change [10]. Several manufacturers claim
their devices accurately capture activity levels whilst worn
on various body sites (e.g. Misfit Shine can be worn on a
necklace, wrist band, bra or waist band). Considering these
features and flexibility, consumer-level activity monitors,
coupled with smartphone technology, have vast potential
to enhance user experience and utility [11].
While these new activity monitors offer considerable

promise to researchers and clinicians working to assist
people to increase their physical activity, monitor energy
balance and modify their sleep behaviours, a major limi-
tation to the adoption of these devices in research and
clinical settings is the limited scientific evidence regard-
ing their reliability and validity. To date, the Fitbit de-
vices have received the most attention, with a small
number of studies scrutinising the validity of various
outputs. Dannecker and colleagues [12] examined the
ability of the original Fitbit (now twice superseded – first
by the “Ultra” and now by the “One”) to measure active
energy expenditure among 19 healthy young adults, and
found that it underestimated 4-hour energy expenditure
by 28% compared with indirect calorimetry (the gold
standard physical activity measure). Montgomery-Downs
and colleagues [13] found that the original Fitbit overes-
timated sleep by 67 minutes (SD ± 51) relative to poly-
somnography. More recently, Takacs and colleagues [14]
examined the ability of the Fitbit “One” to count steps
during treadmill walking among 30 healthy adults. Par-
ticipants ambulated at five different speeds for five mi-
nutes at each speed, wearing three Fitbit devices (at each
hip and in the front pocket of the dominant side). Using
direct observation as the criterion, excellent validity
(0.97-1.00) and inter-device reliability (99% agreement)
were reported, regardless of walking speed or device
wear site.
Given the large number of activity monitors now com-

mercially available, methodologies which evaluate them
simultaneously are required in order to determine the rela-
tive utility of these devices. A recent study by Fulk and col-
leagues [15] compared the validity of the Fitbit Ultra (now
superseded), Nike Fuelband and a traditional pedometer
(Yamax SW-701) in people with stroke and traumatic brain
injury (n = 50) during a two minute walk test. It was found
that the Fitbit Ultra was the most accurate device (95%
agreement with direct observation), followed by the Yamax
(85%), and the Nike Fuelband (66% accuracy), highlighting
that validity can vary widely. Lee, Kim and Welk [16]
examined the validity of eight consumer-level devices for
estimating energy expenditure in healthy young adults
(n = 60). During a 69 minute protocol in a laboratory set-
ting, the consumer-level devices were compared against an
indirect calorimetry criterion. The devices were ranked
based on percent accuracy, as follows: BodyMedia FIT
(90.7% accuracy), Fitbit Zip (89.9%), Fitbit One (89.6%),
Jawbone UP (87.8%), Actigraph GT3X (87.4%), DirectLife
(87.2%), Nike Fuelband (87%) and Basis BI Band (76.5%).
To date, it appears that no studies have scrutinised a large
number of devices simultaneously for other variables pro-
vided by the devices (e.g. sleep time and MVPA), and no
studies thus far have examined the devices in free-living
conditions.
This study aimed to address these deficits, by compar-

ing a selection of consumer-level devices against two
commonly used research-grade accelerometers in free-
living adults. Our hypothesis was that all devices would
correlate strongly with the research-grade devices on
measures of step count, MVPA, TDEE, and sleep time,
and show small absolute differences.

Methods
Study design
This study used a cross-sectional design to assess the
concurrent validity of consumer-level activity monitors
as measures of physical activity and sleep, compared to
previously validated research-level accelerometers.

Consumer-level activity monitors
Seven devices were examined: Fitbit One (Fitbit, Inc., San
Francisco, CA, US), Fitbit Zip, Jawbone UP (Jawbone, San
Francisco, CA, US), Misfit Shine (Misfit, San Francisco,
CA, US), Nike Fuelband (Nike, Inc., Oregon, WA, US),
Striiv Smart Pedometer (Striiv, Inc. Redwood City, CA,
US), and Withings Pulse (Withings, Issy les Moulineaux,
France). Devices were chosen based on those available to
the authors for purchase between February and August
2013. The total number of consumer-level devices was
capped at seven, based on the feasibility of participants
concurrently wearing this number of devices (in addition
to two reference devices). All of the activity monitors
measure various physical activity parameters, with four also
measuring sleep-related parameters (Table 1). Additionally
all devices included the option of being worn at the hip
and/or the wrist.

