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Abstract

Background: The popularity of new sequencing technologies has led to an explosion of possible applications,
including new approaches in biodiversity studies. However each of these sequencing technologies suffers from
sequencing errors originating from different factors. For 16S rRNA metagenomics studies, the 454 pyrosequencing
technology is one of the most frequently used platforms, but sequencing errors still lead to important data analysis
issues (e.g. in clustering in taxonomic units and biodiversity estimation). Moreover, retaining a higher portion of the
sequencing data by preserving as much of the read length as possible while maintaining the error rate within an
acceptable range, will have important consequences at the level of taxonomic precision.

Results: The new error correction algorithm proposed in this work - NoDe (Noise Detector) - is trained to identify those
positions in 454 sequencing reads that are likely to have an error, and subsequently clusters those error-prone reads
with correct reads resulting in error-free representative read. A benchmarking study with other denoising algorithms
shows that NoDe can detect up to 75% more errors in a large scale mock community dataset, and this with a low
computational cost compared to the second best algorithm considered in this study. The positive effect of NoDe in
16S rRNA studies was confirmed by the beneficial effect on the precision of the clustering of pyrosequencing reads in
operational taxonomic units.

Conclusions: NoDe was shown to be a computational efficient denoising algorithm for pyrosequencing reads,
producing the lowest error rates in an extensive benchmarking study with other denoising algorithms.

Keywords: Error correction, Denoising, 16S rRNA amplicon sequencing, 454 pyrosequencing, Metagenomics
Background
The introduction of next generation sequencing tech-
nologies has led to important breakthroughs throughout
the life sciences, with applications in de novo genome,
exome or amplicon sequencing, gene expression ana-
lysis, identification of transcription factor binding sites,
and so on. Also in clinical and environmental microbial
community analysis, 16S rDNA sequencing and metage-
nomics have been instrumental. For the assessment of
microbial community structures based upon 16S rDNA
amplicon sequencing, the 454 pyrosequencing platform has
already been in use for many years, mainly due to its longer
read length [1] nowadays allowing up to 1000 bp reads.
Having access to highly reliable sequencing data is a

necessary requirement for biodiversity assessments using
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16S rRNA amplicons [2,3] as this approach is highly sen-
sitive to sequencing errors. Indeed, the natural variation
in the 16S marker genes for different bacterial species
significantly complicates the problem of distinguishing
between erroneous sequences on the one side, and se-
quencing reads representing rare taxa on the other side.
This may lead to an overestimation of the number of op-
erational taxonomic units (OTUs) and sample biodiver-
sity as a whole [1,3,4]. Therefore, error-correction prior
to starting biological interpretation of the data is a mat-
ter of utmost importance.
Several efforts have been made to study the sources of

those errors and how to eliminate or correct them [5-8].
There are three major causes of errors in sequencing data
at different stages in the sequencing process: i) errors ori-
ginating from usage of the PCR polymerase enzymes (with
error rate of 0.000,010 to 0.000,001 per nucleotide [9]),
ii) PCR artifacts, known as chimeras [10], and iii) errors
originating from the sequencing platform [5]. Concerning
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the latter type of errors, different indicators have already
been identified for the GS20 [11] and GS-FLX Titanium
[5,8,12] platforms: (i) position within the read i.e. the qua-
lity of the read is dropping with increasing position in the
read, (ii) the presence of homopolymers gives difficulties
to identify the correct length of the homopolymer or
cause an insertion or substitution near it (i.e. carry-
forward events), (iii) abnormality in the read length (i.e.
suspiciously short or long) that may be caused by extreme
quality filtering, accumulation of errors or stochastic
polymerization ending, (iv) position of the bead on the
plate (edge effect), (v) distribution of the errors, as errors
tend to accumulate in small subset of sequencing reads,
meaning that a majority of reads will be error-free or only
contain a single position error while a minority of reads is
problematic, (vi) nucleotide type, as mismatch transitions
are not of equal rates.
Different methods have been developed to enhance

the quality of pyrosequencing reads, starting with the
most basic approaches e.g. by removing those reads
where no perfect match with the PCR primer could be
identified [13]. Another approach for correcting sequen-
cing errors was introduced by Huse and co-workers
[11], including: i) removal of reads with one or more
ambiguous bases, ii) reads with a length outside the
main distribution or iii) reads containing mismatches in
their primer sequence. Additionally, a major improve-
ment was achieved via the use of the read quality scores
(i.e. the Phred scores) as proposed in Kunin et al. [4] by
trimming reads from the most upstream position where
the quality dropped below the assigned cut-off quality
score. Similarly, Schloss et al. [5] implemented a method
where trimming of sequencing reads was based on a
drop in the average quality of the read in total or within
a specific sliding window.
In addition to methodologies trimming or removing

