## organic compounds

Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## endo,endo-Tetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ -dodeca-9-en-anti-11-yl 4-bromobenzoate

Barry A. Lloyd, ${ }^{\text {a* }}$ Atta M. Arif ${ }^{\text {b }}$ and Robert J. Coots ${ }^{\text {c }}$<br>${ }^{\text {a }}$ Chemistry Department, Weber State University, Ogden, Utah 84408-2503, USA,<br>${ }^{\mathbf{b}}$ Chemistry Department, University of Utah, Salt Lake City, Utah 84112, USA, and ${ }^{\text {c Colonial Chemical, Inc., } 225 \text { Colonial Drive, South Pittsburg, Tennessee 37380, }}$ USA<br>Correspondence e-mail: blloyd@weber.edu

Received 28 November 2012; accepted 26 December 2012

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.028 ; w R$ factor $=0.063$; data-to-parameter ratio $=12.7$.

The title compound 1-OPBB, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{2}$, contains a dechlorinated and hydrogenated isodrin backbone with an anti-4-bromobenzoate substituent at one of the methano bridges. The dihedral angle between the $\mathrm{CO}_{2}$ ester plane and the benzene ring plane is $8.5(2)^{\circ}$. In the crystal, the ester groups stack over benzene rings: the molecules pack as conformational enantiomers, with nearest parallel benzene ring planes separated by a perpendicular distance of 3.339 (1) A. The nearest benzene-ring centroids are 5.266 (1) $\AA$ apart. Possible structural correlation with enhanced solvolytic reactivity is investigated.

## Related literature

For related norbornyl and norbornenyl 4-bromobenzoate structures, see: Lloyd \& Arif (2012a,b). For a structure containing the same tetracyclic framework, see: Lloyd et al. (1995). For the isomeric endo,exo-structure, see: Lloyd et al. (1994). For solvolysis rate information, see: Coots (1983); Chow \& Jiang (2000). For molecular orbital results, see: Furusaki \& Matsumoto (1978); Chow (1998, 1999). For synthetic procedures, see: Chow (1996); Melder \& Prinzbach (1991); Coots (1983).


## Experimental

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{2}$
$V=1527.32(4) \AA^{3}$
$M_{r}=359.25$
Monoclinic, $P 2_{1} / c$
$a=13.2569$ (2) $\AA$
$b=10.5045$ (2) $\AA$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.70 \mathrm{~mm}^{-1}$
$c=12.2039$ (2) $\AA$
$T=150 \mathrm{~K}$
$\beta=116.0122(9)^{\circ}$
$0.23 \times 0.20 \times 0.13 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer
6702 measured reflections Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.576, T_{\text {max }}=0.721$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad 276$ parameters
$w R\left(F^{2}\right)=0.063$
$S=1.03$
All H-atom parameters refined
$\Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3}$
3500 reflections

3500 independent reflections 2700 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Table 1
Possible structure/reactivity relationships ( ${ }^{\circ}, \AA$ ).

|  | 1-OPBB | 2-OPBB | 3-OPBB | 4-OPBB | 5-OPBB |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Solvolysis rate $^{a}$ | 210 | 480 | 28 | 1.0 | $10^{-11}$ |
| 1:2 interplanar angle |  |  |  |  |  |
| 3:4 interplanar angle | $121.9(2)$ | $119.8(6)$ | $122.9(3)$ | $124.5(1)$ | $121.2(1)$ |
| C11-O2 bond length |  |  |  |  |  |
|  | $1.450(2)$ | $132.4(4)$ | $128.1(2)$ |  |  |

Notes: (a) Rates determined in $80 \%$ dioxane $-d_{8} / 20 \% \mathrm{D}_{2} \mathrm{O}$ at 383 K , from NMR peak integrations; (b) $\mathrm{C} 1 / \mathrm{C} 7 / \mathrm{C} 4$ is plane 1 and $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ is plane 2 for $4-\mathrm{OPBB}$ and $5-$ OPBB; bond length is $\mathrm{C} 7-\mathrm{O} 2$ for $4-\mathrm{OPBB}$ and $5-\mathrm{OPBB}$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012), ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

We thank the Weber State Chemistry Department, the University of Utah Chemistry Department X-ray crystallographic facility, Drs Greg D. Lyon and Gary J. Stroebel for developing syntheses, and the late Professor Evan L. Allred, who began this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7005).

## References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Chow, T. J. (1996). J. Chin. Chem. Soc. (Tapei), 43, 101-107.
Chow, T. J. (1998). J. Phys. Org. Chem. 11, 871-878.
Chow, T. J. (1999). Advances in Strained and Interesting Organic Molecules, Suppl. 1, Carbocyclic and Cage Compounds and their Building Blocks, pp. 87-107.

