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HAUSDORFF MEASURE AND LEVEL SETS OF TYPICAL
CONTINUOUS MAPPINGS IN EUCLIDEAN SPACES

BERND KIRCHHEIM

In memory ofHana Kirchheimová

Abstract. We determine the Hausdorff dimension of level sets and of sets

of points of multiplicity for mappings in a residual subset of the space of all

continuous mappings from R" to Rm .

Questions about the structure of level sets of typical (i.e. of all except a

set negligible from the point of view of Baire category) real functions on the

unit interval were already studied in [2], [1], and also [3]. In the last one the

question about the Hausdorff dimension of level sets of such functions appears.

The fact that a typical continuous function has all level sets zero-dimensional

was commonly known, although it seems difficult to find the first proof of this.

The author showed in [9] that in certain spaces of functions the level sets are

of dimension one typically and developed in [8] a method to show that in other

spaces functions are typically injective on the complement of a zero dimensional
set—this yields smallness of all level sets. Here we are going to extend this

method to continuous mappings between Euclidean spaces and to determine

the size of level sets of typical mappings and the typical multiplicity in case the
level sets are finite; see Theorems 1 and 2.

We will use the following notation. For M a set and e > 0, U(M, e), resp.

B(M, e), is the open, resp. closed, e-neighborhood of M and we write U(x, e)
instead of t7({x}, e). Given a metric space X of functions, we say that typical

f £ X has property P if {/ £ X ; non P{f)} is first category in X. We will

always deal with spaces of continuous mappings equipped with the supremum

metric. Finally, to prove that certain properties are typical, we will use the

Banach-Mazur game. Let (X, p) be a metric space and M c X. In the first

step Player A selects an open ball U(xi, fii). In the second step Player B selects

an open ball U(x2, £2) c U(x\, &\) and then A continues with U(x¡, £3) c
c7(x2, 62), and so on. By definition Player B wins if f|~ 1 B(xj , e,) c M, else

Player A wins. We have the following

There is a winning strategy for Player B if and only if X\M is a first category

set in X.
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1764 BERND KIRCHHEIM

For the proof see [10]. We will also assume the definition of Hausdorff

measure and dimension, also for more general Hausdorff functions </> ; see e.g.

[11].

Theorem 1. Let 1 < n < m be given. For any k > 1 we denote dk = m —

k(m - «). Then for typical continuous f : B(0, 1 ; R") —► Rm and any k > 2

the set

Mk(f) = {x£ 5(0, 1); card/-1 (/(*)) > k}

as well as the set f(Mk(f)) are Fa-sets of Hausdorff dimension dk ; moreover

for any nonvoid open £/c5(0, 1) both sets UnMk(f) and f(Mk(f)r\U) are
of non-a-finite dk-dimensional measure. For k= 1 the statements concerning

f{M\(f) n U) remain true.

For the proof of this theorem we need some preparation. Until the end of its

proof we will therefore always (unless explicitly stated in another way) assume

that «, k > 1, m > « , that dk and Mk(f) are defined as above, and that the
following four orthogonal projections are given.

• P : R" - R* , P(xi, ... , x„) = (x„_dk+l, ... , x„),

• P' : R» -» R»-* , F'(xj, ... , x„) = (xj, ... , x„.dk),

• Q : Rm -» R* , Q(xi ,...,xm) = {xn_dk+l, ... , x„),

. Q' : Rm - Rm-* , ß'(x!, ... , xm) = (x,, ... , xn_dk, x„+1, ... , xm).

Another trivial but useful remark is that we could replace the Euclidean unit
ball in the theorem by any convex body, or more generally by any compact K

which is an image of 5(0, 1) under some bilipschitz mapping <P. Indeed,
O induces a natural isomorphism of ff{B(0, 1), Rm) onto &(K, W) which

"commutes" with the map / —> Mk(f) and leaves f(Mk(f)) invariant.

Proposition 1. Let B(x', R¡) c R", i = I, ... , k, be mutually disjoint balls,

f:B-*Rm continuous where B = \Jk=l 5(x', 5,), aR > 0, and y £ Rm . Then
there is a continuous map g : 5 —► Rm such that

(1) ll/-g||oc<max|/(x)-y| + 51,    and   g(B)cB(y,Rx)
xeB

and that for all h : B —► Rm continuous with \\h - g\\oo < 5i/48/c3 and for all

z £ Edk fulfilling \z\ < R\/2k there are points x' ,x £ 5(x', R¡) satisfying

P(xl-xl) = Q(h(x)-y) = z

and
h(xi) = h(xj),    «(x') = «(xJ)   if\<i,j<k.

Proof. First of all, using a "nice" substitution of variables which maps the balls

5(x', Ri),  i > 2, onto disjoint balls 5(x!, R\)  and leaves the conclusion

unchanged, we infer that we can assume all the balls to be of the same radius
R (=Ri).

We define the following linear mappings from R" to Rm :

Fi(xi, ... , x„) = -(xi, ... , x„, 0, ... , 0)

and for i = 2, ... ,k

Xi if 1 </<(/- 2){m-n),

{0 if(/-2)(m-«)</<(/-l)(m-«),

x/_(m_n)   if (/- l)(m-n) </< m.
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LEVEL SETS IN EUCLIDEAN SPACES 1765

Now, we put g(x) = y+Fi(x—x') for x 6 5(x', R). Obviously, (1) is fulfilled.
To prove the statements concerning h, we introduce two auxiliary mappings
from 5(x*, R) x ■ ■ ■ x B(xk, R) c (R")k into (Rm)(fe-» x R* £ R"'fc :

<f>hP(xl ,...,xk) = {h(x2)-h(xx), «(x3)-«(x'),... , h(xk)-h(xl), P(xx -x1))

and

<t>hQ{xx,...,xk)

= (h(x2) - «(x1), «(x3) - «(x1), ... , h(xk) - «(x1), Q(h(xx) - y)).

