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Abstract
Background: In human neonatal high pressure hydrocephalus (HPHC), diffuse white matter injury and
gliosis predispose to poor neuro-developmental outcome. The underlying mechanism for diffuse white
matter damage in neonatal HPHC is still unclear. Analogous to inflammatory white matter damage after
neonatal hypoxemia/ischemia, we hypothesized that pro-inflammatory cytokines could be involved in
neonatal HPHC. If so, early anti-inflammatory therapy could ameliorate white matter damage in HPHC,
before irreversible apoptosis has occurred. In HPHC and control neonates, we therefore aimed to
compare cerebrospinal fluid (CSF) concentrations of IL18, IFNγ  and sFasL (interleukin 18, interferon
gamma and apoptosis marker soluble-Fas ligand, respectively).

Methods: In neonatal HPHC (n = 30) and controls (n = 15), we compared CSF concentrations of IL18,
IFNγ  and sFasL using sandwich ELISA. HPHC was grouped according to etiology: spina bifida aperta (n =
20), aqueduct stenosis (n = 4), and fetal intra-cerebral haemorrhage (n = 6). Neonatal control CSF was
derived from otherwise healthy neonates (n = 15), who underwent lumbar puncture for exclusion of
meningitis.

Results: In all three HPHC groups, CSF IL18 concentrations were significantly higher than control values,
and the fetal intracranial haemorrhage group was significantly higher than SBA group. Similarly, in all HPHC
groups CSF-IFNγ  concentrations significantly exceeded the control group. In both HPHC and control
neonates, CSF FasL concentrations remained within the range of reference values.

Conclusion: Independent of the pathogenesis, neonatal HPHC is associated with the activation of the
pro-inflammatory cytokines (IL-18 and IFNγ ) in the CSF, whereas CSF apoptosis biomarkers (sFasL) were
unchanged. This suggests that anti-inflammatory treatment (in addition to shunting) could be helpful to
preserve cerebral white matter.
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Background
Since the introduction of innovative drainage valves and
third ventricular endoscopy, neurosurgical treatment
strategies for neonatal HPHC have improved. Neverthe-
less, HPHC is still associated with irreversible white mat-
ter damage and adverse neurological outcome [1-4]. After
hypoxemia/ischemia, white matter damage consists of a
diffuse, inflammatory pattern involving pro-inflamma-
tory cytokines, oligodendrocytic injury, gliosis and myelin
loss [5-7]. Pro-inflammatory cytokines are biologically
active proteins produced by T cells, astrocytes and micro-
glial cells. After cytokine release, immune cells invade the
brain and subsequently activate astrocytes and microglial
cells, which results in apoptosis and gliosis [5,8].

Especially, the immature central nervous system is vulner-
able for inflammatory damage. This is attributed to the
specific sensitivity of immature oligodendrocytes for
microglial cells, glutamate and free radicals [9,10].
Although shunting will improve cerebral perfusion and
prevent gliosis [11], shunting does not address inflamma-
tory consequences. Thus, long-acting cytokines (released
before shunting), could theoretically continue to damage
oligodendrocytes after shunting [6,12]. In the neonatal
CNS, inflammatory mechanisms may contribute to dif-
fuse white matter damage not only in the periventricular
regions, but also at a distance from the ventricles [9].
Hypoxemia/ischemia is associated with cytokine IL18
release and cystic white matter damage [6]. Cytokine IL18
can induce other pro-inflammatory cytokines, such as
IFNγ , IL-1β and TNFα [13]. In contrast to elevated CSF
IL18 concentrations which last for months, IL-1β and
TNFα concentrations are only elevated for hours [14,15].
This may explain our previously reported negative associ-
ation between CSF IL-1β concentration and cystic white
matter damage [6]. Cytokine IFNγ  is also involved in the
regulation of the inflammatory response by activation of
cytotoxic T-cells and macrophages [16]. Upon activation,
this may result in apoptosis, myelin loss and gliosis
[5,12,17-20]. In neonates with post-hemorrhagic hydro-
cephalus and cystic white matter damage, we have subse-
quently shown that enhanced growth factor
concentrations (i.e. vascular endothelial growth factor
(VEGF) and transforming growth factor β1 (TGF-β1)) will
finally reflect tissue repair [21,22].

In this perspective, we hypothesized that hypoxemia/
ischemia-related up-regulation of longer acting cytokines
(IL18 and IFNγ ) could be involved in neonatal white mat-
ter damage by HPHC. If cytokines are involved in ongoing
white matter damage, early anti-inflammatory therapy
could be beneficial, before irreversible apoptosis has
occurred. The apoptosis biomarkers Fas and Fas-ligand
(FasL) are members of the tumour-necrosis factor super
family. The death Fas (CD95/Apo-1) is located on the cell

surface. It plays a pivotal role in transduction of the apop-
totic cell death program. Fas and its FasL exist in mem-
brane bound form and soluble forms and can be detected
in neonatal CSF [23]. Soluble FasL (sFasL) is expressed on
activated T cells and released by metalloproteinase. SFasL
can regulate extracellular apoptosis by pro- and anti-apop-
totic properties. Expression of sFasL indicates ongoing
apoptosis.

