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Abstract
In this article, we consider the boundary value problem u(4)(t) + f (t,u(t)) = 0, 0 < t < 1,
subject to the boundary conditions u(0) = u′(0) = u′′(0) = 0 and u′′(1) – αu′′(η) = λ. In
this setting, 0 < η < 1 and α ∈ [0, 1

η
) are constants and λ ∈ [0, +∞) is a parameter. By

imposing a sufficient structure on the nonlinearity f (t,u), we deduce the existence of
at least one positive solution to the problem. The novelty in our setting lies in the fact
that f (t,u) may be singular at t = 0 and t = 1. Our results here are achieved by making
use of the Krasnosel’skii fixed point theorem. We conclude with examples illustrating
our results and the improvements that they present.
MSC: 34B15; 34B25; 34B18
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1 Introduction
In this paper, we consider the following nonlinear singular fourth-order three-point
boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
u()(t) + f (t,u(t)) = ,  < t < ,

u() = u′() = u′′() = ,

u′′() – αu′′(η) = λ,

(.)

where  < η < , α ∈ [, 
η
) are constants, λ ∈ [, +∞) is a parameter, f (t,u(t)) may be sin-

gular at t =  and/or t = . Here, by a positive solution we mean a function u∗(t) which is
positive on (, ) and satisfies problem (.).
The theory of boundary value problems for ordinary differential equations arises in dif-

ferent areas of appliedmathematics, physics and so on. The existence of positive solutions
for boundary value problems has become an important area of investigation and received
a great deal of attention in recent years (see [–] and the references cited therein). In
[], bymaking use of the fixed point theorem and degree theory, Bai andWang proved the
existence, uniqueness and multiplicity of positive solutions for the following fourth-order
two-point boundary value problem:

⎧⎨
⎩
u()(t) – λf (t,u(t)) = ,  < t < ,

u() = u() = u′′() = u′′() = .
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In [], Yao studied the following nonlinear fourth-order ordinary differential equation:

⎧⎨
⎩
u()(t) = f (t,u(t),u′(t)), t ∈ [, ]\E,
u() = u′() = u′′() = u′′′() = ,

where E ⊂ [, ] is a closed set with measure zero and the nonlinear term f (t,x, y) may be
singular for t ∈ E. The author showed the existence of n positive solutions by constructing
a suitable integral equation and applying fixed point theorems on a cone.
In [], Sun considered the following third-order boundary value problems:

⎧⎪⎪⎨
⎪⎪⎩
u′′′(t) + a(t)f (u(t)) = ,  < t < ,

u() = u′() = ,

u′() – αu′(η) = λ.

The author obtained the existence and nonexistence of positive solutions by applying the
Guo-Krasnosel’skii fixed point theorem and Schauder’s fixed point theorem.
In [], Zhang and Wang studied the following nonlinear singular fourth-order bound-

ary value problem:

⎧⎨
⎩
u()(t) = f (t,u(t)),  < t < ,

u() = u() = u′() = u′() = ,

where the nonlinear term f (t,u) may be singular at t = , t =  and u = . The author
presented the existence of a positive solution by using the fixed point index theorem and
the properties of Green’s function.
In [], by applying the Krasnosel’skii fixed point theorem, Graef, Qian and Yang estab-

lished the existence and nonexistence of positive solutions for the following fourth-order
three-point boundary value problem:

⎧⎨
⎩
u()(t) = λg(t)f (u(t)),  < t < ,

u() = u′() = u′′() = u′′(p) – u′′() = ,

where p ∈ (, ) is a constant.
Inspired and motivated by the works mentioned above, we deal with the existence and

nonexistence of positive solutions to problem (.) by making use of the fixed point theo-
rem together with the properties of Green’s function. Themain features of the paper are as
follows. Firstly, we apply the Taylor expansion formula to prove a lemma, and then we give
a comparison lemma and construct a special cone. Secondly, we present the existence of
positive solutions for problem (.). To our best knowledge, no paper has considered prob-
lem (.). The arguments are based upon the fixed point theorem for the special cone.
The paper is organized as follows. In Section , we give some properties of Green’s func-

tion associated with problem (.) and construct a suitable cone and transform problem
(.) into an integral equation. In Section , we discuss the existence of at least one positive
solution for problem (.).
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Sun and Zhu Advances in Difference Equations 2013, 2013:51 Page 3 of 13
http://www.advancesindifferenceequations.com/content/2013/1/51