Chow, T. J. \& Jiang, T.-S. (2000). Synth. Commun. 30, 4473-4478.
Coots, R. J. (1983). PhD dissertation, University of Utah, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Furusaki, A. \& Matsumoto, T. (1978). Bull. Chem. Soc. Jpn, 51, 16-20.
Lloyd, B. A. \& Arif, A. M. (2012a). Acta Cryst. E68, o2209.
Lloyd, B. A. \& Arif, A. M. (2012b). Acta Cryst. E68, o3086-o3087.
Lloyd, B. A., Arif, A. M., Coots, R. J. \& Allred, E. L. (1994). Acta Cryst. C50, 777-781.
Lloyd, B. A., Arif, A. M., Coots, R. J. \& Allred, E. L. (1995). Acta Cryst. C51, 2059-2062.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Melder, J.-P. \& Prinzbach, H. (1991). Chem. Ber. 124, 1271-1289.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supporting information

Acta Cryst. (2013). E69, o202-o203 [doi:10.1107/S1600536812051902]

# endo,endo-Tetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodeca-9-en-anti-11-yl 4-bromobenzoate 

Barry A. Lloyd, Atta M. Arif and Robert J. Coots

## S1. Comment

An ORTEP-3 drawing (Farrugia, 2012) and a cell packing diagram of the title compound, 1-OPBB, are shown in Figs. 1 and 2, respectively. A Cambridge Structural Database search found only one other structure (2-OPBB) containing this tetracyclic monoene structure (Lloyd et al., 1995).
3,5-Dinitrobenzoate esters 1-, 2- and 3-ODNB (Fig. 3) solvolyze faster (Table 1) in $80 \%$ dioxane $-d_{8} / 20 \% \mathrm{D}_{2} \mathrm{O}$ at 383 K than 4-ODNB (Coots, 1983). The 1-ODNB rate increase was explained by long range $\sigma$-orbital through-space and through-bond mixing with the homoconjugated $\pi$-system, that stabilizes the intermediate carbocation (Chow \& Jiang, 2000, Chow, 1999, Chow, 1998, Furusaki \& Matsumoto, 1978). The 1-OPBB X-ray crystal structure provides experimental verification for some of the calculated results.
No nonhydrogen atom intermolecular contacts exist in 1-OPBB shorter than van der Waals radii sums, the closest being $\mathrm{C} 13^{\mathrm{i} \cdots} \mathrm{C} 14^{\mathrm{ii}}$ at 3.430 (3) $\AA \AA$ [symmetry code: (ii) $1-x,-y, 1-z$ ]. The closest tetracyclic hydrogen intermolecular contact is
 C1-C10-C9-C8 (plane 2), C1-C2-C7-C8 (plane 3), C2-C3-C6-C7 (plane 4), C3-C4-C5-C6 (plane 5), C3-C12-C6 (plane 6), H9-C9-C10-H10 (plane 7), C14-C15-C16-C17-C18-C19 (plane 8) and O1-C13 -O2 (plane 9). Interplanar angles are: 1:2 $121.9(2)^{\circ}, 1: 3119.9(1)^{\circ}, 2: 3118.2(1)^{\circ}, 3: 4132.0(1)^{\circ}, 4: 5119.1(1)^{\circ}, 4: 6$ $119.6(1)^{\circ}, 5: 6121.4(1)^{\circ}$, and 8:9 $8.5(2)^{\circ}$. The largest carbon atom deviation from planarity is $0.003(1) \AA$ in plane 5. The greatest difference between symmetry-related bond lengths is 0.011 (4) $\AA$ (for $\mathrm{C} 1-\mathrm{C} 11$ versus $\mathrm{C} 8-\mathrm{C} 11$, and between symmetry-related bond angles is $0.78(20)^{\circ}$ (between $\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$ and $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$ ). Bonds $\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 2-$ C7, C4-C5 and C7-C8 are somewhat longer than usual, similar to analogous bonds in 2-(Lloyd et al., 1995), isomeric 3- (Lloyd, et al., 1994), 4-, and 5-OPBB (Lloyd \& Arif, 2012a,b). Less alkenic C pyramidalization is apparent in 1-OPBB (2:7 angle $2(1)^{\circ}$ ) than in 3-OPBB (comparable 2:4 angle (6 $\left.(1)^{\circ}\right)$.

The 1:2 interplanar angle (Table 1) is a logical structure/solvolysis reactivity indicator for these compounds. A smaller angle should portend faster solvolysis as the homoconjugated $\pi$-bond provides anchimeric assistance. Solvolytic reactivities are inverse to $1: 2$ angles for $\mathbf{1 -}$, 2-, 3-, and $\mathbf{4 - O P B B}$, but differences are small relative to the calculated $\sim 30^{\circ}$ substrate to transition state 1:2 angle bending (Chow, 1999 and Chow, 1998), and other structural features are certainly involved. The 1-OPBB 3:4 angle is near that of endo, endo 2-OPBB, and larger than in 3-OPBB, consistent with more interbridge $\mathrm{C} 4-\mathrm{C} 5 \cdots \mathrm{C} 9=\mathrm{C} 10$ steric repulsion in endo,endo than in endo,exo structures. The 1-OPBB 4:6 angle is 1.9 $(5)^{\circ}$ larger, and the $5: 6$ angle is $5.2(8)^{\circ}$ smaller than in $\mathbf{2 - O P B B}$, which probably reflects the close $\mathrm{C} 12 \cdots \mathrm{C} 13$ contact ( $2.70(1) \AA$ ) in the latter. A longer $\mathrm{C} 11-\mathrm{O} 2$ (structures $\mathbf{1 -}, \mathbf{2 -}, \mathbf{3 - O P B B}$ ) or $\mathrm{C} 7-\mathrm{O} 2$ (structures $\mathbf{4 -}$ and 5-OPBB) bond should also imply faster solvolysis, but they do not fit the expected pattern for 3- and 5-OPBB.
Short intramolecular van der Waals contacts demonstrate $\mathrm{C} 4-\mathrm{C} 5 \cdots \mathrm{C} 9=\mathrm{C} 10$ and $\mathrm{C} 9=\mathrm{C} 10 \cdots \mathrm{C} 11$ steric interactions: C4‥C10 3.014 (4), C5 $\cdots$ C9 2.993 (3), H5B $\cdots$ C9 2.39 (3), H4B $\cdots$ C10 2.45 (3), C9 $\cdots$ C11 2.284 (3) and C10 $\cdots$ C11 2.279 (3) Å. Theoretical values for $\mathbf{1 - C l}($ Chow, 1999 and Chow, 1998) agree closely: C4‥C10 (and C5 $\cdots \mathrm{C} 9$ ) 2.94
(semiempirical AM1) or $3.00 \AA$ (ab initio HF/3-21 G), C9 $\cdots \mathrm{C} 11$ (and C10 $\cdots \mathrm{C} 11$ ) 2.33 (AM1) or $2.30 \AA$ (HF/3-21 G), and interplanar 1:2 angle $122^{\circ}(\mathrm{HF} / 3-21 \mathrm{G})$.