First, we consider <EV = <I>£ and Oß = <S>8Q . Note that <t>Q = <S>P (= O) due

to the choice of F\. Moreover, the map

(A1, ... , Ak) -» <t>(xx + A1, ... , x" + A")

is a linear isomorphism restricted to (5(0, R))k . Indeed, one easily verifies
that the equation

(F2(A2)-Fi(Ax),..., Fk(Ak) - ^(A1), /»(A1)) = z £ R"'fc

has the following unique solution:

Ai = f Zndk-D+j   for j = (k- l)(w - «) + 1, ... , «,

;     l z¡.m+j       for 1 < / < k and (/ - \){m - n) < j < l(m - n),

and for I — \, ... ,k - \

■ zhm+j-A) for 1 <;<(/- l)(m-«),

4+1 = < Zi.m+J+(m-tt) - A)+(m_n) for (l-l)(m-n)<j<2n-m,

. zi.m+j+[m_n) for 2« - m < j < n.

(We recall that (k - 2)(«i - «) = 2« - m - dk < 2« - m.) In particular, we

have for this solution |A'| < \z\ and \AJ\ < |A'| + \z\ < 2\z\ if j >2. So we
obtain for any A' e 5(0, 5) the estimate

5jf3jl < l^^1 +A1, ... , x" + A")|.

Hence, |0(z)| > R/(2k-l) for any boundary point z of the domain i/(x', 5)

x • • • x U(x", 5). Since also ||<&* - <D*' |U , ||** - <D^' H«, < 2k\\h - «'IU , we

see that for any h £ U(g, R/($k3)), any t £ [0, 1], and any

z £ d{B(xx, R) x ■ ■ ■ x B{xn , R))

the inequalities

holds with ht — g + t(h - g)., Therefore, the classical degree theory for con-
tinuous mappings, see e.g. [6, Theorem 3.1(d3)] ensures that, for each point

zeR"-fc with \z\ <R/(2k),

deg(<D£, z) = deg(<D^, z) = deg(<D, z) = sign(det(Z><D)) / 0
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1766 BERND KIRCHHEIM

holds. In particular, the point (0, ... , 0, Z\, ... , zdk) € (R"»)^-1) x R* be-
longs to both sets

OhP(B{xl,R) x---xB(xk,R))    and   ®hQ(B(xl, R) x ■■■ x B(xk, R))

whenever \z\ < R/(2k). But from this statement and the definition of the maps

<p£, «Pg the conclusion of our proposition follows immediately.   D

Corollary \. Let B¡ <zW , i = \, ... , k, be mutually disjoint balls, f:B->Rm

continuous where B = \Jk=l 5, and y £ Rm, and R > 0 be given. Then there is

a continuous map g : B —> Rm such that

11/- g\\oo < max|/(x) -y\ + R,        g{B) c B(y, R),
x€B

and that for all h : B -* Rm continuous with \\h - g\\oo < 5/48A;3 and for all
z £ Rdk fulfilling \z\ < R/2k there are points x' £ 5, satisfying

Q(h(xx)-y) = z   and   h{x') = h(xj),    for 1 < i, j < k.

Proof. Follows immediately from Proposition 1, e.g. using a suitable diffeomor-

phism of R" which maps the B{, ... , Bk onto some disjoint balls of radius

R.   D

Note that Proposition 1 and the fact that dk < n immediately imply that for

anynonvoid U c [0, 1]" open and for any constant K the set of all / fulfilling

ß^dk{Mk{f) DU) > K and ß?dk{f{Mk{f) n U)) > K has a dense interior in
«'([O, 1]" , Rm). Hence, we see that for typical / both Mk(f) and f(Mk{f))
have infinite %fdk -measure "everywhere". In order to prove Theorem 1 in its

whole strength, we have to play the Banach-Mazur game with a strategy which

is based on the just-proved proposition and corollary and which builds trees

leading to perfect sets inside sufficiently many slices of the form Mk(f)nP~i (t),

f(Mk(f)) n Q~x(t). This is motivated by the following simple observation.

Lemma 1. Let M c R' be arbitrary and / : R' -► R^' be lipschitz. If

<%*'({t ; f~x (t) n M is uncountable}) > 0,

then M is not of a-finite I-dimensional Hausdorff measure.

Proof. On the contrary, suppose M c U^=i M> an<^ ̂ 1{MP) < oo for all p.

Due to [7, Theorem 2.10.25] we have the estimate

rß?l{t; cardt/-1 (r) n Mp) >y}< {\vpf)'ßTn{Mp)   for all r

which implies that for ^'-almost every t and all p > 1 the set f~x{t) P\MP

is countable. But then also f~1(t)CiM is countable for almost each t.   D

Now we are ready to prove

Proposition 2. If k > 2, then for typical continuous f : 5(0, 1 ; R") -> Rm is

the set Mk(f)nB(0, j) of non-a-finite ß?dk-measure.

Proof. During this proof we will use the following notation. Whenever 5 =

5(x, r) is a ball and a > 0 then a- B = 5(x, ar).
As already mentioned, we play the Banach-Mazur game. In the first step,

let us be given the first answer U{f , £\) of Player A. We choose an R\ £
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(O, 5) such that |/i(x) - /i(x')| < £i/2 whenever |x - x'| < R\, and then

we select 5i 6 (O, minf^ , ^-}) and points x1, ... , xk such that the balls

5(x', 25i) c 5(0, R\) are mutually disjoint. Further, we put y = /i(0).