In neonatal HPHC characterized by progressive ventricu-
lomegaly and increased head circumference > P75, and
control patients, this study aimed to determine and com-
pare CSF IL18, IFNγ  and sFasL concentrations. We
hypothesized that CSF IL-18 and IFNγ  concentrations are
increased in HPHC, irrespective of underlying etiology. To
investigate this, HPHC patients were grouped according
to three different aetiologies: spina bifida aperta (SBA),
aqueduct stenosis, and hydrocephalus after fetal intra-cra-
nial haemorrhage.

Methods
Patients selection and CSF sampling
The study was approved by the medical ethical commit-
tees of the University of Bonn, the Charité Universitäts
Medizin Berlin and the University Medical Center Gronin-
gen. After informed consent by the parents, 30 HPHC and
15 control neonates were included. In neonatal HPHC,
CSF was obtained during initial neonatal shunt surgery.
Indications for shunting consisted of clinical signs for
high intracranial pressure, bulging fontanel, widening of
the sagittal suture, progressive ventriculomegaly and
increased head circumference (> P75). Since anaesthesia,
artificial respiration and internal pressure compensation
may quantitatively influence the assessment of intracra-
nial pressure, CSF pressure was not measured routinely
during shunt placement. Neonatal HPHC was grouped
according to aetiology: SBA (n = 20; characterized by pres-
ence of meningomyelocele), aqueduct stenosis (n = 4);
HC after fetal intra-cranial haemorrhage (n = 6). Selection
of HC after fetal intra-cranial haemorrhage (i.e. haemor-
rhage 4–6 weeks before delivery) allowed avoidance of
the potentially confounding influence by disintegration
of platelets. The diagnosis of fetal post-hemorrhagic
hydrocephalus was confirmed by prenatal ultrasound
(ATL 500, 3.5 MHz transducer), postnatal ultrasound
(Vingmed Vivid5, multi-frequency transducer (5–7.5–10
MHz crystals) and magnetic resonance imaging (Philips
Healthcare, Best, Netherlands, 1.5 Tesla). Low risk
neonates, undergoing lumbar puncture for exclusion of
meningitis, served as controls (n = 15). Gestational ages in
the three hydrocephalic groups and control group were
similar, i.e. between 27–54 and 24–54 weeks, respec-
tively. CSF samples obtained during shunt revisions, neo-
natal asphyxia and CNS infections were excluded.
Cerebral infection was excluded by negative CSF cultures,
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cellular count, total protein concentration and by assess-
ment of CSF-IL6 concentrations (in CNS infection, CSF IL-
6 concentrations are increased). CSF-IL6 concentrations
were measured by commercially available solid-phase
enzyme-labelled chemiluminescent sequential immuno-
metric assay on an Immulite analyzer (DPC Biermann,
Bad Naunheim, Germany). All CSF IL-6 concentrations
were within the normal range 5 pg/ml – 200 pg/ml (i.e. far
below CSF IL-6 levels in newborns with bacterial ventricu-
litis [24]). Total CSF protein content varied between 0.1 –
2.5 g/l.

CSF analysis
All CSF samples were immediately centrifuged and stored
at -40°C for further analysis. CSF concentrations of IL-18
and IFNγ  were determined by sandwich ELISA (R&D sys-
tems, Wiesbaden, Germany) according to the manufac-
turer's instructions. The sensitivity of the assay was 12.5
pg/ml for IL18, 8.0 pg/ml for IFNγ  and 0.5 ng/ml for
sFasL using Mab for coating and binding (clones 4H9 and
4A5) [6,23]. The intra-assay coefficient of variation was
5.0% for IL18 and 4.7% for IFNγ . All ELISA 96-well micro
titer plates were analyzed using a microplate photometer
(Dynotech MR5000, Denkendorf, Germany). Neonatal
control CSF sFasL data were derived from our previous
study by application of the same analytical technique, per-
formed by the same laboratory [23].

Data analysis
For statistical analysis, Mann-Whitney U test was used
with two-sided p values to compare continuous nonpara-
metric group of values, as the distribution of values was
non-Gaussian.

Results
Irrespective of the underlying cause, IL-18 concentrations
were significantly higher in HPHC neonates than in con-
trols, median and range: SBA: 80 (23–232) pg/ml; aque-
duct stenosis: 66 (55–226) pg/ml; fetal intracranial
haemorrhage: 223 (103–406) pg/ml; controls: 12.5
(12.5–158) pg/ml. Each group was significantly higher
than control, p < 0.01, and the fetal intracranial haemor-
rhage group was significantly higher than SBA, p < 0.01;
figure 1A). Similarly, CSF IFNγ  concentrations were also
significantly higher in the three HPHC groups than in
controls, median and range: SBA: 35 (12–139) pg/ml;
aqueduct stenosis: 22 (15–28) pg/mL; fetal intracranial
haemorrhage: 22 (17–56) pg/mL; controls: 8 (8–22) pg/
ml. Each group was significantly higher than controls, p <
0.01; but not significantly different between the groups
(figure 1B). In all three neonatal HPHC groups, CSF sFasL
concentrations remained within control limits, < 0.5 ng/
ml [23].

