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Abstract
An up-to-date method is used for approximating common fixed points of countable
families of nonlinear mappings. A modified Picard-Mann hybrid iterative algorithm is
introduced with the help of our method for the class of nonexpansive mappings.
Strong convergence and weak convergence theorems are established in the
framework of uniformly convex Banach spaces. Our results extend the corresponding
ones announced by Khan (Fixed Point Theory Appl. 2013:69, 2013,
doi:10.1186/1687-1812-2013-69) to the case of countable families of nonexpansive
mappings.
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1 Introduction
Let K be a nonempty closed convex subset of a real uniformly convex Banach space E.
A mapping T : K → K is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ K .

Iterative techniques for approximating fixed points of nonexpansive mappings have been
studied by various authors (see, e.g., [–]) who used the Mann iteration process or the
Ishikawa process. In , Khan [] introduced the following Picard-Mannhybrid iterative
process for a single nonexpansive mapping T . For any initial point x ∈ K :

{
xn+ = Tyn,
yn = ( – αn)xn + αnTxn, n ∈N,

(.)

where {αn} is a real sequence in (, ). He showed that the new process converges faster
than all of Picard, Mann and Ishikawa iterative processes in the sense of Berinde [] for
contractions. He also proved strong convergence and weak convergence theorems with
the help of his process for the class of nonexpansive mappings in general Banach spaces
and apply it to obtain a result in uniformly convex Banach spaces.
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Inspired and motivated by the studies mentioned above, in this paper, we use an up-to-
date method for the approximation of common fixed points of countable families of non-
linear operators. We introduce a modified Picard-Mann hybrid iterative algorithm with
the help of our method for the class of nonexpansive mappings. We prove strong conver-
gence and weak convergence theorems in the framework of Banach spaces. Our results
extend the corresponding ones for one map in [].

2 Preliminaries
Throughout this paper we assume that E is a real Banach space with its dual E∗, K is a
nonempty closed convex subset of E and J : E → E∗ is the normalized duality mapping
defined by

Jx =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E.

In the sequel, we use F(T) to denote the set of fixed points of a mapping T .
We say that E is strictly convex if the following implication holds for x, y ∈ E:

‖x‖ = ‖y‖ = , x 
= y ⇒
∥∥∥∥x + y



∥∥∥∥ < . (.)

It is also said to be uniformly convex if, for any ε > , there exists a δ >  such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒
∥∥∥∥x + y



∥∥∥∥ ≤  – δ. (.)

It is well known that if E is a uniformly convex Banach space, then E is reflexive and strictly
convex. A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈ S(E) := {x ∈ E : ‖x‖ = }. In this case, the norm of E is said to be
Gâteaux differentiable. The space E is said to have uniformly Gâteaux differentiable norm
if for each y ∈ S(E), the limit (.) is attained uniformly for x ∈ S(E). The norm of E is said
to be Fréchet differentiable if for each x ∈ S(E), the limit (.) is attained uniformly for
y ∈ S(E). The norm of E is said to be uniformly Fréchet differentiable (and E is said to be
uniformly smooth) if the limit (.) is attained uniformly for x, y ∈ S(E).

Note The readers can find all the definitions and concepts mentioned above in [].

A Banach space E is said to satisfy Opial’s condition if, for any sequence {xn} in E, xn ⇀ x
implies that

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖ (.)

for all y ∈ E with y 
= x, where xn ⇀ x denotes that {xn} converges weakly to x.
A mapping T with domain D(T) and range R(T) in E is said to be demi-closed at p if

whenever {xn} is a sequence in D(T) such that {xn} converges weakly to x∗ ∈ D(T) and
{Txn} converges strongly to p, then Tx∗ = p.
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Remark . The following basic properties for a Banach space E can be found in [].
(i) If E is uniformly smooth, then J is uniformly continuous on each bounded subset

of E.
(ii) If E is reflexive and strictly convex, then J– is norm-weak-continuous.
(iii) If E is a smooth, strictly convex and reflexive Banach space, then the normalized

duality mapping J : E → E∗ is single valued, one-to-one and onto.
(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.
(v) Each uniformly convex Banach space E has the Kadec-Klee property, i.e., for any

sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x as n → ∞.

We need the following lemmas for our main results.

Lemma . [] Let E be a real uniformly convex Banach space and let a, b be two con-
stant with  < a < b < . Suppose that {tn} ⊂ [a,b] is a real sequence and {xn}, {yn} are two
sequences in E. Then the conditions

lim
n→∞

∥∥tnxn + ( – tn)yn
∥∥ = d, lim sup

n→∞
‖xn‖ ≤ d, lim sup

n→∞
‖yn‖ ≤ d (.)

imply that limn→∞‖xn – yn‖ = , where d ≥  is a constant.