## S2. Experimental

Compound 1-OPBB was synthesized via the steps shown in Fig. 4 and described below. Products were verified by 90 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{CDCl}_{3}$ solvent. The most recent methods for synthesizing precursor compound $\mathbf{6}$ are found in Chow (1996). See also Melder \& Prinzbach (1991) for substrate syntheses.
Into 70 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dissolved 2.0 g of 6 and 0.1 g of $10 \% \mathrm{Pd} / \mathrm{C}$ was added. The mixture was stirred under $\mathrm{H}_{2}(\sim 9$ $\times 10^{4} \mathrm{~Pa}$ ) at 298 K for 12 h . The mixture was vacuum filtered to remove catalyst, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum yielding 2.0 g of white powder 7: mp $400.5-401.5 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR: $\delta 1.58(4 H, \mathrm{~m}), 2.52(2 H, \mathrm{~m}), 3.50(2 H, \mathrm{~m})$, $3.68(3 H, \mathrm{~s}), 3.75(3 H, \mathrm{~s}), 4.22(1 H, \mathrm{~m})$.
Into 100 ml of absolute ethanol were dissolved 6.7 g of 7 . Over a 2 h period, 19.6 g of Na (washed twice in absolute ethanol) were added as small ( $\sim 0.3 \mathrm{~g}$ ) pieces under a dry, $\mathrm{N}_{2}$ atmosphere while refluxing and mechanically stirring. After 6 h the mixture was cooled to 298 K and 200 g of crushed ice were slowly and cautiously added while stirring. The mixture was extracted with $3 \times 100 \mathrm{ml}$ of ether, and combined ether extracts were washed with water, saturated brine, and dried over $\mathrm{MgSO}_{4}$. Solvent removal under vacuum yielded $3.2 \mathrm{~g}(85 \%)$ of pale yellow oil 8. ${ }^{1} \mathrm{H}$ NMR: $\delta 1.22(4 H$, bs), $1.28(1 H, \mathrm{~m}), 1.46(1 H, \mathrm{~d}, J \backslash \operatorname{sim} 9 \mathrm{~Hz}), 2.09(2 H, \mathrm{bs}), 2.41(2 H, \mathrm{~m}), 2.72(2 H, \mathrm{~m}), 3.13(3 H, \mathrm{~s}), 3.18(3 H, \mathrm{~s}), 6.03(2 H$, $\mathrm{m})$.
Into 50 ml of tetrahydrofuran were dissolved 3.0 g of $\mathbf{8}$. The solution was cooled to 273 K and poured into 35 ml of $20 \%$ aqueous $\mathrm{HClO}_{4}$ in an ice bath. The mixture warmed to 298 K overnight, was then poured into 100 ml of water, and extracted with $3 \times 50 \mathrm{ml}$ of ether. Combined ether extracts were washed with water, saturated $\mathrm{NaHCO}_{3}$, saturated brine, and dried over $\mathrm{MgSO}_{4}$. Ether was evaporated under vacuum yielding 2.2 g of colorless oil 9 that crystallized upon standing: mp 330.0-331.5 K. ${ }^{1} \mathrm{H}$ NMR: $\delta 1.18(4 H, \mathrm{bs}), 1.29(2 H, \mathrm{~m}), 2.23(2 H, \mathrm{~m}), 2.32(2 H, \mathrm{~m}), 2.93(2 H, \mathrm{~m}), 6.34$ ( $2 \mathrm{H}, \mathrm{m}$ ).
Into 100 ml of absolute ether were placed 0.126 g of $\mathrm{LiAlH}_{4}$ under a dry $\mathrm{N}_{2}$ atmosphere. After stirring for 1 h at 298 K , the mixture was cooled to 195 K and a 2.1 g solution of 9 in 20 ml of absolute ether was slowly added over 30 min . The mixture was stirred for 1 h at 195 K , and allowed to warm up overnight. Excess $\mathrm{LiAlH}_{4}$ was then neutralized by slowly adding 0.9 ml of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and stirring 30 min . About 1 g of $\mathrm{MgSO}_{4}$ was added and the mixture stirred 30 min more. Vacuum filtration removed solids. Ether was evaporated under vacuum, yielding $1.5 \mathrm{~g}(70 \%)$ of white $\mathbf{1 - O H}$ crystals which were further purified by preparative gas chromatography ( $1.5 \mathrm{~m} \times 0.0063 \mathrm{~m}$ stainless steel column, $20 \%$ DEGS on 60/80 Chromosorb W AW, injector 483 K , column 438 K , detector 483 K , He carrier $75 \mathrm{ml} / \mathrm{min}$, 1-OH retention time 5.85 min$): \mathrm{mp} 406.5-407.5 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR: $\delta 1.28(4 H, \mathrm{bs}), 1.40(1 H, \mathrm{~d}, J \sim 9 \mathrm{~Hz}), 1.66(1 H, \mathrm{~d}, J \sim 9 \mathrm{~Hz}), 1.92$ $(1 H, \mathrm{bs}), 2.13(2 H, \mathrm{~m}), 2.44(2 H, \mathrm{~m}), 2.54(2 H, \mathrm{~m}), 3.72(1 H, \mathrm{bs}), 5.98(2 H, \mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 20 \mathrm{MHz}\right): \delta 25.9$, 39.4, 46.0, 47.46, 47.50, 90.7, 129.8.

