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Abstract
In this paper we study the initial-boundary value problem of the multidimensional
viscoelasticity equation with nonlinear source term utt –�ut –

∑N
i=1

∂
∂xi

σi(uxi ) = f (u).
By using the potential well method, we first prove the global existence. Then we
prove that when time t → +∞, the solution decays to zero exponentially under some
assumptions on nonlinear functions and the initial data.

1 Introduction
This paper considers the initial-boundary value problem (IBVP) of the multidimensional
viscoelasticity equation with nonlinear source term

utt –�ut –
N∑
i=

∂

∂xi
σi(uxi ) = f (u), x ∈ �, t > , (.)

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �, (.)

u(x, t) = , x ∈ ∂�, t ≥ , (.)

where u(x, t) is the unknown function with respect to the spacial variable x ∈ � and the
time variable t, � ⊂R

N is a bounded domain.
The viscoelasticity equation

utt – uxxt = σ (ux)x (.)

was suggested and studied by Greenberg et al. [, ] from viscoelasticity mechanics in
. Under the condition σ ′(s) >  and higher smooth conditions on σ (s) and the initial
data, they obtained the global existence of classical solutions for the initial-boundary value
problem of Eq. (.).
After thatmany authors [–] studied the global well-posedness of IBVP for Eq. (.). In

[–] the global existence, uniqueness and stability of solution were studied thoroughly.
And in [] the blow up of solution was discussed. Furthermore, in [–] the global exis-
tence of solution for IBVP of some multidimensional viscoelasticity equation was consid-
ered. And in [] the blow up of solution for IBVP of the multidimensional generalisation
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of Eq. (.) was proved. Recently, in [] and [], the IBVP of the multidimensional vis-
coelasticity equation with nonlinear damping and source terms

utt –�ut –
N∑
i=

∂

∂xi
σi(uxi ) + f (ut) = g(u), x ∈ �, t > , (.)

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �, (.)

u(x, t) = , x ∈ ∂�, t ≥ , (.)

was studied, and by using the potential well method, the global existence of weak solu-
tion was proved under some assumptions on nonlinear functions σi(s), f (s), g(s) and the
initial data. But we do not know how the global solution behaves as the time goes to infin-
ity, namely the asymptotic behaviour of problem (.)-(.) is still open up to now. In the
present paper, we try to study this problem by the multiplier method [–].
The main purpose of present paper is to consider the asymptotic behaviour of solution

for problem (.)-(.). Since in the proof of the asymptotic behaviour of solution the global
existence theory is required, it is necessary to give the proof of global existence of solution
for problem (.)-(.).
In this paper, suppose that σ (s) = (σ(s), . . . ,σN (s)) and f (s) satisfy the following assump-

tions:

(H)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i) σ ∈ C, σi() = , min≤i≤N {infs∈R σi(s)} = a > ;

(ii) σi(s)s≥ A|s|m+, |σi(s)| ≤ B(|s|m + ),

where A and B are both positive constants;

(iii) (l + )Gi(s)≥ sσi(s), where Gi(s) =
∫ s
 σi(τ ) dτ .

(H)

⎧⎨
⎩(i) f ∈ C, |f (u)| ≤ b|u|q, ∀u ∈ R;

(ii) (p + )F(u)≤ uf (u) ≤ (r + )F(u), ∀u ∈R,

where the constants in (H) and (H) are all positive and satisfy

 ≤ m +  < q +  ≤ N(m + )
N –m – 

form +  <N ,

 ≤ m +  < q +  < ∞ form +  ≥ N ,

 ≤ l < p≤ r.

In this paper, we first give some definitions and lemmas (Section ). Then we prove
the global existence of solution (Section ). Finally, we prove the asymptotic behaviour of
solution (Section ).
In this paper, we denote ‖ · ‖Lp(�) by ‖ · ‖p, ‖ · ‖ = ‖ · ‖L(�) and (u, v) =

∫
�
uvdx.