According to Proposition 1 wefindamap f¿ £ U(f, ^ + R\) and £2 € (0, ei-

ll/i - /2II00) such that for any h £ U{f2, e2) and any z € 5(0, f¿ ; Rdk) there
exist points x' G 5(x', Ri), i = 1, ... , k , with P(xl - x1) = z and h(x') =

h(xl). These will form the roots of our trees, so we introduce the following,

more appropriate notation: S = B(P(xl), R\/2k ; Rdk), x[0, 0, i] = x1, and

5[0, 0, i] = 5(x[0, 0, z], Ri)  for i < k.   Then we return the open ball

£/(/2,e2).

In the second step, given A's answer U(ß, e3), we fix an R2 in the interval

(0, 5i/(200rc)) such that |/3(x)-/3(x')| < £3/8 whenever |x-x'| < 200Â:52.

Now let £>i c 5(0, R\/2k ; Rdk ) be a set maximal among all subsets D of this

ball with the property \t - t'\ > R2/(2k) for all different t,t £ D. (A simple

volume estimate shows that card A < (^ + l)k , but we need only the obvious

fact that Z>i is finite.) We claim that for all i = I, ... , k, 7 = 0,1, and
t £ D\ there are closed balls B[(j), (t), i] with centers x[(j), (t), i] such that

all the B[(j),(/),!] have radius R2 and that

(2)

P (5 (x[0,0, !],§))

C UfWo,W>l].§)    for ; = 0,1,

(3) P(x[(0),(t), l]) = 5(x[(l),(i), l]) = r   for all ie A,

(4) I/3WO), (Í), i])-Â(x[(J), (t), l])l < j   for all i,j,t,

(5) 2B[(j), (t), i] n 2B[(j"), (t') ,i] = z   whenever (j, f) # (/, t'),

(6) 25[(;), (i), i] c 25[0, 0, 1]   for all /, ;, t.

For this purpose we choose a linear order -< of the set Z>i and suppose that for

some t £ D\ the x[(y), (t1), i] c 5(x', 5i) already chosen for all i, j, t' ■<
t, are different whenever their indices differ and fulfill (3) as well as (5), for

1 = 1. According to the choice of our answer U(f2, e2) we find points x' e
5[0, 0, /], with /3(x') = /3(x') for all i < k and P{xx -x[0, 0, 1]) = t.

First, we consider the system & of all balls B(x[(j), (t'), 1], 452), 7 = 0, 1
and t1 <t, which satisfy t £ P{B). Since all of the 5-projections of balls in y

are centered in Dx and at most two of them in the same point, a straightforward

volume estimate shows that N = card y fulfills

N fR2\dk     (An      R2\dk

and, therefore, N < 2(l6k + \)dk < (40k)dk. Next, we look at the ball 5' =

P'(B(xl, l65kR2)) c R"-* and the set M = B'\[jBe^P'(B). We compute

that \M\ > ((N + 1) - N)\B(0, 4Ä2; R"-*)l > l5(°> 2Ä2; R"_*)|, here | • |
being the Lebesgue measure on R"~dk . Hence, the isodiametric inequality (see
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e.g. [4]) ensures the existence of two points z°, z1 £ M with \z° - zl\ > 4R2.

The desired two points are now defined by the conditions

P{x[{j),{t),n-x[0,0,\]) = t   and   P'(x[(j),(t),l]) = zJ.

It follows from our definition of M that the balls 5[(7), (t), 1] again satisfy

(3) and (5) (together with the other 5[(/), (?), l]ff-<t}. Now we choose
the points x[(j), (r), i] £ B[0, 0, i] n 5(x', R2), 7 = 0,1, i > 2, in such
a way that all the points chosen by now will be different. Note that this im-

plies |/3(x[(7"), (r), i]) - 73(x')| < e3/8 due to our choice of R2, which yields
(4). If we have proceeded the whole set D\ in this manner, we simply choose

all the 5[(7), (t), i], i > 2, sufficiently small to ensure (5), (6). Finally, the
maximality of D\ guarantees (2). (Note that all these considerations can be

omitted in case dk = 0 where S — {0} = D\ and all we have to choose

are two appropriate "disjoint" subballs in each B[(j), 0, i]). Now we can ap-
ply Proposition 1 to each of the systems {5[(7), (r), i] ; / < k} for j = 0, 1

and t £ D\. So we obtain a mapping /4 £ U(ß, £3) and an £4 e (0, £3 -

II/3 - /4II00) such that for all h £ ¡7(/4, £4), for any 7 = 0, 1, t £ A ,
and for any z e 5(0, R2/(2k);Rdk) there are x' € B[(j), (t), i] fulfilling
P{Xl -x[(j), (t),l]) = z and Ä(x') = «(x1) for all i<k.

We return to U{fn, £4). According to the foregoing statement about «,
after receiving the answer (7(/5, £5) we can repeat the construction of Step

II for each of 7 = 0, 1 and t £ Dx with the family {5[(7"), (t), i]; i < k}
instead of {5[(0, 0, i] ; / < k) . Iterating this procedure, we are always in a

position to obtain a play {U(f¡, £/)}/f, of the Banach-Mazur game, sequences
(in /= 1,2,...) of

• R, with 0 < 5/+1 < R,/(200k),
• D¡ c 5(0, Rj/(2k) ; Rdk ) maximal among all subsets of this ball having

minimal distance between its members at least 5/+1/(2/c),
and k trees (with height / of the corners running from 0 to 00),