Into 5 ml of freshly distilled dry pyridine (from $\mathrm{CaH}_{2}$ ) were dissolved 0.086 g of pure $\mathbf{1 - 0 H}$, and 0.14 g of freshly recrystallized (from hexanes) 4-bromobenzoyl chloride with stirring under a dry $\mathrm{N}_{2}$ atmosphere. The mixture was warmed briefly until reagents dissolved, and stirred overnight at 298 K . The mixture was poured into 100 ml of cold water, and extracted with $2 \times 50 \mathrm{ml}$ of ether. Combined ether extracts were washed with water, twice with $10 \% \mathrm{HCl}$, twice with $\mathrm{NaHCO}_{3}$, and with saturated brine. The ether solution was dried over $\mathrm{MgSO}_{4}$, filtered, and ether was evaporated under vacuum, yielding crude 1-OPBB. Recrystallization from a $1: 4 \mathrm{CHCl}_{3} /$ hexane mixture yielded 0.15 g $(86 \%)$ of white $\mathbf{1 - O P B B}$ crystals. These were dissolved in $\sim 5 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed down a $0.05 \mathrm{~m} \times 0.005 \mathrm{~m}$ silica gel column, eluting with distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and solvent was evaporated. The residual white crystals were sublimed ( 353 K ,
$1.3 \mathrm{~Pa})$ yielding pure white 1-OPBB crystals: mp 409.5-410.5 K. ${ }^{1} \mathrm{H}$ NMR: $\delta 1.30(4 \mathrm{H}, \mathrm{bs}), 1.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J} \sim 9 \mathrm{~Hz}), 1.68$ $(1 H, \mathrm{~d}, J \sim 9 \mathrm{~Hz}), 2.18(2 H, \mathrm{~m}), 2.65(2 H, \mathrm{~m}), 2.83(2 H, \mathrm{~m}), 4.76(1 H, \mathrm{bs}), 6.21(2 H, \mathrm{~m}), 7.76(2 H, \mathrm{~d}, J \sim 9 \mathrm{~Hz}), 8.05(2 H, \mathrm{~d}$, $J \sim 9 \mathrm{~Hz}$ ).
About 0.1 g of sublimed 1-OPBB was dissolved in 15 ml of absolute ethanol by warming on a steam bath for 5 min . This solution was placed in a crystallizing dish and covered with plastic wrap. Three small holes were made in the plastic wrap with a hot wire and ethanol slowly evaporated at 298 K . About ten crystals were eventually removed from the evaporating dish, and one of these was selected for the X-ray structure analysis.

## S3. Refinement

A colorless plate shaped crystal $0.23 \times 0.20 \times 0.13 \mathrm{~mm}$ in size was mounted on a quartz fiber with epoxy resin, and transferred to a Nonius KappaCCD diffractometer equipped with Mo K $\alpha$ radiation ( $\lambda=0.71073 \AA$ ). Ten frames of data were collected at 150 (1) K with an oscillation range of $1^{\circ} /$ frame and an exposure time of $20 \mathrm{sec} /$ frame (Nonius, 1998). Indexing and unit cell refinement based on all observed reflections from those ten frames indicated a monoclinic $\boldsymbol{P}$ lattice. A total of 6702 reflections $\left(\Theta_{\max }=27.49^{\circ}\right)$ were indexed, integrated and corrected for Lorentz, polarization and absorption effects using $D E N Z O-S M N$ and SCALEPAC (Otwinowski \& Minor, 1997). Post refinement of the unit cell gave $a=13.2569$ (2) $\AA, b=10.5045$ (2) $\AA, c=12.2039$ (2) $\AA, \beta=116.0122(9)^{\circ}$, and $\mathrm{V}=1527.32$ (4) $\AA^{3}$. Axial photographs and systematic absences were consistent with the compound having crystallized in the monoclinic space group $\boldsymbol{P} 2_{1} / \mathrm{c}$.
The structure was solved by a combination of direct and heavy atom methods using SIR97 (Altomare et al., 1999). All of the non-hydrogen atoms were refined with anisotropic displacement coefficients. Hydrogen atoms were located and refined isotropically using SHELXL97 (Sheldrick, 2008). The weighting scheme employed was $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+\right.$ $\left.(0.0223 P)^{2}+0.8628 P\right]$ where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$. The refinement converged to $R 1=0.0276, w R 2=0.0577$, and $S=1.029$ for 2700 reflections with $I>2 \sigma(I)$, and $R 1=0.0452$, $w R 2=0.0632$ and $S=1.029$ for 3500 unique reflections and 276 parameters, where $R 1=\Sigma\left(\left\|F_{\mathrm{o}}|-| F_{\mathrm{c}}\right\|\right) / \Sigma\left|F_{\mathrm{o}}\right|, w R 2=\left[\Sigma\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right) 2\right) / \Sigma\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$, and $S=$ Goodness-of-fit on $F^{2}=[\Sigma$ $\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} /(n-p)\right]^{1 / 2} ; n$ is the number of reflections and $p$ is the number of parameters refined. The maximum $\Delta / \sigma$ in the final cycle of the least-squares was 0.001 , and the residual peaks on the final difference-Fourier map ranged from -0.457 to $0.397 \mathrm{e} / \AA^{3}$. Scattering factors were taken from the International Tables for Crystallography, Volume C, Chapters 4 pp 206-222 and 6 pp 476-516.