Reference devices
The consumer-level devices were compared with two
research grade tri-axial accelerometers/multi-sensor
devices: BodyMedia SenseWear Model MF (BodyMedia
Inc., Pittsburg, PA, USA) and ActiGraph GT3X+ (Actigraph,



Table 1 Device details, set up parameters and analysis software

Device Actigraph
GT3X+

BodyMedia
SenseWear

Fitbit one Fitbit zip Nike fuelband Jawbone UP Striiv
Smart
Pedometer

Misfit
Shine

Withings Pulse

Released Sep 2011 July 2010 Sep 2012 Sep 2012 Feb 2012 Nov 2012 Apr 2012 Aug 2013 June 2013

Retail Price (USD) $249.00 $1417.95 $99.95 $59.95 $149.00 $129.99 $99.95 $119.95 $99.95

Parameters Measured

Steps ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Distance ✖ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Calories burned ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Elevation ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✖ ✔

Sleep time ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✔

Sleep quality ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✔ ✔

Active time ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Wear site Right hip Left upper arm Right hip Right hip Left wrist Left wrist Right hip Left wrist Right hip

Set up parameters H, W, Sex, DOB.
80 Hz 1 s epoch
LFE off

H, W, Sex, DOB,
Handedness

H, W, Sex, DOB H, W, Sex, DOB H, W, Sex, DOB H, W, Sex, DOB H, W, Sex,
DOB

H, W, Sex,
DOB

H, W, Sex, DOB

Set up software Actilife v6.6.3 Sensewear
Professional 7.0

Fitbit iPhone
app v2.0.1

Fitbit iPhone app
v2.0.1

Nike + Fuelband
iPhone app
v2.0.0

UP by Jawbone
iPhone app
v2.8.1

Inbuilt device
software

Shine iPhone
app v1.4.0

Withings Health
Mate iPhone app
v1.21

Analysis Actilife v6.6.3
MVPA (Freedson
et al. cut-points)
(21) Steps/day

Sensewear
Professional 7.0
TEE MVPA = > 3
METs Steps/day

‘Fitbit’ iOS app v2.0.1
and via FitBit online
dashboard software

‘Fitbit’ iOS app
v2.0.1 and via
Fitbit online
dashboard
software

‘Nike + Fuelband’
iOS app v2.0.0

‘UP by Jawbone’
iOS app v2.8.1

Inbuilt device
software

‘Shine’ iOS
app v1.4.0

‘Withings Health
Mate’ iOS app v1.20
and via Withings
online dashboard
software

LFE = low frequency extension; H = height; W = weight; DOB = date of birth; MVPA =moderate to vigorous physical activity; MET =metabolic unit.
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Pensicola, FL, USA). The reference devices collectively have
accepted reliability and validity as free-living measures of
physical activity and sleep time. Specifically, the SenseWear
has been validated for TDEE under free-living conditions
against doubly-labeled water [17-19] yielding strong correla-
tions (ICC= 0.66-0.80) and small biases (–22 to +112 kcal/
day). Additionally, SenseWear has been validated as a meas-
ure of sleep time compared with polysomnography (epoch-
by-epoch agreement = 79.9% [20] and total sleep time
r = 0.84 [21]). The GT3X+ has been shown to be a valid
measure of both step count compared with observation
(percentage error <1.5% [22]; percentage error ≤1.1% [23];
ICC ≥0.84 [24]) and MVPA compared to indirect calorim-
etry (r = 0.88) [25].

Study population
A convenience sample of 21 healthy participants was re-
cruited. Participants were eligible for inclusion if they were
aged 18 years or over, lived in metropolitan Adelaide,
South Australia, and could ambulate without walking aids.
Participants were excluded if they experienced an injury or
illness affecting their mobility (self-reported).

Procedure
The University of South Australia Human Research Eth-
ics Committee approved this study and all participants
provided informed consent prior to commencing the
study. Participants attended an appointment at which
demographic data (date of birth, sex and dominant side)
were obtained, with height and mass measured following
standardized procedures [26]. All devices were set up
with unique user accounts using the parameters detailed
in Table 1 [27,28].
All nine devices were fitted to the participant in the

following locations: SenseWear on the left upper arm;
Fuelband, UP and Shine on the left wrist; GT3X+, One,
Zip, Pulse and Striiv on the right side of the waist on an
elasticised belt. Where consumer-level devices were de-
signed for multiple wear locations, devices suitable for
wrist wear were worn on the wrist; otherwise the device
was worn on the waist. Placement order of the devices
at the wrist and waist was randomised.
Participants were instructed to leave all devices on simul-

taneously for approximately 48 hours (including sleep, but
excluding showering) in order to capture a full overnight
sleep episode as well as a to 24-hours of activity data from
midnight to midnight. The wear period was not limited to
a particular period of the week (i.e. not restricted to week-
days only or weekends only) and no guidelines or restric-
tions on activity levels or sleep were provided, in order to
ensure the study broadly represented free-living conditions.
Participants were instructed in how to turn sleep mode on
and off for the relevant devices (Shine, Pulse, One, UP).
Participants were not given access to any of the device
software or account information and were also instructed
not to turn off, modify or change any device wear locations
once fitted. Devices were collected after the 48-hour wear
period. Data collection took place in November-December
2013.