• of balls B[a>, a, i] centered in x[co, a, i] for i = I, ... , k,  a> £

{0, 1}', and a £ D\ x ■■■ x D¡ and of radii 5/+1 provided 1 = 1,

which all together satisfy for any i < k, I > 1, a £ D\ x ■■■ x D¡, co £

{0, 1}', and t, ? € Dj+i ', j, j' = 0, 1 with (7, t) ¿ (/, t') the following five
conditions:

(7) 2B[coj, at, i] c 2B[co,o,i],

(8) 25[oj7 , at, /] n 2B[tof, at', i] = 0,

(9) P (Jj¿B[to, a,\]\c   (J  p (JçBlœj, at, 1]) ,

(10) P(x[(oj, at, l]-x[w, a, 1]) = t

and finally

(11) P (Jj-B[o>, a, l]\ cpÎB[œ,a, l]n f) f2lx+2(fv+2(B[(o, a, f ]))
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(These conditions are not independent; e.g. (10) is helpful during the construc-

tion, but at the end we need only its consequence (9).)

Let / be the uniform limit of the / . We are done if we show that Mk(f) n

5[0, 0, 1] is of non-cr-finite #"*-measure. By Lemma 1 this is surely true

once we know that for any t £ S the set

C = A4(/)n5[0,0,l]n5-1(O

contains a perfect subset.   But indeed, for any such t there is due to (9) a

sequence {t¡}fli £ ü/Si Di such that for / > 1, a £ {0, 1}',

t£P (¿*[»,(fi,..., */),!]).

If we denote, for co£ {0, I}1, B°> = B[œ, (h, ... , t¡), 1], we infer from (11)
the existence of some

k

Xa £ rnr'wn f|/,;J(//+1 (5[0, 0, »])).
1=2

Using the uniform convergence of the /'s one sees easily that also, for any
cluster point x of {xw ; co} and any i = \, ... , k, /_1(/(x))n5[0, 0, i] ^ 0

holds; therefore x 6 Mk(f). Moreover R¡ \ 0 and (7), (8) imply that the set
of all cluster points of {xw ; co} has no isolated point. Consequently, it is a

perfect subset of C.   D

Proposition 3. For typical f : C(0, 1, R") -> Rm the set f(Mk(f) n 5(0, 1/2))
is of non-a-finite %?dk -measure.

Proof. We mimic the proof of Proposition 2, obtain a play {U(f¡, £/)}?îi of

the Banach-Mazur game and construct simultaneously the following objects:

• mutually disjoint balls Bx, ... , Bk c 5(0, 1/2, R"),
• a sequence {5/}^, with 0 < 5/+1 < 5//4,
• a sequence {A}/^i of sets maximal among all subsets of 5(0, R¡/(2k) ;

Rdk), having minimal distance between its members at least 5/+1/(2/c),

• a tree of points y[co, a] £ Rm where co £ {0, 1}', a £ D\ x ■ ■ ■ x D¡,

and / = 0, 1, ... ,

which all together satisfy for any / > 0, a £ D\ x • •• x D¡, co £ {0, 1}', and

t, t' £ D¡+1, 7, 7' = 0, 1 with (7, t) y¿ (/, t') the following five conditions:

B(y[coj,at], 2R,+2) c B(y[co, a],2Rl+l),

B(y[coj, at], 25/+2) n B(y[cof, at'], 2Rl+2) = 0,

Q(B(y[co,a],^y   [j  q[b (y[coj, "],%*)),

f€0/+i

Q(y[coj,at]-y[co,a]) = t

and finally

Q (5 (y[(û, a], ^±i)) c Ö h(y[co, a], R,+l) n f)//+2(int(5')) j •
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From this we can as in the proof of Proposition 2 conclude that for any uni-

form limit / of the //sand t £ Q{B(y[0, 0], §)) the set Q'1 [t)nÇ\ki=x /(51)
contains a perfect subset. Since this means that we won the game, our proof is

finished.   D

Next, we derive the result used for the upper estimate of the Hausdorff di-

mension of the sets Mk .

Lemma 2. The set U of all

Cv-l v-l     v-2 v2 v-fc \-k\ a CMm\(n+l)k
VA0 ' • • ■ ' A« ' A0 ' • • • > -*n ' • • • ' A0 ' • • • ' An / ^ V™-    /

for which

¿ = dimif|AS(x0, ...,x¿)J <dk

holds has an interior dense in X = Rm("+i)k . Here dim 0 = -oo, and we denote

by AS(xo, ... , xn) the smallest affine subspace of Rm containing {xo, ... , x„}.

(We will simply write AS ifthexo,..., xn follow from the context.)

Proof. We also define for xn, ... , x„ e R"

LS = LS(xo, ... , x„) = span({x/ - Xo ; 1 < j < «})

and, for x e X, LS(x) = f|í=i LS(x¿, ... , x'n), d{x) = dimLS(x). Similarly
we have AS(x) and d(x).

Since AS = v + LS for any y £ AS, we infer that always d(x) > d(x). If
we consider the first case dk > 0, it suffices to show that d(x) < dk on some

dense open subset U' of X. First, note that for all / > 1 the set

U¡ = {(x,, ... ,x„); dimspan({xi, ... , x„}) > /}

is open in (Rm)" ; this immediately follows from the consideration of appropri-

ate subdeterminants. Moreover, if / < « then obviously this set is also dense.