Lemma . [] Let E be a real uniformly convex Banach space, let K be a nonempty
closed convex subset of E, and let T : K → K be a nonexpansive mapping. Then I – T is
demi-closed at zero.

Lemma . [] The unique solutions to the positive integer equation

n = i +
(m – )m


, m ≥ i,n = , , , . . . (.)

are

i = n –
(m – )m


, m = –

[


–

√
n +




]
,n = , , , . . . , (.)

where [x] denotes the maximal integer that is not larger than x.

3 Main results
Lemma . Let E be a real uniformly convex Banach space and K a nonempty closed con-
vex subset of E. Let {Ti}∞i= be a sequence of nonexpansive mappings from K to itself. For
an arbitrary initial point x ∈ K , the modified Picard-Mann hybrid iterative scheme {xn}
is defined as follows:

{
xn+ = Tinyn,
yn = ( – αn)xn + αnTinxn, n ∈N,

(.)

where {αn} is a sequence in [ε,  – ε] for some ε ∈ (, ) and in is the solution to the positive
integer equation: n = i + (m–)m

 (m ≥ i, n = , , . . .), that is, for each n ≥ , there exists a
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unique in such that

i = , i = , i = , i = , i = , i = , i = ,

i = , i = , i = , i = , . . . .

If F := {x ∈ K : Tix = x,∀i≥ } 
= ∅, then
() limn→∞ ‖xn – q‖ exists, ∀q ∈ F ;
() limn→∞ d(xn,F) exists, where d(xn,F) = infq∈F ‖xn – q‖;
() limn→∞ ‖xn – Tixn‖ = , ∀i≥ .

Proof () For any q ∈ F , by (.), we have

‖yn – q‖ =
∥∥( – αn)(xn – q) + αn(Tinxn – q)

∥∥
≤ ( – αn)‖xn – q‖ + αn‖Tinxn – Tinq‖
≤ ‖xn – q‖, (.)

and hence

‖xn+ – q‖ = ‖Tinyn – q‖ ≤ ‖yn – q‖ ≤ ‖xn – q‖. (.)

This shows that {‖xn – q‖} is decreasing and hence limn→∞ ‖xn – q‖ exists.
() This conclusion can easily be shown by taking the infimum in (.) for all q ∈ F .
() Assume, by the conclusion of (), limn→∞ ‖xn – q‖ = d. We then claim that

limn→∞ ‖yn – q‖ = d, that is,

lim
n→∞

∥∥( – αn)(xn – q) + αn(Tinxn – q)
∥∥ = d. (.)

In fact, noting that ‖xn+ – q‖ < ‖yn – q‖, we have

d = lim inf
n→∞ ‖xn+ – q‖ ≤ lim inf

n→∞ ‖yn – q‖;

on the other hand, it follows from (.) that

lim sup
n→∞

‖yn – q‖ ≤ d,

which implies that limn→∞ ‖yn – q‖ = d.
Next, ‖Tinxn – q‖ ≤ ‖xn – q‖ implies that

lim sup
n→∞

‖Tinxn – q‖ ≤ lim sup
n→∞

‖xn – q‖ = d, (.)

and hence, it follows from (.), (.), and Lemma . that

lim
n→∞‖xn – Tinxn‖ = . (.)
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On the other hand, since

‖xn+ – xn‖ ≤ ‖xn+ – Tinxn‖ + ‖Tinxn – xn‖
= ‖Tinyn – Tinxn‖ + ‖Tinxn – xn‖
≤ ‖yn – xn‖ + ‖Tinxn – xn‖
≤ αn‖Tinxn – xn‖ + ‖Tinxn – xn‖,

we have, from (.),

lim
n→∞‖xn+ – xn‖ = . (.)

By induction, for any nonnegative integer p, we also have

lim
n→∞‖xn+p – xn‖ = . (.)

For each p ≥ , since

‖xn – Tin+pxn‖ ≤ ‖xn – xn+p‖ + ‖xn+p – Tin+pxn‖
≤ ‖xn – xn+p‖ + ‖xn+p – Tin+pxn+p‖

+ ‖Tin+pxn+p – Tin+pxn‖
≤ ‖xn – xn+p‖ + ‖xn+p – Tin+pxn+p‖, (.)

it follows from (.) and (.) that

lim
n→∞‖xn – Tin+pxn‖ = . (.)

Now, for each i≥ , we claim that

lim
n→∞‖xn – Tixn‖ = . (.)