Statistical analyses
Data relating to physical activity were limited to the full
calendar day (24 hour period midnight to midnight)
after initialisation. Data relating to sleep were limited to
the first night of sleep (24-hour period midday to mid-
day, excluding naps) following initialisation. Data were
extracted using the proprietary software for all consumer
devices, in the same fashion that a consumer would util-
ise the software, and were visually checked for outliers.
Participants were asked about any non-wear periods,
and all indicated full compliance (that is, removal only
for bathing). Compliance was checked using the two ref-
erence devices (Sensewear, which automatically detects
non-wear time, and Actigraph, where we used a criterion
of 30 minutes of continuous zero readings), and the data
confirmed the participants’ reports.
Participants’ demographic data were analysed descrip-

tively. Device validity was determined for four key con-
structs: step count (steps/day); MVPA (minutes/day);
TDEE (calories/day); and sleep time (minutes/night). De-
vices were omitted from analysis in a particular con-
struct if the device did not measure that construct.
Step count was determined by comparing the consumer-

level activity monitors with the GT3X+. The validity of
both TDEE and sleep time were determined by comparing
the consumer-level activity monitors with the SenseWear,
on the basis that it had best established validity for these
constructs out of the two research devices [20,17]. Many of
the consumer devices provided outputs for multiple as-
pects of the physical activity intensity spectrum. After ex-
tensive discussion, it was decided that analyses in this
study would focus on MVPA, on the basis that it has well
established health benefits, is widely reported in the scien-
tific literature, and because it is the focus of public health
physical activity guidelines. Validity of MVPA was deter-
mined by comparing the consumer-level activity monitors
with the GT3X+ [25]. No consumer-level activity monitors
explicitly measured MVPA, however Striiv, Shine, UP, One,
and Zip all measured either total ‘active minutes’ or break-
downs of active minutes according to intensity (e.g. ‘light’,
‘moderate’ and ‘very’ categories by Fitbit software). A con-
sensus approach amongst the research team was used to
determine which consumer-level device outputs most
closely reflected MVPA, and the following were agreed on:
One: sum of very active and moderate physical activity;
Zip: sum of vigorous and moderate physical activity; UP:
active time; Striiv: active time; Shine: sum of “kinda”,
“pretty” and “very” active.



Figure 1 Scatter-plot of Pearson’s r against the median absolute difference (MAD) as a % of the mean of the relevant reference device.
Note: r = Pearson correlation; MAD=median absolute difference; TDEE = total daily energy expenditure; MVPA =moderate to vigorous physical activity;
UP = Jawbone UP; One = Fitbit One; Zip = Fitbit Zip; Shine =Misfit Shine; Pulse =Withings Pulse; Fuelband = Nike Fuelband; Striiv = Striiv Smart Pedometer.

Ferguson et al. International Journal of Behavioral Nutrition and Physical Activity  (2015) 12:42 Page 5 of 9
Validity on all four constructs was quantified using
Bland-Altman analysis (bias and limits of agreement), Pear-
son’s r, and the median absolute difference (MAD) between
the research and consumer-level devices. The median abso-
lute difference was used because data were highly skewed.
A priori power analyses were undertaken based on

existing data on correlations among various research de-
vices, which suggested that the correlation between
consumer-level and research devices would be about
0.85. If the actual population correlation between
consumer-level and research devices was 0.85, then a
target sample size of 21 would yield, in 95% of cases, a
sample correlation between 0.65 and 0.94.