Discussion
Under diverse cerebral pathological circumstances, both
astroglial and microglial alterations may be involved in
white matter damage and adverse neurological outcome.
It is indicated that hydrocephalus-associated brain tissue
compression can instigate proliferation of astrocytes and
microglial cells resulting in gliosis [11]. This study has
shown that irrespective of the underlying aetiology, early
indications for HPHC (derived from concurring ventricu-
lomegaly and macrocephaly) are accompanied by pro-
inflammatory cytokine activation (IL-18 and IFNγ ) with
highest IL18 concentrations in post-hemorrhagic HPHC.
Despite cytokine release into the CSF, the CSF concentra-
tions of the apoptosis biomarker sFasL remained within
control limits. These results are contrasted by our previous
findings of high CSF sFasL concentrations in neonatal
cystic white matter damage [23]. In the present study, nor-
mal CSF sFasL concentrations are explained by early
assessment of CSF samples during the first shunt implan-
tation and before cystic white matter alterations have
occurred. All together in early neonatal HPHC, present
data indicate that inflammation precedes irreversible
apoptosis, which may provide a theoretical basis for early
anti-inflammatory therapy (at about the time of first
shunt implantation). In children with leucomalacia and
post-haemorrhagic hydrocephalus, similar cytokine acti-
vation is associated with a diffuse component of white
matter damage, prolonged myelination delay (for
months) and even permanent myelin deficiency [5,6].
From a neuro-pathological point of view, concurrent
white matter lesions of varying appearance and age (acute,
organizing and chronic) suggest various, ongoing insults
in the same patient [5]. However, before these data can be
extrapolated to all groups of neonatal HPHC, histological
examination (by immunostaining) will be required. Anal-
ogous to pediatric HPHC, adult patients with normal
pressure hydrocephalus and/or vascular dementia may
also have elevated pro-inflammatory cytokine concentra-
tions (TNFα) in association with white matter damage
[25,26]. However, because of patient heterogeneity, age-
specific cytokine sensitivity and variability in disease pro-
gression, it is not possible to speculate further about sim-
ilarities in inflammatory involvement between ages.

In neonatal H-Tx rat (i.e. an animal model for congenital
hydrocephalus by aqueduct stenosis), it was shown that
shunting could ameliorate gliosis [11]. Since gliosis may
be associated with both reactive astrocytosis and micro-
gliosis, one would expect that anti-inflammatory therapy
could have a beneficial effect in addition to shunting.
Accordingly, it was shown that minocycline, a semi-syn-
thetic second generation tetracycline with anti-inflamma-
tory, anti-apoptotic and anti-glutaminergic properties
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[27], reduces gliotic scarring in H-Tx rat [28]. Although
minocycline is contra-indicated in young children,
present human neonatal HPHC data suggest that other
anti-inflammatory compounds could theoretically amel-
iorate diffuse cytokine-coupled, white matter damage
[11]. In multiple sclerosis (characterized by up-regulation
of pro-inflammatory cytokines), different anti-inflamma-
tory agents (such as interferon beta (IFNβ) and glatiramer
acetate) are known to ameliorate white matter damage
[29]. Although there may be a rational basis for early neo-
natal (or perhaps even fetal) application of such anti-
inflammatory compounds, potentially harmful adverse
reactions should first be considered.

Conclusion
Neonatal HPHC irrespective of cause, is accompanied by
pro-inflammatory cytokine activation (IL-18 and IFNγ ) in
the CSF. These data suggest that anti-inflammatory treat-

ment (in addition to shunting) could be helpful to pre-
serve cerebral white matter in these patients.
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(A) Graphs of CSF interleukin-18 (IL-18) concentration and (B) CSF interferon gamma (IFN gamma) concentration in CSF from neonatal HPHCFigure 1
(A) Graphs of CSF interleukin-18 (IL-18) concentration and (B) CSF interferon gamma (IFN gamma) concen-
tration in CSF from neonatal HPHC. The vertical axes indicate concentration (pg/ml). The horizontal axes indi-
cates three different age-matched aetiologies for neonatal HPHC: spina bifida aperta (SBA), aqueduct stenosis (A stenosis), and 
fetal intracranial hemorrhage (Hemorrh) and neonatal controls (Control). Data are median and range plus 25th and 75th percen-
tiles Encircled symbols in the figures indicate single parameters that appeared out of range. A: In all three neonatal HPHC 
groups, IL-18 concentrations were significantly higher than in controls (* p < 0.01). Furthermore, the fetal intracranial hemor-
rhage hydrocephalus group was significantly higher than the SBA hydrocephalus group (indicated by arrows at the bottom * p 
< 0.01). B: In all three neonatal HPHC groups, CSF IFNγ  concentrations were significantly higher than in controls (* p <0.01).
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