2 Preliminaries
In this section, we will give some definitions and prove some lemmas for problem (.)-
(.).

http://www.boundaryvalueproblems.com/content/2013/1/42
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For problem (.)-(.), we define

J(u) =
N∑
i=

∫
�

Gi(uxi ) dx –
∫

�

F(u) dx,

F(u) =
∫ u


f (s) ds,Gi(s) =

∫ s


σi(τ ) dτ ,  ≤ i≤ N ,

I(u) =
N∑
i=

∫
�

uxiσi(uxi ) dx –
∫

�

uf (u) dx,

Iδ(u) = δ

N∑
i=

∫
�

uxiσi(uxi ) dx –
∫

�

uf (u) dx, δ > ,

d = inf
u∈N

J(u), N =
{
u ∈W ,m+

 (�) | I(u) =  u �= 
}
,

E(t) =


‖ut‖ +

N∑
i=

∫
�

Gi(uxi ) dx –
∫

�

F(u) dx =


‖ut‖ + J(u).

Remark . Note that the definitions of J(u) and I(u) in the present paper are different
from those in [] and []. The definitions given in this paper will be shown more natural
and rational because they are a part of the total energy E(t).

Lemma . Let (H) and (H) hold. Set

σ̄i(s) = σi(s) – as, Ḡi(s) =
∫ s


σ̄i(s) dτ .

Then the following hold:
(i) σ̄i(s) is increasing and sσ̄i(s)≥  ∀s ∈R;
(ii)  ≤ Ḡi(s)≤ sσ̄i(s) ∀s ∈R.

Proof This lemma follows from σ̄i() =  and σ̄ ′
i (s) ≥ . �

Lemma . Let (H) and (H) hold, u ∈W ,m+
 (�). Then the following hold:

(i) If  < ‖∇u‖m+ < r(δ), then Iδ(u) > ;
(ii) If Iδ(u) < , then ‖∇u‖m+ > r(δ);
(iii) If Iδ(u) = , then ‖∇u‖m+ ≥ r(δ),

where

r(δ) =
(

Aδ

bCq+
∗

) 
q–m

, C∗ = sup
u∈W ,m+

 (�)/

‖u‖q+
‖∇u‖m+

.

Proof
(i) If  < ‖∇u‖m+ < r(δ), then we have

∫
�

uf (u) dx ≤
∫

�

∣∣uf (u)∣∣dx ≤ b
∫

�

|u|q+ dx

= b‖u‖q+q+ ≤ bCq+
∗ ‖∇u‖q+m+

http://www.boundaryvalueproblems.com/content/2013/1/42
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=
bCq+

∗
A

‖∇u‖q–mm+A‖∇u‖m+
m+

< δ

N∑
i=

∫
�

uxiσi(uxi ) dx,

which gives Iδ(u) > .
(ii) If Iδ(u) < , then we have

δA‖∇u‖m+
m+ ≤ δ

N∑
i=

∫
�

uxiσi(uxi ) dx <
∫

�

uf (u) dx ≤ bCq+
∗ ‖∇u‖m+

q–m‖∇u‖m+
m+,

which gives

‖∇u‖m+ > r(δ).

(iii) If Iδ(u) =  and u �= , then by

δA‖∇u‖m+
m+ ≤ δ

N∑
i=

∫
�

uxiσi(uxi ) dx <
∫

�

uf (u) dx ≤ bCq+
∗ ‖∇u‖q–mm+‖∇u‖m+

m+,

we get

‖∇u‖m+ ≥ r(δ).
�

Lemma . Let (H) and (H) hold. Then the following holds:

d ≥ d =
(p – l)A

(p + )(l + )

(
A

bCq+
∗

) m+
q–m

. (.)