Results
Twenty-one potential participants were approached; all
met the eligibility criteria, were available during the
study period (November - December 2013), agreed to
participate and completed the study. Gender distribution
was approximately equal with 10 males (BMI 27.3 ± 3.2)
and 11 females (BMI 25.5 ± 5.2), with ages ranging from
20 to 59 years (mean age 32.8 ± 10.2 years). All partici-
pants were right hand dominant.
All 21 participants wore the full set of devices for the

48-hour duration, however some data were lost due to
data extraction error (7 sets MVPA each for One and
Zip), device malfunction (1 set steps each for Fuelband,
Zip, Pulse; 1 set TDEE each for Zip and Pulse; 1 set
MVPA for Zip; 1 set sleep for Pulse), and participant
error (2 sets sleep for One). No data were lost from the
two reference devices.
Figure 1 shows a scatterplot of Pearson’s r against the

MAD (as a % of the mean of the relevant research de-
vice) for all four outputs. Correlations and differences
varied between constructs. Steps demonstrated a trend
towards having the strongest correlations and smallest
differences. This pattern was closely followed for sleep.
For TDEE, correlations and differences were modest.



Table 2 Means (SD), correlations, median absolute difference, and bland altman output for each device on the
constructs of steps, MVPA, TDEE and sleep

Nike
fuelband

Striiv smart
pedometer

Misfit shine Jawbone UP Withings pulse Fitbit zip Fitbit one

STEPS Reference BS GT3X+ BS BS GT3X+ GT3X+ GT3X+

Reference
mean (SD)

9959 (4844) 10516 (5070) 9959 (4844) 9959 (4844) 10516 (5070) 10516 (5070) 10516 (5070)

r 0.94 0.99 0.94 0.97 0.99 0.99 0.99

ICC 0.80 0.95 0.90 0.97 0.99 0.98 0.95

MAD 2551 679 1002 806 660 447 779

Range of
differences

-5309 to +143 -679 to +1887 -4693 to +1804 -1978 to +2252 -2386 to +832 -970 to +1596 -890 to +1849

Bias -2529 675 -1054 -251 -632 464 584

LoA (U) 910 2089 2288 1889 663 1799 1980

LoA (L) -5968 -739 -4395 -2391 -1927 -871 -813

MVPA (min) Reference GT3X+ GT3X+ GT3X+ GT3X+ GT3X+

Reference
mean (SD)

58.5 (37.6) 58.5 (37.6) 58.5 (37.6) 58.5 (37.6) 58.5 (37.6)

r 0.52 0.79 0.81 0.88 0.91

ICC 0.08 0.79 0.70 0.36 0.46

MAD 174.3 15.2 18.0 89.8 58.6

Range of
differences

+77.0 to +299.3 -79.7 to +36.3 -4.7 to +96.5 +10.0 to +157.2 +1.0 to +137.2

Bias 190.4 -5.2 22.7 85.7 65.9

LoA (U) 344.9 45.3 68.2 172.1 154.9

LoA (L) 35.9 -55.8 -22.7 -0.8 -23.2

TDEE (kcal) Reference BS BS BS BS BS

Reference
mean (SD)

3005 (569) 3005 (569) 3005 (569) 3005 (569) 3005 (569)

r 0.79 0.74 0.79 0.81 0.76

ICC 0.51 0.27 0.54 0.57 0.55

MAD 468 866 415 484 349

Range of
differences

-996 to +100 =1937 to -94 -1284 to -58 -1145 to +218 -1724 to -83

Bias -479 -898 -533 -497 -475

LoA (U) 214 -150 170 158 265

LoA (L) -1172 -1647 -1236 -1152 -1216

SLEEP (min) Reference BS BS BS BS

Reference
mean (SD)

423.6 (73.5) 423.6 (73.5) 423.6 (73.5) 423.6 (73.5)

r 0.82 0.89 0.92 0.92

ICC 0.71 0.85 0.87 0.90

MAD 47.0 22.0 28.0 23.0

Range of
differences

-61 to +125 -31 to +132 -17 to +104 -45 to +76

Bias 44.2 23.5 24.4 15.9

LoA (U) 135.3 96.2 95.2 82.9

LoA (L) -46.9 -49.2 -46.5 -51.0

Note: BS = BodyMedia SenseWear; GT3X + = ActiGraph GT3X+; MVPA =Moderate to Vigorous Physical Activity; MAD =Median Absolute Difference; LoA (U) = Limits
of Agreement (Upper); LoA (L) = Limits of Agreement (Lower); TDEE = Total Daily Energy Expenditure.
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Trends were difficult to determine for MVPA, with cor-
relations and differences varying.
Table 2 shows the correlation, MAD, bias, and 95%

limits of agreement for steps, MVPA, TDEE, and sleep
time assessed by the consumer-level devices relative to
the research devices.
All of the consumer-level devices measured steps, and

correlations with reference devices were very strong (r =
0.94-0.99). Bland-Altman analyses suggested that three
of the devices slightly over-counted (Striiv, Zip, One)
while four under-counted (Fuelband, Shine, Up, Pulse).
Of note, the Fuelband, on average, undercounted daily
steps by 2,529 (reference device (SenseWear) mean =
9,959 steps per day).
Five of the consumer-level devices (Striiv, Shine, Up, Zip,