2 Preliminary lemmas
Let E = C[, ] be a Banach space of all continuous functions with the norm ‖u‖ =
max≤t≤ |u(t)|, C+[, ] = {u ∈ C[, ] : u(t) > , t ∈ [, ]}.
Throughout the paper, we assume that

(H) f : (, )× [, +∞)→ [, +∞) is continuous.
(H) There exists a continuous function q : (, ) → [, +∞) such that

 <
∫ b

a
s( – s)q(s)ds≤

∫ 


s( – s)q(s)ds < +∞ for [a,b]⊂ (, ).

(H) There exists a continuous function g : [, ]× [, +∞) → [, +∞) such that

f (t,u)≤ q(t)g(t,u), (t,u) ∈ (, )× [, +∞).

Lemma. Suppose that p(t) ∈ L(, ) and p(t) > .Then the linear boundary value prob-
lem

⎧⎪⎪⎨
⎪⎪⎩
u()(t) + p(t) = ,

u() = u′() = u′′() = ,

u′′() – αu′′(η) = λ

(.)

has a unique positive solution, which can be expressed by

u(t) =
∫ 


G(t, s)p(s)ds +

αt

( – αη)

∫ 


K(η, s)p(s)ds +

λt

( – αη)
,

where

G(t, s) =

⎧⎨
⎩


 t

( – s) – 
 (t – s),  ≤ s≤ t ≤ ,


 t

( – s),  ≤ t ≤ s≤ ,

and

∂

∂t
G(t, s) =

⎧⎨
⎩


 t

( – s) – 
 (t – s),  ≤ s≤ t ≤ ,


 t

( – s),  ≤ t ≤ s≤ ,

and

K(t, s) =
∂

∂t
G(t, s) =

⎧⎨
⎩
s( – t),  ≤ s ≤ t ≤ ,

t( – s),  ≤ t ≤ s ≤ .

Proof In fact, if u(t) is a solution of problem (.), by the Taylor expansion formula, we
have

u(t) = a + at +
a
!
t +

a
!
t –




∫ t


(t – s)p(s)ds,

http://www.advancesindifferenceequations.com/content/2013/1/51
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then

u′(t) = a + at +
a

t –




∫ t


(t – s)p(s)ds,

u′′(t) = a + at –
∫ t


(t – s)p(s)ds,

which together with the boundary condition implies a = a = a =  and

a =


 – αη

∫ 


( – s)p(s)ds +

α

 – αη

∫ η


(s – η)p(s)ds +

λ

 – αη
.

Therefore

u(t) = –



∫ t


(t – s)p(s)ds +

t

( – αη)

∫ 


( – s)p(s)ds

+
αt

( – αη)

∫ η


(s – η)p(s)ds +

λt

( – αη)

=



∫ t



[
t( – s) – (t – s)

]
p(s)ds +




∫ 

t
t( – s)p(s)ds

+
αt

( – αη)

[∫ η


s( – η)p(s)ds +

∫ 

η

η( – s)p(s)ds
]
+

λt

( – αη)

=
∫ 


G(t, s)p(s)ds +

αt

( – αη)

∫ 


K(η, s)p(s)ds +

λt

( – αη)
.

The proof is complete. �

Lemma . For all (t, s) ∈ [, ]× [, ], we have



ts( – s) ≤ G(t, s)≤ s( – s).

Proof If  ≤ t ≤ s ≤ , then

G(t, s) =


t( – s)≤ 


s( – s)≤ s( – s),

and

G(t, s) =


t( – s)≥ 


ts( – s).

If  ≤ s≤ t ≤ , then

G(t, s) =


t( – s) –



(t – s)

≤ 

s
[
t – t + t(t – s)

]

≤ 

s
[
t( – s) + t( – s)

] ≤ s( – s),

http://www.advancesindifferenceequations.com/content/2013/1/51
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and

G(t, s) =


t( – s) –



(t – s)

≥ 

ts( – s) +



t( – s) –



(t – s)

≥ 

ts( – s) +



s( – t)

[
t( – s) + t( – s)(t – s) + (t – s)

]

≥ 

ts( – s).