Proof For any u ∈N , by Lemma ., we have ‖∇u‖m+ ≥ r() and

J(u) =
N∑
i=

∫
�

Gi(uxi ) dx –
∫

�

F(u) dx

≥ 
l + 

N∑
i=

∫
�

uxiσi(uxi ) dx –


p + 

∫
�

uf (u) dx

=
(


l + 

–


p + 

) N∑
i=

∫
�

uxiσi(uxi ) dx +


p + 
I(u)

=
p – l

(p + )(l + )

N∑
i=

∫
�

uxiσi(uxi ) dx

≥ p – l
(p + )(l + )

A‖∇u‖m+
m+

≥ p – l
(p + )(l + )

Arm+() =
(p – l)A

(p + )(l + )

(
A

bCq+
∗

) m+
q–m

,

which gives (.). �

http://www.boundaryvalueproblems.com/content/2013/1/42
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Now, for problem (.)-(.), we define

W =
{
u ∈W ,m+

 (�) | I(u) > 
} ∪ {}.

3 Global existence of solution
In this section, we prove the global existence of weak solution for problem (.)-(.).

Definition . We call u = u(x, t) a weak solution of problem (.)-(.) on � × [,T) if
u ∈ L∞(,T ;W ,m+

 (�)), ut ∈ L∞(,T ;L(�))∩ L(,T ;H
(�)) satisfying

(i)

(ut , v) + (∇u,∇v) +
N∑
i=

∫ t



(
σi(uxi ), vxi

)
dτ

=
∫ t



(
f (u), v

)
dτ + (u, v) + (∇u,∇v), ∀v ∈W ,m+

 (�),∀t ∈ [, t),

(ii)

u(x, ) = u(x) inW ,m+
 (�); ut(x, ) = u(x) in L(�).

Theorem . Let (H) and (H) hold, u(x) ∈ W ,m+
 (�), u(x) ∈ L(�). Assume that

E() < d, u(x) ∈ W . Then problem (.)-(.) admits a global weak solution u ∈ L∞(,∞;
W ,m+

 (�)) and ut ∈ L∞(,∞;L(�))∩ L(,∞;H
(�)).

Proof Let {wj(x)}∞j= be a systemof base functions inW ,m+
 (�). Construct the approximate

solutions of problem (.)-(.)

un(x, t) =
n∑
j=

gjn(t)wj(x), n = , , . . . ,

satisfying

(untt ,ws) + (∇unt ,∇ws) +
N∑
i=

(
σi(unxi ),wsxi

)
=

(
f (un),ws

)
, s = , , . . . ,N , (.)

un(x, ) =
n∑
j=

gjn()wj(x)→ u(x) inW ,m+
 (�), (.)

unt(x, ) =
n∑
j=

g ′
jn()wj(x)→ u(x) in L(�). (.)

Multiplying (.) by g ′
sn(t) and summing for s, we get

d
dt

En(t) + ‖∇unt‖ = ,  ≤ t < ∞ (.)

and

En(t) +
∫ t


‖∇unτ‖ dτ = En(),  ≤ t <∞, (.)

http://www.boundaryvalueproblems.com/content/2013/1/42
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where

En(t) =


‖unt‖ + J(un).

From (.) and (.), we have En() → E() as n → ∞. Hence, for sufficiently large n,
we have En() < d and



‖unt‖ + J(un) +

∫ t


‖∇unτ‖ dτ < d,  ≤ t < ∞. (.)

On the other hand, sinceW is an open set in W ,m+
 (�), Eq. (.) implies that for suffi-

ciently large n, we have un() ∈W . Next, we prove that un(t) ∈W for  < t < ∞ and suffi-
ciently large n. If it is false, then there exists a t >  such that un(t) ∈ ∂W , i.e. I(un(t)) = 
and un(t) �= , i.e. un(t) ∈ N . So, by the definition of d, we get J(un(t)) ≥ d, which con-
tradicts (.).
From (.) we have



‖unt‖ +

N∑
i=

∫
�

Gi(unxi ) dx –
∫

�

F(un) dx +
∫ t


‖∇unτ‖ dτ < d,  ≤ t < ∞,

which gives



‖unt‖ + 

l + 

N∑
i=

∫
�

unxiσi(unxi ) dx –


p + 

∫
�

unf (un) dx +
∫ t


‖∇unτ‖ dτ < d

and



‖unt‖ + p – l

(p + )(l + )

