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COL1A1 and miR-29b show lower expression
levels during osteoblast differentiation of bone
marrow stromal cells from Osteogenesis
Imperfecta patients
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Abstract

Background: The majority of Osteogenesis Imperfecta (OI) cases are caused by mutations in one of the two genes,
COL1A1 and COL1A2 encoding for the two chains that trimerize to form the procollagen 1 molecule. However,
alterations in gene expression and microRNAs (miRNAs) are responsible for the regulation of cell fate determination
and may be evolved in OI phenotype.

Methods: In this work, we analyzed the coding region and intron/exon boundaries of COL1A1 and COL1A2 genes
by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol.
COL1A1 and miR-29b expression were also evaluated during the osteoblastic differentiation of mesenchymal stem
cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System.

Results: We have identified eight novel mutations, where of four may be responsible for OI phenotype. COL1A1
and miR-29b showed lower expression values in OI type I and type III samples. Interestingly, one type III OI sample
from a patient with Bruck Syndrome showed COL1A1 and miR-29b expressions alike those from normal samples.

Conclusions: Results suggest that the miR-29b mechanism directed to regulate collagen protein accumulation
during mineralization is dependent upon the amount of COL1A1 mRNA. Taken together, results indicate that the
lower levels observed in OI samples were not sufficient for the induction of miR-29b.
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Background
Osteogenesis Imperfecta (OI) (OMIM #166200) is a het-
erogeneous group of inherited disorders characterized
by increased bone fragility and clinical severity ranging
from mild to lethal [1]. Four types of OI have been de-
scribed based on clinical phenotypes and histological
findings [2], but more recently, at least three additional
groups of patients who had a clinical diagnosis of the
disorder but who presented clearly distinct features were
delineated [3]. The clinical spectrum is wide, ranging
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from few fractures, in mild cases, to multiple fractures
and perinatal lethality [4]. Most patients have mutations
in the COL1A1 or COL1A2 genes, which encode colla-
gen 1, which in turn is the major component of the bone
matrix [5]. Collagen 1, an extra-cellular matrix protein,
has two α1 and one α2 collagen chains forming a triple
helix structure. However, skeletal development and bone
remodeling also require stringent control of gene expres-
sion for osteoprogenitor lineage cells to advance through
stages of differentiation whereas little is known about
this in OI [6].
Recent reports identify critical roles of microRNAs

(miRNAs) as regulators of gene expression either by
inhibiting the translation or by stimulating the degrad-
ation of target mRNAs in the regulation of cell fate
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determination [7]. Additionally, miRNA profiling during
the initial stages of osteoblast phenotype development
showed the up-regulation of a limited cohort of miRNAs
that have predicted targets for muscle differentiation [8].
Other works have described the importance of micro-
RNAs in controlling transcriptions factors [9] and non-
collagen extracellular matrix proteins leading to inhib-
ition of the osteogenic process [10]. On the other hand,
some microRNAs are responsible for the induction of
osteogenesis [11]. MiR-29b, for example, supports osteo-
blast differentiation through several mechanisms which
decrease the activity of COL1A1, COL5A3 and COL4A2
and regulate collagen protein accumulation during
mineralization when miR-29b reaches peak levels [6].
There is no information regarding the expression of
microRNAs in patients with Osteogenesis Imperfecta.
In this work, the analysis of COL1A1 and COL1A2-

genes in five unrelated patients with type I and type III
OI identified a total of 8 novel mutations, whereas the
analysis from miR-29b expression led us to propose that
it does not regulate COL1A1 levels during osteoblast dif-
ferentiation in OI in comparison to normal mesenchy-
mal stem cells.