Consequently, the set Xr of all x £ X such that dim(LS(x¿, ... , x¿)) = «

for all i < k is a dense open subset of X. Furthermore, it is clear that for
yl, ... , yk £ Rm , x £ Xr then condition y' £ LS(x¿, ... , xln) for all i holds

iff dim(span({>>, xj - x¿,... , xl„ - x0})) < n . Hence, the set

{(x, yx, ... , yk) ; y' G LS(x¿,..., X'n) for all i < k}

is closed in Xr x (Rm)k . In particular, the set {(x, y); y £ LS(x)} is closed

in IrxRffl. Using this fact and the compactness of the family of all "/-

dimensional" orthogonal systems, one easily sees that for any / > 0

{x e Xr ; d(x) > 1} is closed in Xr. So, we are done if we can show that

{x G Xr ; d(x) <dk} is dense in Xr. The proof of this fact is based on induc-

tion with respect to k and the well-known formula

dim(f7 n V) = dim([7) + dim(F) - dim(span(C/ U V))

valid for all linear subspaces U, V of Rm . The induction step follows easily

from a simple perturbation argument saying that for any linear subspace U of
Rm and any xn, ... , xd £ Rm where d + dim(U) < m and any £ > 0 there are

y, £B(xj, £), / = 0, ... , d, such that y,-yo £span((/U{y7-y0; 1 <j < i})
whenever 1 < / < d.
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Finally, we have to consider the case dk < 0 ; obviously it suffices to restrict

to the case dk > « - m. This time we use the fact that those points in Xr

which satisfy c7*(x) > 1 or AS(x) = 0 form a closed subset X'. Indeed, let

xp —► x £ Xr and all xp £ X'. We may assume the existence of a yp £ AS(xp)

for all p; otherwise d(x) > 1. Hence, yp - {xp)'0 £ LS((x/,)0, ... , (xp)'n) for

all i, p . If \yp\ -* oo, then any cluster point y of the sequence yp/\yp\ is also

a cluster point of {(yp - (xp)'Q)/\yp\} for any i < k. Therefore, it belongs to

LS(x), showing that d(x) > 1. Otherwise, we find a cluster point y of the

sequence {yp} itself. We conclude that y-x¿ £ LS(x¿, ... , x'n) for any i < k,

which implies y 6 AS(x). Summarizing, x £ X' in both cases. The density of

the open set Xr\X' is now a consequence of the first case for m-n+dk < 0, of

the already stated perturbation argument, and of the following observation. If

U cRm is linear and x0, ... , xp £ Rm fulfill Xj & span({x' ; i < j} U U) for

all j — 0, ... , p , then U n AS(xo, ... , xp) = 0 . Indeed, otherwise we could

fix y £ U and k\,... ,kf £ R with y - x0 = £f=i ^*'(x< _ xo) • This implies
0 = -y - (Eii h - 1 )xo + Eii ¿i*¿ ; hence Eii k¡ = I and k{ = ■■ ■ = kp = 0,
a contradiction finishing our proof.

Proposition 4. Let <p be a Hausdorfffunction with \iva.r\^o(p{r)/rdk =0. Then

ß^i'(Mk{f)) =^^(f{Mk(f))) = 0 holds for typical continuous f. 5(0,1/2; R")
— Rm.

Proof. As already mentioned, we can consider instead of W(B(0, 1), Rw) also

the space W = W(S, Rm) where S is a simplex in R" . We define for any

/ > 1 the open sets J// cW consisting of all functions / for which there exist

an n > 0 and a set M = M(f, l) c S satisfying

%£{M)<\ll   and   ^(U(f(M), n)) < l/l,

diam({/(x-') ; j < k}) > n   if some xj g M and min |x' - xJ\ > T.
i<j I

Suppose that / € ri/=i^/- We Put M = Hminf/^00M(/,/) and claim

Mk(f) c M. Indeed, suppose that x ',..., xk £ S fulfill x1 0 M and
min,<; \x' - xj\ > ô > 0. Then x1 0 M(f, I) for some / > I/o, and hence

/(x1) = ••• = f(xk) cannot be true. Therefore, we also have f(Mk(f)) c

liminf^oo/ÍA/í/,/)) and conclude that %&{Mk(f)) < %Z{f{Mk{f))) <
lim/.,^ 1// = 0.

So all we need to show is that each of the .f/ is dense in ^. Since

X¿ ([0, l]dk x   - JL, 1 ^ < (p (ydk~+l/j) j* \ 0   as j? -» .co,

we see that f £ S?i whenever there is a set M such that M and /(Af) are

unions of finitely many bounded sets contained in dk -dimensional affine spaces

and that always diam({/(xJ) ; j < k}) > 0 if x1 ^ M and mini<y |x'-xJ| > } .

Indeed, in this case compactness yields for any p > 0 a uniform estimate for

this diameter on

(S\U{M, p)) x S x ■ ■ ■ x S n {(x1, ... , x") ; min \sl - xj\ >
KJ !}

So let us be given an / > 1, / £ W, and £ > 0. We know from [ 12, Theorem

4.2.4] that there is a ¿-fine triangulation S{, ... , SN of S where ô < 1/3/
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and |/(x)-/(x')| < e/3 if |x-x'| < ô . Consequently, S/HS/ =0 whenever

Xj £ Sj, Xji £ Sji, and \x¡ - Xji\ < 1//. Let y be the finite collection of all
pairwise disjointed {Sjl, ... , Sjk} and let C be the set of all corners of the

Sj's; i.e. C is the (O)-skeleton of our triangulation. Given any g : C -* Rm

we define its "affine" extension &(g): S —► Rm by the simple request that

^(i) = S on C and that ê?(g) is affine on each of the simplexes Sj , j < N.

Due to our choice of S , we have \\f-^(f)\\oo < e whenever ||/|c-/||oo < e/2.