N∑
i=

∫
�

unxiσi(unxi ) dx +


p + 
I(un) +

∫ t


‖∇unτ‖ dτ < d,

 ≤ t < ∞,

which together with un(t) ∈W gives



‖unt‖ + p – l

(p + )(l + )

N∑
i=

∫
�

unxiσi(unxi ) dx +
∫ t


‖∇unτ‖ dτ < d,

and



‖unt‖ + p – l

(p + )(l + )
A‖∇un‖m+

m+ +
∫ t


‖∇unτ‖ dτ < d,  ≤ t < ∞. (.)

From (.) we can get

‖∇un‖m+
m+ <

(p + )(l + )
p – l


A
d,  ≤ t < ∞, (.)

‖unt‖ < d,  ≤ t < ∞, (.)∫ t


‖∇unτ‖ dτ < d,  ≤ t < ∞, (.)

http://www.boundaryvalueproblems.com/content/2013/1/42
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‖σi(unxi )‖m+
m

< C,  ≤ t <∞, (.)

‖f (un)‖ q+
q

≤ C,  ≤ t < ∞. (.)

Hence there exist u, χ = (χ,χ, . . . ,χN ), η and a subsequence {uν} of {un} such that as
ν → ∞, uν → u in u ∈ L∞(,∞;W ,m+

 (�)) weak-star, and a.e. inQ = �×[,∞), uνt → ut
in L∞(,∞;L(�)) weak-star and in L(,∞;H

(�)) weakly, σi(uνxi ) → χi = σi(uxi ) in
L∞(,∞;L(m+)′ (�)) weak-star, (m + )′ = m+

m , f (uv) → η = f (u) in L∞(,∞;L(q+)′ (�))
weak-star, (q + )′ = q+

q .
Integrating (.) with respect to t, we have

(unt ,ws) + (∇un,∇ws) +
N∑
i=

∫ t



(
σi(unxi ),wsxi

)
dτ

=
∫ t



(
f (un),ws

)
dτ +

(
unt(),ws

)
+

(∇un(),∇ws
)
. (.)

Letting n = ν → ∞ in (.), we get

(ut ,ws) + (∇u,∇ws) +
N∑
i=

∫ t



(
σi(uxi ),wsxi

)
dτ

=
∫ t



(
f (u),ws

)
dτ + (u,ws) + (∇u,∇ws), ∀s,

and

(ut , v) + (∇u,∇v) +
N∑
i=

∫ t



(
σi(uxi ), vxi

)
dτ

=
∫ t



(
f (u), v

)
dτ + (u, v) + (∇u,∇v), ∀v ∈W ,m+

 (�), t > .

On the other hand, from (.) and (.), we get u(x, ) = u(x) inW ,m+
 (�), ut(x, ) = u(x)

in L(�). Therefore u is a global weak solution of problem (.)-(.). �

4 Asymptotic behaviour of solution
In this section, we prove the main conclusion of this paper - the asymptotic behaviour of
solution for problem (.)-(.).

Lemma . Let (H) and (H) hold, u(x) ∈ W ,m+
 (�), u(x) ∈ L(�). Then, for the ap-

proximate solutions un(x, t) of problem (.)-(.) constructed in the proof of Theorem .,
the following hold:

(i)

I(un) = ‖unt‖ – d
dt

(
(unt ,un) +



‖∇un‖

)
; (.)

http://www.boundaryvalueproblems.com/content/2013/1/42
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(ii) Furthermore, if E() < d and u(x) ∈ W , then for sufficiently large n, there exists a
δ ∈ (, ) such that

I(un) ≥ ( – δ)
N∑
i=

(
σi(unxi ),unxi

)
. (.)

Proof (i) Multiplying (.) by gsn(t) and summing for s, we get (.).
(ii) From

E() < d =
p – l

(p + )(l + )
A

(
A

bCq+
∗

) m+
q–m

it follows that there exists a δ ∈ (, ) such that

E() <
p – l

(p + )(l + )
A

(
Aδ

bCq+
∗

) m+
q–m

≡ d(δ). (.)