Figure 1
ORTEP-3 drawing of the title compound showing 50\% displacement ellipsoids.


Figure 2
Cell packing diagram for the title compound.


Figure 3
Compound 1- to 5-OPBB structures.


Figure 4
Synthesis scheme for 1-OPBB.

## endo,endo-Tetracyclo[6.2.1.1 ${ }^{3,6} .0^{2,7}$ ]dodeca- 9-en-anti-11-yl 4-bromobenzoate

## Crystal data

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{2}$
$M_{r}=359.25$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.2569$ (2) A
$b=10.5045$ (2) $\AA$
$c=12.2039$ (2) $\AA$
$\beta=116.0122(9)^{\circ}$
$V=1527.32$ (4) $\AA^{3}$
$Z=4$

## Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Phi and $\omega$ scan
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.576, T_{\text {max }}=0.721$
$F(000)=736$
$D_{\mathrm{x}}=1.562 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=409.5-410.5 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3686 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=2.70 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, colourless
$0.23 \times 0.20 \times 0.13 \mathrm{~mm}$

6702 measured reflections
3500 independent reflections
2700 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-17 \rightarrow 17$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.063$
$S=1.03$
3500 reflections
276 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from $\quad$ neighbouring sites
> All H-atom parameters refined
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0223 P)^{2}+0.8628 P\right]$
> $\quad$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.46$ e $\AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, $\quad 2008), \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0021(3)$

## Special details

Experimental. The program DENZO-SMN (Otwinowski \& Minor, 1997) uses a scaling algorithm which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL-97 input file.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma 2\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Br1 | $0.398775(17)$ | $0.50046(2)$ | $0.33147(2)$ | $0.03521(8)$ |
| O1 | $0.39056(11)$ | $-0.15520(13)$ | $0.34637(12)$ | $0.0279(3)$ |
| O2 | $0.29976(11)$ | $-0.10151(12)$ | $0.45837(12)$ | $0.0242(3)$ |
| C1 | $0.22157(16)$ | $-0.24807(18)$ | $0.55731(16)$ | $0.0229(4)$ |
| C2 | $0.11279(15)$ | $-0.16903(17)$ | $0.48370(16)$ | $0.0206(4)$ |
| C3 | $-0.00178(16)$ | $-0.18682(18)$ | $0.48681(17)$ | $0.0247(4)$ |
| C4 | $-0.04236(18)$ | $-0.3253(2)$ | $0.47273(18)$ | $0.0271(4)$ |
| C5 | $-0.06898(17)$ | $-0.3574(2)$ | $0.33847(18)$ | $0.0263(4)$ |
| C6 | $-0.04154(16)$ | $-0.23344(18)$ | $0.29110(17)$ | $0.0242(4)$ |
| C7 | $0.08449(15)$ | $-0.20150(17)$ | $0.34772(16)$ | $0.0202(4)$ |
| C8 | $0.17988(15)$ | $-0.29568(18)$ | $0.36060(17)$ | $0.0215(4)$ |
| C9 | $0.17465(16)$ | $-0.41722(18)$ | $0.42422(18)$ | $0.0245(4)$ |
| C10 | $0.19923(16)$ | $-0.38922(18)$ | $0.53953(18)$ | $0.0256(4)$ |
| C11 | $0.27888(16)$ | $-0.23479(17)$ | $0.47187(17)$ | $0.0224(4)$ |
| C12 | $-0.07986(17)$ | $-0.1352(2)$ | $0.35926(19)$ | $0.0283(4)$ |
| C13 | $0.35672(14)$ | $-0.07544(18)$ | $0.39376(16)$ | $0.0220(4)$ |
| C14 | $0.37096(14)$ | $0.06479(18)$ | $0.38565(16)$ | $0.0205(4)$ |
| C15 | $0.41471(16)$ | $0.1085(2)$ | $0.30735(18)$ | $0.0270(4)$ |
| C16 | $0.42547(16)$ | $0.2376(2)$ | $0.29232(18)$ | $0.0282(4)$ |
| C17 | $0.39139(15)$ | $0.32290(19)$ | $0.35609(17)$ | $0.0251(4)$ |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| C18 | $0.35028(16)$ | $0.28140(19)$ | $0.43685(18)$ | $0.0256(4)$ |
| C19 | $0.33979(16)$ | $0.15274(19)$ | $0.45069(17)$ | $0.0235(4)$ |
| H1 | $0.2663(16)$ | $-0.2218(18)$ | $0.6399(18)$ | $0.023(5)^{*}$ |
| H2 | $0.1343(15)$ | $-0.0796(19)$ | $0.4998(16)$ | $0.017(5)^{*}$ |
| H3 | $-0.0063(16)$ | $-0.143(2)$ | $0.5549(18)$ | $0.026(5)^{*}$ |
| H4A | $-0.1142(19)$ | $-0.326(2)$ | $0.4858(19)$ | $0.038(6)^{*}$ |
| H4B | $0.0117(17)$ | $-0.381(2)$ | $0.5314(18)$ | $0.025(5)^{*}$ |
| H5A | $-0.1481(19)$ | $-0.375(2)$ | $0.2916(19)$ | $0.032(6)^{*}$ |
| H5B | $-0.0256(18)$ | $-0.431(2)$ | $0.3317(19)$ | $0.033(6)^{*}$ |
| H6 | $-0.0785(18)$ | $-0.225(2)$ | $0.203(2)$ | $0.034(6)^{*}$ |
| H7 | $0.0949(16)$ | $-0.1252(19)$ | $0.3064(17)$ | $0.021(5)^{*}$ |
| H8 | $0.1927(17)$ | $-0.3042(19)$ | $0.2898(19)$ | $0.030(5)^{*}$ |
| H9 | $0.1568(18)$ | $-0.498(2)$ | $0.3870(19)$ | $0.032(6)^{*}$ |
| H10 | $0.1999(19)$ | $-0.444(2)$ | $0.601(2)$ | $0.039(6)^{*}$ |
| H11 | $0.3488(18)$ | $-0.279(2)$ | $0.4991(18)$ | $0.030(6)^{*}$ |
| H12A | $-0.1611(19)$ | $-0.143(2)$ | $0.3404(19)$ | $0.035(6)^{*}$ |
| H12B | $-0.0617(18)$ | $-0.050(2)$ | $0.3443(18)$ | $0.030(5)^{*}$ |
| H15 | $0.4371(18)$ | $0.046(2)$ | $0.2652(19)$ | $0.031(6)^{*}$ |
| H16 | $0.4559(18)$ | $0.268(2)$ | $0.2405(19)$ | $0.031(6)^{*}$ |
| H18 | $0.3300(17)$ | $0.338(2)$ | $0.4785(19)$ | $0.029(6)^{*}$ |
| H19 | $0.3133(16)$ | $0.1248(19)$ | $0.5017(18)$ | $0.022(5)^{*}$ |
|  |  |  |  |  |