Methods
The mononuclear cell fractions were derived from the
bone marrow of eight different donors [five patients with
Osteogenesis Imperfecta (MOOI1-MOOI5) and three
normal donors (MON1-MON3)] who gave consent after
full information and approval by the Ethics Committee of
the Medical School of Ribeirão Preto Hospital, University of
São Paulo (Number: 10188/2007). All MNC (mononuclear
cells) were isolated and MSC were cultivated as previously
described [12] until the third passage, when osteogenic
differentiation was induced with an expansion medium
supplemented with 0.01 mM dexamethasone, 200 μM
ascorbic-acid-2-phosphate and 10 mM β–glycerophosphate.
Genomic DNA was extracted from mesenchymal stem cells
using the Wizard Genomic DNA Purification Kit (Pro-
mega). DNA sequencing of PCR-amplified COL1A1 and
COL1A2 gene fragments covering the entire coding region
and intron/exon boundaries was carried out using an ABI
PRISM 3130 automated sequencer and the Big Dye Termin-
ator Sequencing protocol. All primer sequences used in the
PCR amplification of COL1A1 and COL1A2 are available as
an Additional file 1. RNA was harvested at seven time
points during the osteogenic differentiation period (D0, D +
1, D + 2, D + 7, D + 12, D + 17 and D+ 21). Total RNA was
isolated with TRIzol reagent (Invitrogen) and concentration
was determined by photometric measurements. A High
Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems) was used to synthesize cDNA from 2 μg of RNA,
following manufacturer’s recommendations. The primer
sequences used in the PCR amplification of COL1A1 are
available as an Additional file 1. qRT-PCR amplification
mixtures contained 20 ng template cDNA, 2X Power SYBR
Green Master mix (10 μL) (Applied Biosystems) and 400–
600 nM forward and reverse primers in a final volume of
20 μL. TaqMan® MicroRNA Assays (Applied Biosystems)
were used to assess miR-29b expression levels and included
two steps: reverse transcription and real-time PCR. The
total RNA (2.5 ng/reaction) from samples was reverse-
transcribed with specific looped RT primers. 15 μL reac-
tions, in turn, were performed using reagents from the
High-Capacity cDNA Archive Kit (PN 4322171, Applied-
Biosystems) and 1.9 U RNase inhibitor (PNN8080119, Ap-
plied Biosystems) and were and incubated for 30 minutes at
16°C, 30 minutes at 42°C, and 5 minutes at 85°C. As for the
real-time PCR step, 4.5 μL 1:5 diluted cDNA samples were
used as templates in 10 μL reactions containing primers and
probes for miR-29b, according to manufacturer instructions.
All reactions were run in duplicate on an ABI7500 Sequence
Detection System (Applied Biosystems, Foster City, CA,
USA) under the following conditions: 95°C, for 10 minutes,
followed by 40 cycles at 95°C for 15 seconds, and 60°C, for
1 minute. Total RNA input was normalized based on the Ct
values obtained for RNU6B, which is a nucleolar RNA used
as an endogenous control in this type of analysis. Experi-
ments with coefficients of variation greater than 5% were
excluded. As regards COL1A1 reactions, each run was com-
pleted with a melting curve analysis so as to confirm the
specificity of amplification and the lack of primer dimers.
Reactions were carried out in triplicates and a no-template
control was also included. The relative quantification of
gene expression was carried out using the mathematical
model described in [13].

Results
All 51 coding exons in the COL1A1 gene and 52 exons
in the COL1A2 gene were analyzed by DNA sequencing.
A total of 8 different mutations were identified in the
type I collagen genes of all patients. These mutations are
summarized in Figure 1. All the mutations outlined here
are novel. In COL1A1: 1 missense mutation (p. Gly290-
Glu) have been identified in patient MOOI3, 1 nonsense
mutation (Arg1026Ter) have been identified in patient
MOOI1, 1 out-of-frame insertion mutation (p. Leu69-
GlufsX74) have been identified in patient MOOI4 and 2
silent mutations were identified in patient MOOI5. In
COL1A2: 1 missense mutation (p. Gly835Ser) have been
identified in patient MOOI2 and 2 different silent muta-
tions were identified in patient MOOI2 and MOOI5.
The distribution of mutations in our patients is similar
to that reported in the literature, with glycine substitu-
tions in the helical domain, resulting in severe pheno-
type (Table 1). In these cases, structurally altered chains
are inserted into the collagen 1 protein and disturb the
formation of the triple helix, thus affecting the functions



Figure 1 Schematic representation of the COL1A1 and COL1A2 genes showing novel mutations described in patients with Osteogenesis
Imperfecta and indicating in which exons they were found. In COL1A1: 1 missense mutation (p. Gly290Glu), 1 nonsense mutation (Arg1026Ter),
1 out-of-frame insertion mutation (p. Leu69GlufsX74) and 2 silent mutations. In COL1A2: 1 missense mutation (p. Gly835Ser) and 2 silent mutations. The
distribution of mutations in our patients is shown on Table 1.
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of normal chains in a secondary manner (referred to as a
dominant negative effect). Nonsense mutations in COL1A1
typically result in unstable gene products and reduced col-
lagen synthesis, which is yet qualitatively normal. This hap-
loinsufficiency of COL1A1 results in mild forms of OI [14].
In patient OI5 with Bruck Syndrome (BS) (a very rare

disorder characterized by Osteogenesis Imperfecta and
arthrogryposis multiplex congenital), 3 silent mutations
were detected and were considered as non-pathogenic,
as they do not alter amino acids. Interestingly, miR-29b
Table 1 Clinical features and detected mutations of OI patien