From (.), (.) and (.), it follows that Em() < d(δ) for sufficiently large n. Hence
from (.) we have



‖unt‖ + J(un) +

∫ t


‖∇unτ‖ dτ < d(δ),  ≤ t < ∞,

J(un) ≤ d(δ),

and

N∑
i=

∫
�

Gi(unxi ) dx –
∫

�

F(un) dx < d(δ),

which gives


l + 

N∑
i=

∫
�

unxiσi(unxi ) dx –


p + 

∫
�

unf (un) dx < d(δ)

and

p – l
(p + )(l + )

N∑
i=

∫
�

unxiσi(unxi ) dx +


p + 
I(un) < d(δ),

which together with un ∈W for sufficiently large n gives

p – l
(p + )(l + )

A‖∇un‖m+
m+ <

p – l
(p + )(l + )

A
(

Aδ

bCq+
∗

) m+
q–m

and

‖∇un‖m+ <
(

Aδ

bCq+
∗

) 
q–m

= r(δ).

http://www.boundaryvalueproblems.com/content/2013/1/42
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Hence, by Lemma ., we have Iδ (un) >  or un = . So, we have

I(un) =
N∑
i=

∫
�

unxiσi(unxi ) dx –
∫

�

unf (un) dx

= ( – δ)
N∑
i=

∫
�

unxiσi(unxi ) dx + Iδ (un) ≥ ( – δ)
N∑
i=

∫
�

unxiσi(unxi ) dx. �

Theorem . Let (H) and (H) hold, u(x) ∈ W ,m+
 (�), u(x) ∈ L(�). Assume that

E() < d, u(x) ∈ W . Then, for the global weak solution u given in Theorem ., there
exist positive constants C and λ such that

‖ut‖ + ‖∇u‖m+
m+ ≤ Ce–λt ,  ≤ t <∞. (.)

Proof Let {un} be the approximate solutions of problem (.)-(.) in the proof of Theo-
rem ., then (.) holds. Multiplying (.) by eαt (α > ), we get

d
dt

(
eαtEn(t)

)
+ eαt‖∇unt‖ = αeαtEn(t)

and

eαtEn(t) +
∫ t


eατ‖∇unτ‖ dτ = En() + α

∫ t


eατEn(τ ) dτ ,  ≤ t < ∞. (.)

From (H), Lemma . and Lemma ., we get

N∑
i=

∫
�

Gi(unxi ) dx –
∫

�

F(un) dx

≤ a

‖∇un‖ +

N∑
i=

∫
�

Ḡi(unxi ) dx –


r + 

∫
�

unf (un) dx

≤ a

‖∇un‖ +

N∑
i=

∫
�

unxi σ̄i(unxi ) dx –


r + 

∫
�

unf (un) dx

≤ a‖∇un‖ +
N∑
i=

∫
�

unxi σ̄i(unxi ) dx –


r + 

∫
�

unf (un) dx

=
N∑
i=

∫
�

unxiσi(unxi ) dx –


r + 

∫
�

unf (un) dx

=
r

r + 

N∑
i=

∫
�

unxiσi(unxi ) dx +


r + 
I(un)

≤ 
 – δ

r
r + 

I(un) +
r

r + 
I(un)

= C(r, δ)I(un)

= C(r, δ)‖unt‖ –C(r, δ)
d
dt

(
(unt ,un) +



‖∇un‖

)
,

http://www.boundaryvalueproblems.com/content/2013/1/42
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where

C(r, δ) =


 – δ

r
r + 

+


r + 
.