One) were considered to measure a parameter similar or
equivalent to MVPA time (as defined in section 2.10). Cor-
relations between readings from the consumer-level de-
vices and reference devices ranged from weak to strong
(r = 0.52-0.91). Bland-Altman analyses showed large differ-
ences between the mean values reported by the consumer-
level devices and the reference devices: the Shine, for
example, under-counted (mean = 53.3 min of MVPA com-
pared to reference device (GT3X+) mean = 58.5 min),
while the Striiv over-counted (mean = 249 min of MVPA
compared to reference device (GT3X+)).
Of the five consumer-level devices (Shine, Up, Pulse,

Zip, One) that measured TDEE, correlations with the
reference devices were moderate to strong (r = 0.74-
0.81). Bland-Altman analyses suggest all devices consid-
erably underestimated TDEE compared to the reference
device (SenseWear, mean = 3005 kcal), ranging from
475 kcal (One) to 898 kcal (UP).
Of the four consumer-level devices (Shine, Up, Pulse,

One) that measured minutes of sleep, all correlated
strongly with the reference device (r = 0.82-0.92). Bland-
Altman analyses showed all devices overestimated mi-
nutes of sleep - most notably, the Shine (mean = 44 min)
compared to reference device (SenseWear) mean =
424 min).

Discussion
This study aimed to examine the validity of a range of
consumer-level activity monitors across a range of vari-
ables in free-living conditions. In general, the consumer-
level devices were highly accurate in measurement of
steps, and quite accurate for sleep quantity. However,
measures of TDEE and MVPA were less accurate, in
general demonstrating moderate to strong correlations
with the research-grade accelerometers, but often large
MADs. Within each activity construct, the validity of the
consumer-level devices varied markedly. Across the do-
mains, the One, Zip and Pulse generally performed
strongly.
Steps were generally counted with a high degree of ac-
curacy by the consumer-level activity monitors, though
two devices substantially undercounted steps (MADs of
10% for Shine and 26% for Fuelband) and hence under-
performed compared to conventional pedometers (such
as Yamax; [29]). The findings of the current study,
favouring the Fitbit activity monitors, concur with other
studies which have similarly found them to be highly
valid for measuring step counts in healthy subjects [14],
and to perform better than the Fuelband in patients with
brain and stroke injury [15]. The findings of the present
study extend this previous research by indicating that
these devices can accurately measure steps in free-living
conditions over longer durations, as opposed to tread-
mill walking for 25 minutes [14].
One of the advantages offered by some of the consumer-

level devices examined in the current study is the ability to
quantify sleep. Research-level accelerometers have been
shown to be moderate to strong performers for sleep
measurement [15,16], however the performance of the
consumer-level activity monitors is relatively unknown. In
the present study all four of the consumer-level devices
that claimed to measure sleep duration performed reason-
ably well in relation to the research-level accelerometer,
but consistently over-estimated sleep duration, and to a
reasonably large magnitude (SenseWear; r = 0.82-0.92,
MAD= 22-47 min). While little is presently known about
the range of consumer-level accelerometers as measures of
sleep, this tendency to over-report is similar to what was
found in the systematic review. The only consumer-level
device identified was the original Fitbit, in Montgomery-
Downs et al’s [13] study of 24 healthy adults, where it was
shown that, on average, this device significantly over-
reported total sleep time compared to a research acceler-
ometer (Actiwatch; by 24 minutes) and polysomnography
(by 67 minutes). The extent of over-estimation of sleep
duration by the consumer devices is likely to reduce their
utility for users, particularly if they are attempting to com-
pare their sleep duration to external benchmarks (e.g. 6 -
8 hour sleep guidelines).
Five devices measured TDEE. In general, validity for de-

vices related to TDEE was moderate to strong (r = 0.74-
0.81; MAD= 12-29%). Of note, the two Fitbit devices (One
and Zip) were superior to the Up when compared to the
reference device. This is consistent with the findings of
Lee, Kim and Welk [16] when comparing a range of
consumer-level devices to the gold standard measure of in-
direct calorimetry. Similar to Lee, Kim and Welk’s [16]
findings, all devices in the present study underestimated
TDEE. Dannecker et al. [12] also explored the validity of a
superseded Fitbit device and found that it underestimated
energy expenditure (compared to indirect calorimetry) by
almost twice as much as the Fitbits in Lee, Kim and Welk’s
[16] study and the present study, suggesting that this
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variation might be a reflection of device accuracy improv-
ing with model updates.
Finally, all of the devices measured some aspect of