Hence, our problem reduces to showing that for any {Sji, ... , Sjk} and typical

g : C -> Rm the sets A/' = flti &(g)(Sj,) and A// = #(£)-'(A/1) n 5;, are all
dk-dimensional polyhedra. For i = 1, ... , k let x'0, ... , x'n be the corners of

Sj, ; then the statement about M' follows immediately from Lemma 2. Since we

also know (e.g. from the proof of that lemma) that typical &{g)\s¡. is injective,

we conclude that also each of the M[ is a dk-dimensional polyhedron.   D

After all this preparations it is now very easy to complete the

Proof of Theorem 1. First, note that

oo

Mk(f) = (J jx1 ; exists x2, ... ,xk with /(x1)

i=i

Each of the sets on the right-hand side is obviously compact. Hence, Mk(f)
as well as f(Mk(f)) are always of type Fa . The upper estimate of the Haus-
dorff dimension of these set is only a weakening of the just proved Propo-

sition 4. Finally, let {U{xl, 2r,}<ftx be a base of topology in 5(0, 1 ; R").
Then for any / there is a diffeomorphism <I> of 5(0, 1) onto itself with

Q>(U(xl, /*/)) = U(0, 1/2) which induces the linear self-isometry I& : f —> /o<p
of W(B(0, 1), Rm). Since the class of sets of non-cr-finite ^^-measure is in-

variant under <T>, we obtain from Propositions 2 and 3 that for typical / and

all / both Mk(f) n U(xl, r¡) and f(Mk(f) n U(xl, r¡)) are of non-cr-finite
%?dk-measure (for k — 1 only the second of these sets).   D

We have now finished the proof of the first theorem, so from now on there are

no special assumptions about the number k and also the projections P, P', Q,

Q' become undefined.
We turn now to the second case, if the dimension of the target space does

not exceed that of the source space. Here it seems to be slightly more conve-

nient to study functions defined on the unit cube, but again we could take any

bilipschitzly equivalent set.

Theorem 2. Let « > m > 1. Then for typical f : [0, 1]" -> Rm the following
hold:

• int(im/)^0, d(im/) is of Hausdorff dimension (m-l).

• 7/ora«yyeRm the level set f~x(y) is of Hausdorff dimension at most

n-m and is of non-a-finite ßPn~m-measure whenever y £ int(im/).

Again, until the end of the proof of this theorem we will always assume

n>m>\. We split its contents into the two following propositions.

= ••• = /(**),

min Ix' - x' I >
i<i' \]
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Propositions. Let cp be a Hausdorff function with limr\^oç>{r)/rn~m = 0. For

typical continuous / : [0, 1]" —» R" there exists a set M c [0, 1]" such that
%"?{M) = 0 and card(f~l{y)\M) < m for each y £ Rm .

Proof. For any k > 1 we introduce the open sets &k c W = &{[0, 1]", Rm)

consisting of all functions / for which there exist sets M¡ = M¡(f, k), i —

0,... , m, and an r\ > 0 such that

m

IjA/, = [0,1]",    ^{Mo)<2~k,
1=0

|/(x) - /(x')| > «   if |x - x'| > -r and x, x' e M¡ for some i > 1.

Now, suppose that / £ fl^li &k and define M = limsup^oo M0(f, k). Obvi-

ously, X£(M) < lim*.*«,Ej>kX£(Mo(f, j)) = 0; hence MT'{M) = 0. Next,

suppose that, for some y € Rm, f~l(y)\M contains m+1 points X\, ... , xm+\

with min;</|x; - x/| > ô > 0. We find a k such that x¡ & \Jk,>kMo(f, k')
for each j < m + 1. Then there is an i £ {1, ... , m} and there are j < I

such that Xj, x¡ £ M¡(f, k). Therefore, f £&k implies f(Xj) ^ f(x¡), con-
tradiction. Consequently, the proposition is proved if we show that each &k

is dense in W. So, let us be given any f £ W, k > 1, and £ > 0. We

find an integer N > s/ñk such that |/(x) - /(x')| < e/2 whenever |x - x'| <

\Jn~/N. Next, we choose an integer p sufficiently large. Using the notation

S(N,t) = {z £ [0, 1]; \Nz-j\ < t for some 7 = 0, ... ,7V} and GI(x, t) =
{j £ {1,...,«}; Xj £ S{N, t)} for t £ [0, 1/2), we define the sets

A/0 = A/0(/, k) = {x£[0,l]"; card(GI(x, 2"")) > m},

M{ =A/1(/,rc) = cl({xe[0, \]n;c&rá(G\{x,2-P-x))>m- l}\A/0),

M2 = M2(f, k)

= cl({x e [0, If ; card(GI(x, 2~p-2)) >m- 2}\(A/0 U Af, )),

*

Afm_! =Mm_l(f, k)

= cl({xe[0, ir;GI(x,2-"-",+1)#0}\(A/oU.--UA/m_2)),

Mm = Mm(f, k) = cl([0, l]»\(A/0 U • • • U A/m_,)).

Observe that for each x £ M¡■, i > 1, GI(x, t) = GI(x, t') and this set

has precisely / members whenever t, t' £ [2~p~', 2~"~!+l). This implies that

|x - x'| > 2-p-'/N whenever x, x' e A/,- and GI(x, 2^-') ± GI(x', 2""-').
Now suppose that x, x' € Af, can be joined by a (2-p-'//V)-chain; i.e. there

is a sequence {x'}^0 c M¡, x° = x, xx = x', and \x¡ - x/+1| < 2~P~'/N

for all /</«:. By the foregoing and induction GI(x, 2~p-i) = G^x', 2~p-')

for all /. Moreover, all xj belong to the same component of S(N, 2p~l)

if 7 £ GI(x, 2~p~'); otherwise all the xj are in the same component of

[0, 1]\5,(/Vr, 2~p~l). In particular, each of the (finitely many) components of

M¡ has diameter at most ^Jñ/N (and the distance between two of them is at

least 2~P~'/N). Hence, if we write y for the system of all components of

Mi,  i > 1, we can choose mutually different reals ac,  C £ y, such that
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\&c - (f(z))i\ < e/4 for some z £ C. Consequently, the choice of N ensures

the existence of a g £ U(f, e) fulfilling

(g(x))i = ac   for x £ C £ y,  i = \, ... , m.