Therefore



ts( – s) ≤ G(t, s)≤ s( – s). �

Define a cone K ⊂ C[, ] by

K =
{
u(t) ∈ C+[, ] : u(t) ≥ 


t‖u‖,  ≤ t ≤ 

}
,

then K is a positive cone in C[, ]. Denote

�r =
{
u ∈ K : ‖u‖ < r

}
, ∂�r =

{
u ∈ K : ‖u‖ = r

}
.

Fix R > r > . Define an operator A : (�R\�r)∩K → K by

Au(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +

αt

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λt

( – αη)
.

It is well known that problem (.) has a positive solution u = u(t) if and only if u is a fixed
point of A.

Lemma . Suppose that (H)∼(H) hold. Then A(K) ⊆ K .

Proof From (H) and (H), we know that

 ≤ (Au)(t)

≤
∫ 


s( – s)f

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λ

( – αη)

≤
∫ 


s( – s)q(s)g

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)q(s)g

(
s,u(s)

)
ds +

λ

( – αη)
< +∞.

On the other hand, for any u ∈ K , we have u(t) ≥ 
 t

‖u‖, t ∈ [, ], and

‖Au‖ ≤
∫ 


s( – s)f

(
s,u(s)

)
ds +

α

 – αη

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λ

 – αη
.
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Therefore

(Au)(t) ≥ 

t

[∫ 


s( – s)f

(
s,u(s)

)
ds +

α

 – αη

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λ

 – αη

]

≥ 

t‖Au‖.

The proof is complete. �

Lemma . Suppose that (H)∼(H) hold. Then A : (�R\�r)∩K → K is completely con-
tinuous.

Proof For any u ∈ (�R\�r)∩K , we have  ≤ 
 t

r ≤ 
 t

‖u‖ ≤ u(t) ≤ R.
Let

qn(t) =

⎧⎪⎪⎨
⎪⎪⎩
inft≤s≤ 

n
q(s),  ≤ t ≤ 

n ,

q(t), 
n ≤ t ≤ n–

n ,

inf n–
n ≤s≤t q(s),

n–
n ≤ t ≤ .

Then, from (H) and (H), we have limn→∞
∫ 
 (q(t) – qn(t))dt =  for ≤ t ≤  and u ∈ K .

Let

fn(t,u) =

⎧⎨
⎩
f (t,u), f (t,u) ≤ qn(t)g(t,u),

qn(t)g(t,u), f (t,u) > qn(t)g(t,u).

It is easy to see that fn is a continuous function on [, ]× [, +∞) and fn is bounded on
any bounded set. Define

(Anu)(t) =
∫ 


G(t, s)fn

(
s,u(s)

)
ds +

αt

( – αη)

∫ 


K(η, s)fn

(
s,u(s)

)
ds +

λt

( – αη)
.

By the Arzela-Ascoli theorem, we know that An :�R\�r → C[, ] is completely continu-
ous.
LetM(R) =max{g(t,u) : (t,u) ∈ [, ]× [,R]}. For u ∈ (�R\�r)∩K , we know that

‖Au –Anu‖ = max
≤t≤

{∫ 


G(t, s)

[
f
(
s,u(s)

)
– fn

(
s,u(s)

)]
ds

}

+ max
≤t≤

{
αt

( – αη)

∫ 


K(η, s)

[
f
(
s,u(s)

)
– fn

(
s,u(s)

)]
ds

}

≤ max
≤t≤

{∫ 


G(t, s)

[
q(s)g

(
s,u(s)

)
– qn(s)g

(
s,u(s)

)]
ds

}

+ max
≤t≤

{
αt

( – αη)

∫ 


K(η, s)

[
q(s)g

(
s,u(s)

)
– qn(s)g

(
s,u(s)

)]
ds

}

≤ M(R) max
≤t≤

{∫ 


G(t, s)

[
q(s) – qn(s)

]
ds

}

http://www.advancesindifferenceequations.com/content/2013/1/51
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+M(R) max
≤t≤

{
αt

( – αη)

∫ 


K(η, s)

[
q(s) – qn(s)

]
ds

}

→  as n→ ∞.