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Br1 | $0.03566(13)$ | $0.02801(12)$ | $0.04882(14)$ | $0.00147(9)$ | $0.02486(10)$ | $0.01104(10)$ |
| O1 | $0.0274(7)$ | $0.0271(8)$ | $0.0316(8)$ | $-0.0003(6)$ | $0.0152(6)$ | $-0.0057(6)$ |
| O2 | $0.0253(7)$ | $0.0204(7)$ | $0.0312(7)$ | $-0.0038(5)$ | $0.0163(6)$ | $-0.0024(5)$ |
| C1 | $0.0270(10)$ | $0.0230(10)$ | $0.0163(9)$ | $-0.0028(8)$ | $0.0072(8)$ | $-0.0019(7)$ |
| C2 | $0.0246(9)$ | $0.0169(9)$ | $0.0204(9)$ | $-0.0021(7)$ | $0.0101(7)$ | $-0.0015(7)$ |
| C3 | $0.0284(10)$ | $0.0245(10)$ | $0.0245(10)$ | $-0.0017(9)$ | $0.0147(8)$ | $-0.0039(8)$ |
| C4 | $0.0296(10)$ | $0.0272(11)$ | $0.0270(10)$ | $-0.0055(9)$ | $0.0146(8)$ | $0.0000(8)$ |
| C5 | $0.0240(10)$ | $0.0263(11)$ | $0.0257(10)$ | $-0.0058(9)$ | $0.0081(8)$ | $-0.0034(8)$ |
| C6 | $0.0244(10)$ | $0.0255(10)$ | $0.0192(9)$ | $-0.0008(8)$ | $0.0064(8)$ | $0.0031(7)$ |
| C7 | $0.0243(9)$ | $0.0181(9)$ | $0.0188(9)$ | $-0.0002(7)$ | $0.0101(7)$ | $0.0029(7)$ |
| C8 | $0.0261(10)$ | $0.0205(9)$ | $0.0202(9)$ | $-0.0001(8)$ | $0.0123(8)$ | $-0.0012(7)$ |
| C9 | $0.0261(10)$ | $0.0176(9)$ | $0.0290(10)$ | $-0.0005(8)$ | $0.0114(8)$ | $-0.0024(8)$ |
| C10 | $0.0272(10)$ | $0.0209(10)$ | $0.0263(10)$ | $0.0004(8)$ | $0.0096(8)$ | $0.0058(8)$ |
| C11 | $0.0240(10)$ | $0.0169(9)$ | $0.0263(10)$ | $-0.0008(8)$ | $0.0111(8)$ | $-0.0006(7)$ |
| C12 | $0.0248(11)$ | $0.0252(11)$ | $0.0342(11)$ | $0.0011(8)$ | $0.0124(9)$ | $0.0016(9)$ |
| C13 9 | $0.0153(9)$ | $0.0279(10)$ | $0.0187(9)$ | $-0.0018(8)$ | $0.0036(7)$ | $-0.0011(8)$ |
| C14 | $0.0138(9)$ | $0.0263(10)$ | $0.0183(9)$ | $-0.0006(7)$ | $0.0043(7)$ | $0.0006(7)$ |
| C15 | $0.0227(10)$ | $0.0325(12)$ | $0.0291(10)$ | $0.0005(8)$ | $0.0145(8)$ | $-0.0027(9)$ |
| C16 | $0.0248(10)$ | $0.0340(12)$ | $0.0308(11)$ | $-0.0016(9)$ | $0.0167(9)$ | $0.0047(9)$ |
| C17 | $0.0190(9)$ | $0.0261(10)$ | $0.0277(10)$ | $0.0004(8)$ | $0.0080(8)$ | $0.0061(8)$ |
| C18 | $0.0248(10)$ | $0.0270(11)$ | $0.0274(10)$ | $0.0015(8)$ | $0.0136(8)$ | $-0.0002(8)$ |
| C19 | $0.0230(10)$ | $0.0275(11)$ | $0.0226(9)$ | $-0.0017(8)$ | $0.0124(8)$ | $0.0030(8)$ |
|  |  |  |  |  |  |  |