Obviously, we conclude that g £ &k if we verify that ß%o(Mo) < 2~k . But this

follows from:

^Z(Mo) <(£)(*+ l)m*Z ([-2_
N '   N

<

x[0, 1]"-'

(m\ {N+ l)m(2p-1N)"-m^([0, 21~P/N]n)

\m){iy + l)   (y/n2i-p/N)»-'"
<

< 2~k   for p large enough.   D

Proposition 6. Let an arbitrary set Mq C Rm be given. Then for typical contin-

uous f : [0, 1]" —► Rm the following alternative is true: Either A/o\im/ jí 0

or, for each ye A/0, /_1(y) of non-a-finite %?n~m-measure.

Proof. Again (and for the last time) we play the Banach-Mazur game. We

denote by Q, Q' the orthogonal projections of R" onto Rm and onto its or-

thonormal complement R"_m , using the natural inclusion, so Q + Q' — Id. So

suppose (7(/i, £1) is the first "move" of A. If A/b\im/i ^ 0, then there is

y £ Mo with dist(y, im/) > ô > 0. Hence, y £ im g for all g £ U(f2, e2)
where 72 = f\ and £2 e (0, min{£i, 6}). So in this case, we win the game

before it really starts. Therefore, we can assume A/n c im / ; in particular Mo

is bounded. First we choose R\ suchthat |/(x)-/(x')|+ 25', <£i/3 when-

ever |x - x'| < 2R\, and then choose a partition of Mo into (nonvoid) pieces

M\,..., Mn all of diameter less than R[ . We also choose points x' € /f ' ( M¡)

and.a positive R\ < R[ such that the balls 5(x', 25,) are all disjoint. Now we

can find a function f2 £ [/(/ , «0 suchthat /2(x) = /2(x')-(-(25'1/5i)Q(x-x')
whenever |ß(x'-x)|, |ß'(x—x')| < 5i . To initialize our trees, we choose com-

pact sets Kj c B(Q'(x'), Ri) of positive J1""-"1-measure but projecting onto

each of the coordinate axes into R\Q. Then we put Jf0' = {K¡} , ^ = {M¡} ,

and x[K,■, M¡, 0] = x'. We return U(f2, e2) where £2 < 5i/2 is sufficiently
small to make our answer admissible.

In Step II we obtain A's answer U(f¡, £3) ; a standard degree argument sim-

ilar to that used in the proof of Proposition 1 ensures that for any i < N,

K £ 5?0l, M £ ^¿ , and an arbitrary t £ K the inclusion

M{x; Q'(x) = t and \Q(x[K, M, 0] - x)\ < *,})

D B(f2(x[K, M, 0]), R[) D M

holds. Again, we choose R'2 fulfilling |/3(x) - /3(x')| + 25^ < £3/3 provided
|x-x'| < 25.J • Next, for any / < N we carry out the following construction: we

choose partitions of 3?j of K¡ and Ji{ of Af,, where fflJ consists of closed

sets and both partitions are 52-fine, i.e. contain only members of diameter less

than R'2. For each (K, M) £ 3£J x Ji{ we choose y[K, M] £ M and two
different points x[K, M, 0], x[K, M, 1] e B(x[K¡, Mt,0],Rx) with

Q'(x[K, M, j]) = Q'(x[Kj, Mi, 0]) £ Kt
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and

\Mx[K, M, j])-y[K, M]\ < £3/4   for j = 0, 1.

We fix an R2 < R'2, Rx/A such that all the balls B(x[K, M, j], 2R2) for

(K, M, j) £ Xi = U/Ii -%[' xJTJ x {0, l}1 become mutually disjoint. Similar
to the first step, we get an /4 g í7(/3, 2fi3/3) such that /i(x) = y[K, M] +

(2R'2/R2)Q{x-x[K, M, j]) whenever x 6 C[K, M,j] = {x; Q'(x) £ K and
|(2(x - x[K, M, 7'])| < R2} and (AT, M, j) £ %x . Then we return f/(/4, e4)

with £4 = 52/2. Since again h{x, Q'(x) = t and \Q(x-x[K, M, j])\ < R2} D
B(y[K, M],R'2) D A/ for any « 6 (7(/4, 52/2), i G tf, and (tf, A/, ;) £ T,,
we can in Step HI repeat the construction from Step II, but now on each of the
"cylinders" C[K, M, j].

In this way we obtain a declining sequence R¡+\ with 0 < R¡+2 < 5/+)/4;
a nested sequence of open balls t/(//+1, £/+1) £ &([0, l]n , Rm) with £2/+2 <

Ri+i ; refining sequences 3^xl and JK{ of 5/+1-fine partitions of the sets K¡
and M¡, resp., for i < N ; and finally trees of points x[K, M, a] £ R",

(K, M,a) £ X = U^o^/' Ï/ = Um«*/' x -^/' x {°> U' a11 °f them for
/ = 0, 1, ...  and fulfilling:

(13) /2/+3({x; Q'(x) = t and \Q(x -x[K, M, (j])| < 5/+1}) d A/

if re iTand(/s:, M, a)£T¡, />0.

(14) 5(x[r, M', aj],2Rl+2) c 5(x[tf, A/, a], 2Rl+l)

if (AT', M',oj)eZt+i, (K,M,a)£l¡, 7 = 0, 1, isT' c #, and A/'cA/.