It shows that a completely continuous operatorAn converges to an operatorA uniformly
on (�R\�r)∩K . Hence A is continuous.
Suppose that D ⊂ K is a bounded set, then there exists d >  such that ‖u‖ ≤ d for any

u ∈ D. From (H), we know that |f (t,u)| ≤ q(t)g(t,u) ≤ M(d)q(t) for (t,u) ∈ (, )× [,d].
Then we have

‖Au‖ ≤
∫ 


s( – s)f

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λ

( – αη)

≤
∫ 


s( – s)q(s)g

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)q(s)g

(
s,u(s)

)
ds +

λ

( – αη)

≤ M(d)
∫ 


s( – s)q(s)ds +M(d)

α

( – αη)

∫ 


K(η, s)q(s)ds +

λ

( – αη)
< +∞.

Hence A is uniformly bounded.
On the other hand, for any u ∈ D, we know that

∣∣(Au)′(t)∣∣ ≤ 


∫ t


s( – s)f

(
s,u(s)

)
ds +




∫ 

t
s( – s)f

(
s,u(s)

)
ds

+
αt

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λt

( – αη)

≤ 


∫ t


s( – s)q(s)g

(
s,u(s)

)
ds +




∫ 

t
s( – s)q(s)g

(
s,u(s)

)
ds

+
αt

( – αη)

∫ 


K(η, s)q(s)g

(
s,u(s)

)
ds +

λt

( – αη)

≤ 

M(d)

∫ t


s( – s)q(s)ds +



M(d)

∫ 

t
s( – s)q(s)ds

+
αt

( – αη)
M(d)

∫ 


K(η, s)q(s)ds +

λt

( – αη)
.

Let

ϕ(t) =


M(d)

∫ 


s( – s)q(s)ds +

αt

( – αη)
M(d)

∫ 


K(η, s)q(s)ds +

λt

( – αη)
,

∫ 



∣∣ϕ(t)∣∣dt =M(d)
∫ 


dt

∫ t





s( – s)q(s)ds +M(d)

∫ 


dt

∫ 

t



s( – s)q(s)ds

+M(d)
∫ 



αt

( – αη)
dt

∫ 


K(η, s)q(s)ds +

∫ 



λt

( – αη)
dt

=M(d)
∫ 





s( – s)q(s)ds +M(d)

∫ 





s( – s)q(s)ds

+
α

( – αη)
M(d)

∫ 


K(η, s)q(s)ds +

λ

( – αη)

http://www.advancesindifferenceequations.com/content/2013/1/51
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=


M(d)

∫ 


s( – s)q(s)ds +

α

( – αη)
M(d)

∫ 


K(η, s)q(s)ds +

λ

( – αη)

< +∞.

Therefore A is equicontinuous. Consequently, A is completely continuous. �

Lemma . [, ] Let E be a Banach space, and let P ⊂ E be a cone in E. Assume that
� and � are open subsets of E with  ∈ � and � ⊂ �. Let T : P ∩ (�\�) → P be a
completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂� and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂�.

Then T has a fixed point in P ∩ (�\�).

3 Main results
Theorem. Suppose that (H), (H) and (H) hold. In addition, assume that the following
conditions hold:

(H) limu→+ supmax≤t≤
g(t,u)
u = ;

(H) limu→+∞ infmina≤t≤b
f (t,u)
u = +∞.

Then problem (.) has at least one positive solution for λ small enough, and problem (.)
has no positive solution for λ large enough.

Proof For λ >  small enough, let

N =



[∫ 


s( – s)q(s)ds +

α

( – αη)

∫ 


K(η, s)q(s)ds

]–

. (.)

From (H), there exists a constant R >  such that g(t,u) ≤ Nu for (t,u) ∈ [, ]× (,R].
Let � = {u ∈ K : ‖u‖ < R},  < λ ≤ ( – αη)R. For any u ∈ K ∩ ∂�, we get

Au(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +

αt

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λt

( – αη)

≤
∫ 


s( – s)f

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λ

( – αη)

≤
∫ 


s( – s)q(s)g

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)q(s)g

(
s,u(s)

)
ds +

λ

( – αη)

≤ N
∫ 


s( – s)q(s)u(s)ds +

Nα

( – αη)

∫ 


K(η, s)q(s)u(s)ds +

R( – αη)
( – αη)

≤ N‖u‖
∫ 


s( – s)q(s)ds +

Nα‖u‖
( – αη)

∫ 


K(η, s)q(s)ds +

R



=


R +



R = R = ‖u‖.