Hence we have

∫ t


eατEn(τ ) dτ

=
∫ t


eατ

(


‖unτ‖ +

N∑
i=

∫
�

Gi(unxi ) dx –
∫

�

F(un) dx

)
dτ

≤
(


+C(r, δ)

)∫ t


eατ‖unτ‖ dτ

–C(r, δ)
∫ t


eατ d

dt

(
(unτ ,un) +



‖∇un‖

)
dτ (.)

and

–
∫ t


eατ d

dt

(
(unτ ,un) +



‖∇un‖

)
dτ

=
(
unt(),un()

)
+


∥∥∇un()

∥∥ – eαt
(
(unt ,un) +



‖∇un‖

)

+ α

∫ t


eατ

(
(unτ ,un) +



‖∇un‖

)
dτ

≤ 

(∥∥unt()∥∥ +

∥∥un()∥∥ +
∥∥∇un()

∥∥)
+


eαt(‖unt‖ + ‖un‖ + ‖∇un‖

)
+

α



∫ t


eατ

(‖unτ‖ + ‖un‖ + ‖∇un‖
)
dτ . (.)

From



‖unt‖ +

N∑
i=

∫
�

Gi(unxi ) dx –
∫

�

F(un) dx = En(t)

we get



‖unt‖ + 

l + 

N∑
i=

∫
�

unxiσi(unxi ) dx –


p + 

∫
�

unf (un) dx ≤ En(t)

and



‖unt‖ + p – l

(p + )(l + )

N∑
i=

∫
�

unxiσi(unxi ) dx +


p + 
I(un) ≤ En(t),

http://www.boundaryvalueproblems.com/content/2013/1/42
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which together with un ∈W for sufficiently large n gives



‖unt‖ + p – l

(p + )(l + )

N∑
i=

∫
�

unxiσi(unxi ) dx ≤ En(t),



‖unt‖ + p – l

(p + )(l + )

(
a‖∇un‖ +

N∑
i=

∫
�

unxi σ̄i(unxi ) dx

)
≤ En(t),

(.)

and



‖unt‖ + p – l

(p + )(l + )
a‖∇un‖ ≤ En(t), ≤ t < ∞. (.)

From (.) and the Poincaré inequality ‖∇u‖ ≥ λ‖u‖, it follows that there exists a
constant C = C(p, l,a,λ) >  such that

(‖unt‖ + ‖un‖ + ‖∇un‖
) ≤ CEn(t),  ≤ t < ∞. (.)

From (.)-(.) it follows that there exists a C such that

eαtEn(t) +
∫ t


eατ‖∇unτ‖ dτ

≤ (Cα + )En() +
(


+C(r, δ)

)
α

∫ t


‖unτ‖ dτ

+ αCeαtEn(t) + αC

∫ t


eατEn(τ ) dτ . (.)

Choose α such that

 < α <min

{


C
,

λ

 +C(r, δ)

}
.

Then from (.) we get

eαtEn(t) ≤ (Cα + )En() + αC

∫ t


eατEn(τ ) dτ

≤ (Cα + )d + αC

∫ t


eατEn(τ ) dτ

≤ d + αC

∫ t


eατEn(τ ) dτ .

From this and the Gronwall inequality, we get

eαtEn(t) ≤ de–α
Ct

and

En(t)≤ de–λt ,  ≤ t <∞, λ = α( – Cα) > . (.)
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On the other hand, from (.) we get



‖unt‖ + p – l

(p + )(l + )
A‖∇un‖m+

m+ ≤ En(t),  ≤ t <∞.

Hence, there exists a C = C(p, l,A) such that

‖unt‖ + ‖∇un‖m+
m+ ≤ CEn(t),  ≤ t <∞. (.)

Let {uν} be the subsequence of {un} in the proof of Theorem .. Then from (.)
and(.), we obtain

‖ut‖ + ‖∇u‖m+
m+

≤ lim inf
v→∞ ‖uvt‖ + lim inf

v→∞ ‖∇uv‖m+
m+

≤ lim inf
v→∞

(‖uvt‖ + ‖∇uv‖m+
m+

)
≤ lim inf

ν→∞ CEv(t)≤ dCe–λt ,  ≤ t < ∞,

which gives (.), where C = dC, λ = α( – Cα). �
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