physical activity duration, although the way this was
classified tended to vary and specific information regard-
ing intensity cut-points was not provided by the manu-
facturers. The correlation-based analyses showed weak
to strong correlations with the reference devices (r =
0.52-0.91), however MADs were large (e.g. in the best
case, the Shine underestimated MVPA by 15 minutes a
day, or 26%, while the Striiv overestimated physical ac-
tivity by 190 minutes a day, or 325%, both relative to the
GT3X+). While MVPA is generally accepted as a yard-
stick of healthful physical activity in the research field,
many of the devices provided feedback on multiple phys-
ical activity variables, and none were explicitly identified
as MVPA, so the discrepancies here may arise both from
definitional and measurement issues. Even within the
accelerometry research field, there is considerable debate
about how MVPA should be operationalised, with vari-
ous cut-points proposed by different experts, leading to
vastly different daily values and difficulty in comparing
across studies [30]. Given this, it is suggested that the
best interpretation of findings is that the weak to strong
correlation coefficients are a preliminary indicator of
reasonable validity of some of the consumer-level de-
vices, and that the poor MAD values are probably re-
flective of issues with operationalisation. With no
previous studies exploring the validity of these devices
for measuring MVPA, further research is warranted.
Strengths of the current study are that the devices

were tested in free-living conditions (the environment
they are designed for) over a whole (24 hour) day. Add-
itionally, a wide range of consumer and reference de-
vices were used, allowing for comparison of the validity
between devices. This represents a significant contribu-
tion over previous research into consumer accelerome-
ters, which has tended to be laboratory-based and, in
many cases, has only examined a small number of de-
vices. Furthermore, this study examined several different
variables collected by the devices (namely, steps, sleep
quantity, TDEE and physical activity), giving a more
complete picture of their capabilities.
The study has a number of limitations, which should be

acknowledged. The number of consumer devices scruti-
nised in this study was limited to seven due to concerns
around participant burden. It was beyond the scope of the
study to examine all consumer devices available on the
market. In addition, further devices have entered the mar-
ket subsequent to data collection. Incomplete data sets
were obtained for some variables (in particular, MVPA for
the One and Zip) due to data extraction error, device mal-
function and participant error, and caution should be taken
when interpreting findings for these particular results. The
study protocol did not examine reliability and, due to being
undertaken in free-living conditions, convergent validity,
rather than criterion validity, was scrutinised. Some of the
consumer-level devices purported to measure variables
that none of the research devices measured (e.g. stairs
ascended and sleep quality), thus they could not be
assessed in the current study. While some of the
consumer-level devices are promoted as being able to be
worn on a variety of body sites, this study only examined
the validity of such devices at one site, and it is important
to note that validity is likely to vary at the different body
locations.
The fact that moderate to strong correlations were

produced for virtually all devices and variables provides
preliminary evidence that all of the devices are reason-
ably valid for measuring the respective variables. How-
ever, the real world implications of the mediocre MAD
results are mixed. It could be argued that so long as the
device is reliable, it will provide users with sufficient
feedback to successfully gauge and modify their behav-
iour. However, if consumers are using the devices to
compare their behaviour to external benchmarks (e.g.
physical activity or sleep guidelines) the inaccuracy expe-
rienced with some of the devices is likely to be a source
of frustration. In particular, inaccuracies with the TDEE
estimates suggest that these devices will be of little use
to someone attempting to use the data to balance energy
expenditure with energy intake.
For researchers considering using these devices, based

on current evidence, it would appear that the Pulse and
the two Fitbit devices (One and Zip) were the stronger
performers. Validity did not reflect price, with the most
expensive device (Fuelband) being one of the weakest
performers, and the cheapest device (Zip) one of the
best.
As a tool for objectively measuring physical activity in

observational studies, the consumer-level devices risk par-
ticipant reactivity (as they provide feedback to the wearer),
a recognised issue with traditional pedometers. These
consumer-level devices perhaps offer greatest potential as
intervention tools. Particularly, the fact that they provide
feedback on a range of variables makes them appealing for
lifestyle interventions (e.g. simultaneously targeting phys-
ical activity and sleep). Additionally, the software associ-
ated with many of these devices offer new opportunities,
such as the ability for researchers to monitor activity in
real-time via the internet. Additionally, these devices tend
to be stylish, unobtrusive and versatile, which may enhance
participant wear time compliance.
Future research examining other aspects of the