As a matter of fact, setting n = km + i, where km = (m–)m
 ,m ≥ i, we obtain

‖xn – Tixn‖ ≤ ‖xn – xkm‖ + ‖xkm – Tixn‖
≤ ‖xn – xkm‖ + ‖xkm – Tikm+i xkm‖

+ ‖Tikm+i xkm – Tixn‖
= ‖xn – xkm‖ + ‖xkm – Tikm+i xkm‖

+ ‖Tixkm – Tixn‖
≤ ‖xn – xkm‖ + ‖xkm – Tikm+i xkm‖
= ‖xn – xn–i‖ + ‖xkm – Tikm+i xkm‖. (.)

Note that km → ∞ as n → ∞. It then follows from (.) and (.) that (.) holds obvi-
ously. This completes the proof. �
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Remark . The key point of the proof of Lemma . lies in the use of a special way
of choosing the indices of involved mappings, which makes the generalization of finite
families of nonlinear mappings to infinite ones possible. Moreover, with the help of our
method, some known results on the common fixed points of countable families of nonex-
pansive mappings have been improved. We now give an example to show why our work,
compared with that of others, is an improvement.
In , for the approximation of common fixed points of a countable family of nonex-

pansive mappings {Tn}, Zhang et al. [] introduced in his iterative algorithm a mapping
T defined by a convex linear combination of {Tn}, i.e., T =

∑∞
n= λnTn, λn ≥  (n = , , . . .)

with
∑∞

n= λn = . However, it is easy to see that the accurate computation of Txn at each
step of the iteration process is not easily attainable, which will leads to gradually increas-
ing errors. By using a special way of choosing the indices of involved mappings, Deng
[] recently improved the corresponding results announced by Zhang et al. []. Since
the strong convergence theorems for solving some variational inequality problems and
hierarchical fixed point problems are obtained without the aid of the convex linear com-
bination of a countable family of nonexpansive mappings, our results are more applicable
than those of other authors with related research interest.

Theorem . Let E be a real uniformly convex Banach space and K a nonempty closed
convex subset of E. Let {Ti}∞i= be a sequence of nonexpansive mappings from K to itself.
Suppose that {xn} is a sequence defined by (.). If F := {x ∈ K : Tix = x,∀i ≥ } 
= ∅ and
there exist Ti ∈ {Ti}∞i= and a nondecreasing function f : [,∞) → [,∞) with f () = 
and f (r) >  for all r ∈ (,∞) such that f (d(xn,F)) ≤ ‖xn – Tixn‖ for all n ≥ , then {xn}
converges strongly to some common fixed point of {Ti}∞i=.

Proof Since

f
(
d(xn,F)

) ≤ ‖xn – Tixn‖,

by taking lim sup as n→ ∞ on both sides in the inequality above, we obtain

lim
n→∞ f

(
d(xn,F)

)
= ,

which implies limn→∞ d(xn,F) =  by the definition of the function f .
Now we show that {xn} is a Cauchy sequence. Since limn→∞ d(xn,F) = , then for any

ε > , there exists a positive integer N such that d(xn,F) < ε
 for all n ≥ N . On the other

hand, there exists a p ∈ F such that ‖xN –p‖ = d(xN ,F) < ε
 , because d(xN ,F) = infq∈F ‖xN –

q‖ and F is closed.
Thus, for any n,m ≥N , it follows from (.) that

‖xn – xm‖ ≤ ‖xn – p‖ + ‖xm – p‖ ≤ ‖xN – p‖ < ε.

This implies that {xn} is a Cauchy sequence, and hence there exists an x ∈ K such that
xn → x as n→ ∞. Then limn→∞ d(xn,F) =  yields d(x,F) = . Further, it follows from the
closedness of F that x ∈ F . This completes the proof. �
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Theorem . Let E be a real uniformly convex Banach space satisfying Opial’s condition
and K a nonempty closed convex subset of E. Let {Ti}∞i= be a sequence of nonexpansive
mappings from K to itself. Suppose that {xn} is a sequence defined by (.). If F := {x ∈ K :
Tix = x,∀i≥ } 
= ∅, then {xn} converges weakly to some common fixed point of {Ti}∞i=.

Proof For any q ∈ F , by Lemma ., we know that limn→∞ ‖xn – q‖ exists. We now prove
that {xn} has a unique weakly subsequential limit in F . First of all, Lemmas . and .
guarantee that each weakly subsequential limit of {xn} is a common fixed point of {Ti}∞i=.
Secondly, Opial’s condition guarantees that the weakly subsequential limit of xn is unique.
Consequently, {xn} converges weakly to a common fixed point of {Ti}∞i=. This completes
the proof. �

Remark . The results presented in this paper extend those of Khan [], whose research
areas are limited to the situation of a single nonexpansive mapping.
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