Clinical data MOOI-I 1 MOOI-III 2

OI Type*1 I III

Gender M F

Age (years) 26 23

Family history No No

Number of fractures + 30 + 30

Bone deformities Yes Yes

Blue sclera Yes Yes

Dentinogenesis imperfecta Yes Yes

Hearing loss No No

Mutation
COL1A1 c.3076C >

T, Arg1026X
COL1A2 c.2503

A, Gly835Se
*1According to Sillence et al. [2].
and COL1A1 expression were severely reduced in both
type I and type III OI patients (Figure 2), suggesting that
miR-29b expression is not a requirement for supporting
osteoblast differentiation.

Discussion
It is possible that extracellular signals contribute to micro-
RNA regulation during differentiation, supporting a role
for microRNAs during MSC development [15]. Suh et al.
(2012) have investigated the role of microRNAs in a
ts

MOOI-III 3 MOOI-I 4

III I

M F

15 41

No No

+ 30 − 30

Yes Yes

Yes Yes

Yes Yes

Yes Yes

G >
r

COL1A1 c. 869G >
A, Gly290Glu

COL1A1 c.198_204dupCAAGGTG,
Leu69Glu-fsX74



Figure 2 COL1A1 and miR-29b expression in normal, OI1 and OI3 samples during osteoblast differentiation. Total RNA from samples of
control subjects and patients was extracted and levels of miR-29b and COL1A1 messenger RNA (mRNA) were measured quantitatively with real-
time polymerase chain reaction. miR-29b and COL1A1 expression were severely reduced in both type I and type III OI patients. The results are
presented as the fold increase of expression of the individual mRNAs, with normalization with the target internal control RNU6B using the cycle
threshold method. Data are shown as mean ± SD.
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fibroblast model of quiescence and discovered that micro-
RNA expression is broadly and similarly altered by two
different quiescence signals: contact inhibition and serum
withdrawal. They further found that microRNAs regulate
some of the changes in gene expression and cellular func-
tion associated with quiescence, as well as the transition
between proliferation and quiescence [16]. We therefore
hypothesized that the amount of mRNA and the quality
of secreted collagen could be those signals. Apparently,
the miR-29b mechanism for regulating collagen protein
accumulation during mineralization is dependent upon
the amount of COL1A1 mRNA. The lower levels observed
in OI samples are not sufficient for miR-29b induction.
However, no direct interaction between COL1A1 and
miR-29b has been examined in this study.
The pattern of microRNA expression in MSC is dis-

tinct from that in pluripotent stem cells while specific
populations of microRNAs are regulated in MSC during
differentiation targeted towards specific cell types. Un-
derstanding the key regulatory pathways and molecules
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either involved in maintaining MSC in their undifferenti-
ated state or during the process of differentiation allows
for a better handle on expanding these cells for thera-
peutic applications on a broad scale [17].
The data obtained for BS patient revealed miR-29b and

COL1A1 expression profiles similar to those found in nor-
mal samples. Studies of Bruck syndrome have found nor-
mal secretion of collagen 1 in three families, whereas no
mutations have been detected in the COL1A1 and COL1A2
genes [18]. In addition to the normal miR-29b and COL1A1
expression levels, the absence of pathogenic mutations in
COL1A1 and COL1A2 suggest that miR29b expression
could be associated to COL1A1 expression levels.

Conclusions
Taken together, our study suggests that the miR-29b
mechanism for regulating collagen protein accumulation
during mineralization is dependent upon the amount of
COL1A1 mRNA. Results indicate that the lower levels
observed in OI samples are not sufficient for the induc-
tion of miR-29b, but no direct interaction between
COL1A1 and miR-29b has been examined in this study.
Furthermore, we have presented the clinical and mo-
lecular features of four patients with novel, so far unde-
scribed mutations in COL1A1 and COL1A2 genes that
further illustrate the complexity, but that can contribute
to better understand genotype-phenotype correlations
for OI and related connective tissue disorders.

Additional file

Additional file 1: Sequences of primers used for PCR, sequencing
and qRT-PCR.
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