consumer-level devices, such as their reliability, accept-
ability, usability and durability are warranted. A chal-
lenge for the research in this field will be keeping pace
with the rapidly evolving consumer market. Devices are
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being developed at an extraordinary rate, generally with-
out any published data on validity. The general public
are using these devices to make decisions about physical
activity and sleep. They may also offer good alternatives
for more expensive and cumbersome research-level de-
vices. All too often, by the time devices can be scientific-
ally evaluated and results published in peer-reviewed
process, the consumer market may have moved on, with
new models, new devices and software updates being re-
leased continually.

Conclusion
The new wave of consumer-level activity monitors offers
exciting possibilities for individuals, clinicians and re-
searchers. Our study offers preliminary evidence for
their validity in measuring steps, and perhaps also sleep
duration, with the Fitbit One, Fitbit Zip and Withings
Pulse strong performers. Future research scrutinising the
devices’ reliability and usability are warranted, though
keeping pace with the rapidly evolving consumer-level
activity monitor market will be a challenge.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
CM conceived the study. All authors contributed to research design. TF
undertook data collection and collation. TO and TF led statistical analyses. All
authors contributed to writing the manuscript and have approved the final
version.

Received: 13 August 2014 Accepted: 9 March 2015

References
1. Blair SN, Connelly JC. How much physical activity should we do? The case

for moderate amounts and intensities of physical activity. Res Q Exerc Sport.
1996;67(2):193–205.

2. Craft LL, Landers DM. The effect of exercise on clinical depression and
depression resulting form mental illness: a meta-analysis. J Sport Exerc
Psychol. 1998;20:339–57.

3. Petruzzello SJ, Landers DM, Hatfield BD, Kubitz KA, Salazar W. A
meta-analysis on the anxiety-reducing effects of acute and chronic exercise.
Sports Med. 1991;11(3):143–82.

4. Australian Bureau of Statistics. Australian Health Survey: first results, 2011-12.
Canberra, ACT: Commonwealth of Australia; 2012. http://www.abs.gov.au/
ausstats/abs@.nsf/Lookup/4364.0.55.001main+features12011-12. Accessed
Feb 2014.

5. Buckworth J, Lee RE, Regan G, Schneider LK, DiClemente CC. Decomposing
intrinsic and extrinsic motivation for exercise: application to stages of
motivational readiness. Psychol Sport Exerc. 2007;8(4):441–61. doi:http://
dx.doi.org/10.1016/j.psychsport.2006.06.007.

6. Corder K, Brage S, Ramachandran A, Snehalatha C, Wareham N, Ekelund U.
Comparison of two ActiGraph models for assessing free-living physical
activity in Indian adolescents. J Sports Sci. 2007;25(14):1607–11.

7. John D, Tyo B, Bassett DR. Comparison of four ActiGraph accelerometers
during walking and running. Med Sci Sports Exerc. 2010;42(2):368–74.

8. Lagrave K. Top 3 digital health trends to look for in 2014. In: Wall St Cheat
Sheet. Wall St Cheat Sheet. 2014. http://wallstcheatsheet.com/stocks/top-3-
digital-health-trends-to-look-for-in-2014.html/?a=viewall. Accessed Feb 2014.

9. Rabbani S. ABI research predicts we’ll buy 90 million wearable devices this
year. 2014. http://www.androidheadlines.com/2014/02/abi-research-predicts-
well-buy-90-million-wearable-devices-year.html. Accessed Feb 2014.

10. Maher C, Lewis L, Ferrar K, Marshall S, De Bourdeaudhuij I. Are health
behavior change interventions that use online social networks effective? A
systematic review. J Med Internet Res. 2014;16(2). http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC39362.

11. Bort-Roig J, Gilson N, Puig-Ribera A, Contreras R, Trost S. Measuring and in-
fluencing physical activity with smartphone technology: a systematic review.
Sports Med. 2014;44(5):671–86.

12. Dannecker KL, Sazonova NA, Melanson EL, Sazonov ES, Browning RC. A
comparison of energy expenditure estimation of several physical activity
monitors. Med Sci Sports Exerc. 2013;45(11):2105–12.

13. Montgomery-Downs HE, Insana SP, Bond JA. Movement toward a novel
activity monitoring device. Sleep Breath. 2012;16(3):913–7.