(15) B{x[K', M', a'], 2R,+l)n B(x[K", M", a"], 2R¡+1) = 0

if (/:', M', er'), (K", A/", ct") £ 1, but different.

Let / be the uniform limit of the /'s. We finish as in the proof of Proposition

2 concluding that for any i < N, y £ M', t £ K' the set S = f~1{y)n Q'~x(t)
contains a perfect set.   D

Now we are prepared to finish the

Proof of Theorem 2. The fact that typically int(im/) ^ 0 is based on the

degree argument used already in the proof of foregoing Proposition 6. Given

/ 6 & and £ > 0 we find g £ U{f, e), ô > 0, z e R"-m, and y e Rm
suchthat h(Q'-l[z)) d U(y,S) for all « e U(g,ô). ßTm-x{d{imf)) > 0
is now obvious, since it holds for any boundary of a nonvoid open bounded

set. (A more precise consideration would show again that this set typically does
not have er-finite ^""""-measure. However, we are mainly interested in its

smallness.) The upper dimension estimate is only slightly more delicate. Take

any d > m-1. Using again triangulation as in the proof of Proposition 4, we see

that the piecewise affine functions (now on the unit simplex) which are injective

on each face of the (w)-skeleton of their underlying triangulation form a dense

set. Given such a function / and a ô > 0 such that |/(x) - /(x')| > S\x - x'\
whenever these points are on some common «z-face, we obtain from the already

well-known degree arguments that

h(U(x, r)) D U (h{x), y j    if 0 < r < dist(x, (m - l)-skeleton)

and h £ U (f, r~Pj .
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Consequently, d(imh) c U(f(U{{m - l)-skeleton, r), rS/4)) for all h £
U(f, rö/4) and choosing r sufficiently small we get the //¿-measure of the

right arbitrarily small. This shows that for all £ > 0 the set of / with
¿^(d(im/)) < £ contains an open subset dense in W .

Since always /_l(y) c M\J(f~l(y)\M) with Af chosen according to Propo-

sition 5 for cp(x) — x"_m/(-logx), we have dim^/_1(y) < dim^ M < n-m.

Finally, let {t//}^, be a base of topology in Rm . Then Proposition 6 implies

that for typical / and any / > 1 the level set /_1(y) is of non-cr-finite ß^n~m-

measure whenever y £ U¡ c im /. Since such an / exists for any y € int(im /),

we are done.   D

We did not give a lower estimate for the size of level sets /~'(y) if y £

d(im/). Indeed, by [5], for typical / there are always points y such that

f~x(y) is a singleton.

Our last example will show that in the typical case no completely direct gen-

eralization of the results from [8] is possible. Indeed, together with Proposition

5, it shows that for a typical continuous vector field on the unit square there is

no set of injectivity with a zero-dimensional complement (although all level sets

are zero dimensional), but that the largest sets of injectivity have a complement

of Hausdorff dimension one with non-cr-finite measure.

Lemma 3. Let f : [0, l]2 —► R2 be continuous, let M c [0, l]2 be of one-
dimensional measure zero, c £ R2, and let B(xl, R), 5(x2, 5) be two disjoint

balls such that

• card(/-1(y)\A/) < 2 for all y € R2,

• \f(xJ) - c - z\ < 5/8 for j = 1, 2 and \z\<R.

Then the restriction of f to a set [0, l]2\S is noninjective whenever S is of

a-finite %?x-measure.

Proof. Take any such S c [0, l]2 . Using the fact that the map x -» |x - x2|

is lipschitz and Lemma 1, we find a set C c [35/8, 55/8] of positive measure

such that for any t £ C the following hold:

• 95(x2 , t) n M = 0 ,

• dB(x2, t) n S is countable,

• f(dB{x2, f)) c U(c, 65/8)\5(c, 25/8).

Next, observe that the sets (B{xl, 5)\Af) n/_1(/(ö5(x2, t))) are disjoint for

r's different from C. Indeed, otherwise we would find x e 5(x', R)\M and

different x', x" £ 5(x2, R)\M such that /(x) = f{x') = f(x")—a contradic-
tion to the choice of M. Since %'X(M) = 0 and S is of a -finite measure, we

infer that for all except countably many and, therefore, at least for some T £ C

¿F1 (5(x>, 5) n /-' (f(dB(x2, T)) n S)) = 0.

Because the map x —> (x/|x|) is locally lipschitz on R2\{0} , we conclude that

the set D of all 6 £ [0, 2n) for which kei6+xl g A/U(/-'(/(ö5(x2, T))nS))
whenever k £ (0, 5] is a set of full measure in [0, 27r).

Moreover, since for all 0 £ [0, 2n) both f(ei8R/8 + x1) € B{c, 25/8) and
f(e'eR + x1) 0 U(c, 65/8) hold and because the paths

yi :6^f(ei6T + xl)   and   y2 : 6 - eieR/2 + c
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are homotopically equivalent inside U(c, 65/8)\5(25/8), we conclude that

indiji, f(ewR/S + x1)) = 1 ^ 0 = indiji, f(ewR + x1)). Therefore, for any
0 £ [0, 27T) there are ke £ [5/8,5] and an xe £ 95(x2, T) satisfying

/(X*) = /(£>'%+ X1).

Since 95(x2, T) n M = 0, we have xe, ei6kth + xl £ M for all 0 € D. This

shows that, for two different 0, 0 £ D, xe ¿ xô holds. Because SndB(x2, T)

is countable, we conclude that xe° g S1 for some 60 £ D. Since e'e°Ae0 4-x1 0 5

for all 0 £ D, we see that /|([0, 1]2\S) is noninjective indeed.   D
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