Therefore

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

http://www.advancesindifferenceequations.com/content/2013/1/51
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On the other hand, let

M =
[∫ b

a



as( – s)ds +

αa

( – αη)

∫ b

a
K(η, s)ds

]–

. (.)

From (H), there exists R >  such that f (t,u) ≥ Mu for (t,u) ∈ [a,b] × [R, +∞). Let
R > R

a > R, and let � = {u ∈ K : ‖u‖ < R}. For any u ∈ K ∩ ∂� and t ∈ [a,b], we know
that u(t) ≥ 

 t
‖u‖ = 

a
R > R and

(Au)
(



)
=

∫ 


G

(


, s

)
f
(
s,u(s)

)
ds

+



· α

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +




· λ

( – αη)

≥ 


∫ 





s( – s)f

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds

≥ 


∫ b

a



s( – s)f

(
s,u(s)

)
ds +

α

( – αη)

∫ b

a
K(η, s)f

(
s,u(s)

)
ds

≥ M
∫ b

a
s( – s)u(s)ds +

αM
 – αη

∫ b

a
K(η, s)u(s)ds

≥ M
∫ b

a



as( – s)u(s)ds +

αMa

( – αη)

∫ b

a
K(η, s)u(s)ds

= M
[∫ b

a



as( – s)ds +

αa

( – αη)

∫ b

a
K(η, s)ds

]
‖u‖

= ‖u‖,

which implies that

‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂�.

By Lemma . we know that problem (.) has at least one positive solution.
For λ large enough, we prove that problem (.) has no positive solution. Otherwise,

there exists  < λ < λ < λ < · · · < λn < · · · with limn→∞ λn = +∞ such that problem (.)
has a positive solution un(t), then we get

un
(



)
=

∫ 


G

(


, s

)
f
(
s,un(s)

)
ds

+
α

( – αη)

∫ 


K(η, s)f

(
s,un(s)

)
ds +

λn

( – αη)

≥ λn

( – αη)
→ +∞ as n→ +∞.

Hence ‖un‖ → +∞ as n→ +∞.
Again from (H), there exist R′ >  andM >  such that

f (t,u) ≥ Mu for (t,u) ∈ [a,b]× [
R′, +∞)

,
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where M is defined by (.). Let n be large enough. Choose R′
 >

a
R′ such that ‖un‖ ≥ R′

.
Thus, we get

‖un‖ ≥ un
(



)

=
∫ 


G

(


, s

)
f
(
s,un(s)

)
ds

+
α

( – αη)

∫ 


K(η, s)f

(
s,un(s)

)
ds +

λn

( – αη)

≥ 


∫ 





s( – s)f

(
s,un(s)

)
ds +

α

( – αη)

∫ 


K(η, s)f

(
s,un(s)

)
ds

≥ 


∫ b

a



s( – s)f

(
s,un(s)

)
ds +

α

( – αη)

∫ b

a
K(η, s)f

(
s,un(s)

)
ds

≥ M
∫ b

a
s( – s)un(s)ds +

Mα

 – αη

∫ b

a
K(η, s)un(s)ds

≥ M
[∫ b

a



as( – s)ds +

αa

( – αη)

∫ b

a
K(η, s)ds

]
‖un‖ = ‖un‖,

which is a contradiction. The proof is complete. �

Remark . The conclusion of Theorem . also holds if λ = .

Theorem . Suppose that (H), (H) and (H) hold. In addition, assume that

(H) limu→+∞ infmin≤t≤
g(t,u)
u = ;

(H) limu→+ supmaxa≤t≤b
f (t,u)
u = +∞.

Then problem (.) has at least one positive solution for any λ ∈ [, +∞).

Proof From (H), there exist constants R >  andM >  such that

f (t,u) ≥ Mu for (t,u) ∈ [a,b]× (,R],

whereM is defined by (.). Let� = {u ∈ K : ‖u‖ < R}. For any u ∈ K ∩∂�, we know that

(Au)
(



)
=

∫ 


G

(


, s

)
f
(
s,u(s)

)
ds

+
α

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λ

( – αη)

≥ 


∫ 





s( – s)f

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds

≥ 


∫ b

a



s( – s)f

(
s,u(s)

)
ds +

α

( – αη)

∫ b

a
K(η, s)f

(
s,u(s)

)
ds

≥ M
∫ b

a
s( – s)u(s)ds +

Mα

 – αη

∫ b

a
K(η, s)u(s)ds

≥ M
[∫ b

a



as( – s)ds +

αa

( – αη)

∫ b

a
K(η, s)ds

]
‖u‖ = ‖u‖.
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Therefore

‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂�.