14. Takacs J, Pollock CL, Guenther JR, Bahar M, Napier C, Hunt MA. Validation of
the fitbit one activity monitor device during treadmill walking. J Sci Med
Sport. 2013;17(5):496–500.

15. Fulk GD, Combs SA, Danks KA, Nirider CD, Raja B, Reisman DS. Accuracy of 2
activity monitors in detecting steps in people with stroke and traumatic
brain injury. Phys Ther. 2014;94(2):222–9.

16. Lee J-M, Kim Y, Welk GJ. Validity of consumer-based physical activity
monitors. Med Sci Sports Exerc. 2014;2014 Feb 5 [Epub ahead of print].

17. Johannsen D, Calabro M, Stewart J, Franke W, Rood JC, Welk G. Accuracy of
armband monitors for measuring daily energy expenditure in healthy
adults. Med Sci Sports Exerc. 2010;42(11):2134–40.

18. Farooqi N, Slinde F, Haglin L, Sandstrom T. Validation of SenseWear
Armband and ActiHeart monitors for assessments of daily energy
expenditure in free-living women with chronic obstructive pulmonary
disease. Physiol Rep. 2013;1(6):1–12.

19. Koehler K, Braun H, de Marées M, Fusch G, Fusch C, Schaenzer W. Assessing
energy expenditure in male endurance athletes: validity of the SenseWear
Armband. Med Sci Sports Exerc. 2011;43(7):1328–33.

20. O’Driscoll DM, Turton AR, Copland JM, Strauss BJ, Hamilton G. Energy
expenditure in obstructive sleep apnea: validation of a multiple
physiological sensor for determination of sleep and wake. Sleep Breath.
2013;17(1):139–46.

21. Sharif MM, Bahammam AS. Sleep estimation using BodyMedia’s SenseWear
armband in patients with obstructive sleep apnea. Ann Thorac Med.
2013;8(1):53–7.

22. Le Masurier GC, Lee SM, Tudor-Locke C. Motion sensor accuracy under
controlled and free-living conditions. Med Sci Sports Exerc.
2004;36(5):905–10.

23. Le Masurier GC, Tudor-Locke C. Comparison of pedometer and
accelerometer accuracy under controlled conditions. Med Sci Sports Exerc.
2003;35(5):867–71. doi:10.1249/01.mss.0000064996.63632.10.

24. Rowlands A, Stone M, Eston R. Influence of speed and sped frequency
during walking and running on motion sensor output. Med Sci Sports
Exerc. 2007;39(4):716–27.

25. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and
applications Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–81.

26. Marfell-Jones M, Olds T, Stewart A, Carter L. International standards for
anthropometric assessment. Potchefstroom, RSA: North-West University; 2006.

27. Van Hees V, Gorzelniak L, Leon E, Eder M, Pias M, Taherian S, et al.
Seperating movement and gravity components in an acceleration signal
and implications for the assessment of human daily physical activity. PLoS
One. 2013;8(4):e61691.

28. Van Hees V, Renstrom F, Wright A, Gradmark A, Catt M, Chen K, et al.
Estimation of daily energy expenditure in pregnant and non-pregnant
women using a wrist-worn tri-axial accelerometer. PLoS One.
2011;6(7):e22922.

29. Crouter SE, Schneider PL, Karabulut M, Bassett DR. Validity of 10 electronic
pedometers for measuring steps, distance, and energy cost. Med Sci Sports
Exerc. 2003;35(8):1455–60.

30. Bornstein D, Beets M, Byun W, Welk G, Bottai M, Dowda M, et al. Equating
accelerometer estimates of moderate-to-vigorous physical activity: in search
of the rosetta stone. J Sci Med Sport. 2011;14(5):404–10.

http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.001main+features12011-12
http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.001main+features12011-12
http://dx.doi.org/10.1016/j.psychsport.2006.06.007
http://dx.doi.org/10.1016/j.psychsport.2006.06.007
http://wallstcheatsheet.com/stocks/top-3-digital-health-trends-to-look-for-in-2014.html/?a=viewall
http://wallstcheatsheet.com/stocks/top-3-digital-health-trends-to-look-for-in-2014.html/?a=viewall
http://www.androidheadlines.com/2014/02/abi-research-predicts-well-buy-90-million-wearable-devices-year.html
http://www.androidheadlines.com/2014/02/abi-research-predicts-well-buy-90-million-wearable-devices-year.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC39362
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC39362

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study design
	Consumer-level activity monitors
	Reference devices
	Study population
	Procedure
	Statistical analyses

	Results
	Discussion
	Conclusion
	Competing interests
	Authors’ contributions
	References