Geometric parameters (A, ${ }^{\circ}$ )

| Br1-C17 | $1.8986(19)$ | C7-C8 | $1.558(3)$ |
| :--- | :--- | :--- | :--- |
| O1-C13 | $1.211(2)$ | C7-H7 | $0.989(19)$ |
| O2-C13 | $1.338(2)$ | C8-C9 | $1.512(3)$ |
| O2-C11 | $1.450(2)$ | C8-C11 | $1.553(3)$ |
| C1-C10 | $1.509(3)$ | C8-H8 | $0.96(2)$ |
| C1-C11 | $1.542(2)$ | C9-C10 | $1.331(3)$ |
| C1-C2 | $1.562(3)$ | C9-H9 | $0.95(2)$ |
| C1-H1 | $0.96(2)$ | C10-H10 | $0.94(2)$ |
| C2-C3 | $1.547(3)$ | C11-H11 | $0.96(2)$ |
| C2-C7 | $1.570(2)$ | C12-H12A | $1.00(2)$ |
| C2-H2 | $0.977(19)$ | C12-H12B | $0.96(2)$ |
| C3-C4 | $1.534(3)$ | C13-C14 | $1.494(3)$ |
| C3-C12 | $1.541(3)$ | C14-C19 | $1.393(3)$ |
| C3-H3 | $0.98(2)$ | C14-C15 | $1.395(3)$ |
| C4-C5 | $1.554(3)$ | C15-C16 | $1.384(3)$ |
| C4-H4A | $1.03(2)$ | C15-H15 | $0.96(2)$ |
| C4-H4B | $0.96(2)$ | C16-C17 | $1.386(3)$ |
| C5-C6 | $1.532(3)$ | C16-H16 | $0.94(2)$ |
| C5-H5A | $0.97(2)$ | C17-C18 | $1.389(3)$ |
| C5-H5B | $0.98(2)$ | C18-C19 | $1.377(3)$ |
| C6-C7 | $1.539(3)$ | C18-H18 | $0.90(2)$ |
| C6-C12 | $1.545(3)$ | C19-H19 | $0.89(2)$ |
| C6-H6 | $0.97(2)$ |  |  |
|  |  |  |  |
| C13-O2-C11 | $116.73(14)$ | C9-C8-C7 | $111.72(15)$ |
| C10-C1-C11 | $96.63(15)$ | C11-C8-C7 | $99.44(14)$ |
| C10-C1-C2 | $111.48(15)$ | C9-C8-H8 | $116.9(12)$ |
| C11-C1-C2 | $99.63(14)$ | C11-C8-H8 | $114.3(12)$ |
| C10-C1-H1 | $115.2(12)$ | C7-C8-H8 | $115.3(12)$ |
| C11-C1-H1 | $115.1(12)$ | C10-C9-C8 | $108.14(17)$ |
| C2-C1-H1 | $116.1(12)$ | C10-C9-H9 | $126.9(13)$ |
| C3-C2-C1 | $126.18(16)$ | C8-C9-H9 | $125.0(13)$ |
| C3-C2-C7 | $102.57(14)$ | C9-C10-C1 | $108.11(17)$ |
| C1-C2-C7 | $102.99(14)$ | C9-C10-H10 | $128.1(14)$ |
| C3-C2-H2 | $108.3(11)$ | C1-C10-H10 | $123.8(14)$ |
| C1-C2-H2 | $106.3(11)$ | O2-C11-C1 | $109.83(14)$ |
| C7-C2-H2 | $109.6(11)$ | O2-C11-C8 | $115.36(15)$ |
| C4-C3-C12 | $100.00(16)$ | C1-C11-C8 | $94.35(14)$ |
| C4-C3-C2 | $114.30(16)$ | O2-C11-H11 | $107.6(13)$ |
| C12-C3-C2 | $99.46(15)$ | C1-C11-H11 | $114.3(12)$ |
| C4-C3-H3 | $113.4(12)$ | C8-C11-H11 | $115.1(13)$ |
| C12-C3-H3 | $115.3(12)$ | C3-C12-C6 | $94.28(15)$ |
| C2-C3-H3 | $113.0(12)$ | C3-C12-H12A | $112.4(12)$ |
| C3-C4-C5 | $103.31(15)$ | C6-C12-H12A | $113.3(12)$ |
| C3-C4-H4A | $107.0(12)$ | C3-C12-H12B | $113.9(13)$ |
| C5-C4-H4A | C6-C12-H12B | $110.4(13)$ |  |
|  | $111.3(12)$ |  |  |