On the other hand, from (H), there exists a constant R >  such that g(t,u) ≤ Nu for
u ≥ R, where N is defined by (.). Since g(t,u) is continuous on [, ] × [, +∞), there
existsM∗ >  such that max≤t≤ g(t,u) ≤ M∗ for (t,u) ∈ [, ]× [,R]. Choose

R ≥ max

{
R,

M∗

N
,R,

λ

 – αη

}
.

Let � = {u ∈ K : ‖u‖ < R}. For any u ∈ [,R], we get

f (t,u) ≤ q(t)g(t,u)≤ 

M∗ +



NR.

Thus, for any u ∈ K ∩ ∂� and t ∈ (, ), we know that

Au(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +

αt

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λt

( – αη)

≤
∫ 


s( – s)f

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)f

(
s,u(s)

)
ds +

λ

( – αη)

≤
∫ 


s( – s)q(s)g

(
s,u(s)

)
ds +

α

( – αη)

∫ 


K(η, s)q(s)g

(
s,u(s)

)
ds +

λ

( – αη)

≤
∫ 


s( – s)q(s)

(


M∗ +



NR

)
ds

+
α

( – αη)

∫ 


K(η, s)q(s)

(


M∗ +



NR

)
ds +



R

≤ 

M∗

[∫ 


s( – s)q(s)ds +

α

( – αη)

∫ 


K(η, s)q(s)ds

]

+


NR

[∫ 


s( – s)q(s)ds +

α

( – αη)

∫ 


K(η, s)q(s)ds

]
+


R

≤ M∗

N
+


N

NR +


R

≤ 


R +



R +


R = R = ‖u‖.

Therefore

‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂�.

It follows from Lemma . that problem (.) has at least one positive solution. �

4 Examples
Now, we give examples to illustrate the main results in the paper.
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Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
u()(t) + 

t+ω+ω+ω (–t)+ω (u
 +

√
u) sin u = ,  < t < ,

u() = u′() = u′′() = ,

u′′() – 
u

′′(  ) = .

(.)

Then problem (.) has at least one positive solution if ω +ω +ω <  and ω < –.
Let

q(t) =


t+ω+ω+ω ( – t)+ω
, g(t,u) = 

(
u +

√
u
)
sin u. (.)

Take [a,b] = [  ,

 ]. Notice, for any fixed t ∈ (, ), that f (t,x)≤ q(t)g(t,x) and  <

∫ 
 s(–

s)q(s)ds < +∞ for ω +ω +ω <  and ω < –.
Obviously, conditions (H)∼(H) are satisfied.
Now, for any fixed t ∈ (, ), (H) and (H) follow immediately from

lim
u→+

sup max
≤t≤

(u +
√
u) sin u
u

= ,

lim
u→+∞ inf min


≤t≤ 



(u +
√
u) sin u

t+ω+ω+ω ( – t)+ωu
= +∞.

Thus, the existence of a positive solution follows from Theorem . if ω +ω +ω <  and
ω < –.

Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
u()(t) + ,| lnu(t)|+sin u(t)√

t(–t) = ,  < t < ,

u() = u′() = u′′() = ,

u′′() – 
u

′′(  ) = ,.

(.)

Then problem (.) has at least one positive solution.
Let

q(t) =
√

t( – t)
, g(t,u) = ,

∣∣lnu(t)∣∣ + sin u(t). (.)

Take [a,b] = [  ,

 ]. Notice, for any fixed t ∈ (, ), that f (t,x)≤ q(t)g(t,x) and  <

∫ 
 s(–

s)q(s)ds < +∞.
Obviously, conditions (H)∼(H) are satisfied.
Now, for any fixed t ∈ (, ), (H) and (H) follow immediately from

lim
u→+

sup max

≤t≤ 



,| lnu(t)| + sin u(t)√
t( – t)u

= +∞,

lim
u→+∞ inf min

≤t≤

,| lnu(t)| + sin u(t)
u

= .

Thus, the existence of a positive solution follows from Theorem ..
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