| C3-C4-H4B | 112.8 (12) |
| :---: | :---: |
| C5-C4-H4B | 113.7 (12) |
| H4A-C4-H4B | 108.5 (16) |
| C6-C5-C4 | 103.38 (16) |
| C6-C5-H5A | 108.5 (13) |
| C4-C5-H5A | 110.6 (12) |
| C6-C5-H5B | 112.8 (13) |
| C4-C5-H5B | 112.8 (12) |
| H5A-C5-H5B | 108.7 (18) |
| C5-C6-C7 | 113.99 (16) |
| C5-C6-C12 | 100.17 (16) |
| C7-C6-C12 | 99.27 (15) |
| C5-C6-H6 | 114.0 (13) |
| C7-C6-H6 | 113.5 (12) |
| C12-C6-H6 | 114.2 (13) |
| C6-C7-C8 | 125.45 (16) |
| C6- $\mathrm{C} 7-\mathrm{C} 2$ | 103.35 (14) |
| C8-C7-C2 | 102.95 (14) |
| C6-C7-H7 | 108.4 (11) |
| C8-C7-H7 | 106.1 (11) |
| C2-C7-H7 | 110.0 (11) |
| C9-C8-C11 | 96.33 (14) |
| C10-C1-C2-C3 | 51.8 (2) |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 152.94 (17) |
| $\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$ | -64.62 (18) |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$ | 36.49 (16) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | -48.0 (2) |
| C7-C2-C3-C4 | 68.68 (19) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 12$ | -153.53 (17) |
| C7-C2-C3-C12 | -36.89 (17) |
| C12-C3-C4-C5 | 36.59 (19) |
| C2-C3-C4-C5 | -68.6 (2) |
| C3-C4-C5-C6 | -0.5 (2) |
| C4-C5-C6-C7 | 69.3 (2) |
| C4-C5-C6-C12 | -35.73 (19) |
| C5-C6-C7-C8 | 48.1 (2) |
| C12-C6-C7-C8 | 153.65 (17) |
| C5-C6-C7-C2 | -68.78 (19) |
| C12-C6-C7-C2 | 36.79 (17) |
| C3-C2-C7-C6 | -0.02 (17) |
| C1-C2-C7-C6 | 132.22 (15) |
| C3-C2-C7-C8 | -131.80 (15) |
| C1-C2-C7-C8 | 0.43 (17) |
| C6-C7-C8-C9 | -53.2 (2) |
| C2-C7-C8-C9 | 63.86 (18) |
| C6-C7-C8-C11 | -153.94 (16) |
| C2-C7-C8-C11 | -36.89 (16) |


| $\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 111.5 (18) |
| :---: | :---: |
| $\mathrm{O} 1-\mathrm{C} 13-\mathrm{O} 2$ | 124.28 (17) |
| O1-C13-C14 | 124.53 (17) |
| O2-C13-C14 | 111.18 (16) |
| C19-C14-C15 | 119.22 (18) |
| C19-C14-C13 | 122.57 (17) |
| C15-C14-C13 | 118.19 (17) |
| C16-C15-C14 | 120.73 (19) |
| C16-C15-H15 | 121.7 (13) |
| C14-C15-H15 | 117.6 (13) |
| C15-C16-C17 | 118.77 (19) |
| C15-C16-H16 | 121.4 (13) |
| C17-C16-H16 | 119.9 (13) |
| C16-C17-C18 | 121.42 (19) |
| C16-C17-Br1 | 119.62 (15) |
| C18-C17-Br1 | 118.95 (15) |
| C19-C18-C17 | 119.16 (19) |
| C19-C18-H18 | 120.7 (13) |
| C17-C18-H18 | 120.1 (13) |
| C18-C19-C14 | 120.66 (18) |
| C18-C19-H19 | 120.2 (13) |
| C14-C19-H19 | 119.1 (13) |
| C13-O2-C11-C1 | 175.24 (15) |
| C13-O2-C11-C8 | -79.7 (2) |
| $\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 11-\mathrm{O} 2$ | 173.37 (14) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{O} 2$ | 60.18 (17) |
| C10-C1-C11-C8 | 54.41 (15) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 8$ | -58.77 (15) |
| C9-C8-C11-O2 | -168.60 (15) |
| C7-C8-C11-O2 | -55.28 (18) |
| C9-C8-C11-C1 | -54.24 (15) |
| C7-C8-C11-C1 | 59.08 (15) |
| C4-C3-C12-C6 | -57.68 (17) |
| C2-C3-C12-C6 | 59.25 (16) |
| C5-C6-C12-C3 | 57.45 (17) |
| C7-C6-C12-C3 | -59.15 (16) |
| C11-O2-C13-O1 | 0.4 (2) |
| C11-O2-C13-C14 | 179.24 (14) |
| $\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19$ | -173.99 (17) |
| O2-C13-C14-C19 | 7.2 (2) |
| O1-C13-C14-C15 | 7.6 (3) |
| $\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$ | -171.21 (16) |
| C19-C14-C15-C16 | -1.1 (3) |
| C13-C14-C15-C16 | 177.33 (17) |
| C14-C15-C16-C17 | -0.3 (3) |
| C15-C16-C17-C18 | 2.0 (3) |
| C15-C16-C17-Br1 | -177.12 (15) |

## supporting information

| $\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | $35.27(19)$ |
| :--- | :--- |
| $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | $-67.5(2)$ |
| $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 1$ | $0.1(2)$ |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$ | $-35.77(19)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$ | $67.3(2)$ |


| $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$ | $-2.2(3)$ |
| :--- | :--- |
| $\mathrm{Br} 1-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$ | $176.96(14)$ |
| $\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 14$ | $0.6(3)$ |
| $\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 19-\mathrm{C} 18$ | $1.0(3)$ |
| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19-\mathrm{C} 18$ | $-177.42(17)$ |