sequencing reads, more sophisticated approaches were
made by clustering of the 454 standard flowgrams, to
better handle homopolymer related errors, either by ap-
plying an expectation maximization (EM) algorithm as
in PyroNoise [6] or greedy scheme as implemented
in Denoiser [14]. Three sequence based clustering al-
gorithm with a much faster computation time were
developed quite recently, namely the Single Linkage Pre-
clustering method (SLP) [15], AmpliconNoise (including
an update version of PyroNoise and SeqNoise) [16] and
Acacia [17]. SLP clusters low redundant reads containing
errors with the more redundant error-free ones. This is
clustering is based on the pairwise distance scores be-
tween both reads, thereby tolerating some errors (aiming
not to cross the interspecies threshold). AmpliconNoise
consists of two steps: i) the PyroNoise algorithm, which
applies a clustering approach directly on the flowgrams
rather than relying on the quality scores assigned by the
454 pyrosequencing platform, and ii) SeqNoise, which
applies a sequence clustering step.
Acacia [17] is denoising algorithm that aligns each read

to dynamically updated cluster consensus sequences,
thereby avoiding the time-consuming all-against-all align-
ments, and is mainly focusing on correcting sequencing
errors in homopolymer regions. SLP was re-implemented
in mothur [18] as the pre.cluster command. In contrast to
SLP, pre.cluster is applied on the aligned sequences
thereby avoiding the computationally intensive all-against-
all alignments. Pre-cluster was found to outperform SLP
in terms of speed and performance as it avoids overclus-
tering of sequences (i.e. described as the “chaining effect”
of SLP [5,19]) since Pre-cluster only groups reads when
they are within a maximum distance to the cluster center.
These implementations make use of the sequence fre-
quencies to remove errors based on the relative abun-
dance of an error versus a correct nucleotide. Since SLP
and Pre-cluster both work directly on the sequencing data
(and not on the flowgrams), those algorithms do not dis-
tinguish between PCR point errors and errors produced
by the sequencing technology.
When dealing with error-correcting algorithms, re-

searchers need to find a balance between the quantity
(in terms of the number of sequences and their average
length), and the quality of their pyrosequencing reads (in
terms of the error rates i.e. rates of deletions, insertions
or substitutions). Retaining more sequencing data by in-
creasing the average read length, while keeping the error
rate within an acceptable range, will have important
consequences for taxonomic precision. Another factor
that needs to be taken into consideration is the compu-
tational cost, which is getting more important with the
dramatic increase of the size of sequencing data, re-
sulting in a need for fast and accurate methods to
analyse them. Here, we introduce a novel way of artifi-
cial intelligence-based prediction of erroneous positions
in sequencing reads (using a support vector machine
trained classifier) and subsequent clustering which will
correct error-containing reads in the sequencing data by
grouping them with error-free reads (using a modified
version of the SLP algorithm), thereby fulfilling the need
for quality and speed. This methodology was bench-
marked against other state-of-the-art algorithms and
multi-step methodologies.

Methods
Mock communities
In this work, previously published mock datasets were
used, as well as a new in-house made mock community.
First we used the mock datasets presented in Schloss
et al. [5] as available online (Project “SRP002397” in
NCBI Short Read Archive) consisting of 69 samples
(21 samples missing in the Short Read Archive), targeting



Mysara et al. BMC Bioinformatics  (2015) 16:88 Page 3 of 10
three hypervariable regions in the 16S rRNA gene i.e. V1
to V3, V3 to V5 and V6 to V9 (total of 888,635 reads. Due
to missing data as described above, the sff-files were re-
constructed (information provided by P. Schloss, personal
communication), and are made available on the NoDe
website. One of these samples was randomly selected for
training the classifier (accession number F01QS4Z01_
rep1_v35, 13,598 reads) and the other 68 samples were
used for testing (referred to as TrainingDB and MOCK1
respectively in the remainder of this work). Although the
composition of MOCK1 samples was known (20 bacterial
species belonging to 18 families), we did not have access
to the exact concentrations for each species.
The in-house built mock community (called MOCK2),

consists of 17 bacterial species, namely Acidovorax
defluvii, Pseudomonas xanthomarina, Pseudomonas aeru-
ginosa, Paracoccus denitrificans, Rhodospirillum rubrum,
Microbacterium phyllosphaerae, Arthrobacter oryzae, Del-
ftia tsuruhatensis, Nitrosomonas europaea, Cupriavidus
metallidurans, Clostridium botulinum, Staphylococcus
aureus, Bacillus cereus, Arthrospira platensis, Enterococcus
faecium, Yersinia enterocolitica, and Desulfovibrio oxami-
cus ordered by their concentrations in descending order.
The DNA was extracted from the individual cultures,

mixed, and PCR amplified (30 cycles). Next, the DNA
mixture was sequenced in triplicate using the 454
GS-FLX Titanium sequencing platform, covering the
region V1-V3 (primer pair AGAGTTTGATCCTGGCT
CAG and TTACCGCGGCTGCTGGCAC. Creating an
uneven mock community (i.e. all organisms are present
in different relative abundances within a theoretical
range between 0.5% and 50%) allowed us to test the cap-
ability of each tool and pipeline to recover the exact ini-
tial microbial composition. To have absolute confidence
in the reference genomes used for calculating the error
rates, the exact 16S rRNA gene sequence for the 17 spe-
cies was obtained using Sanger sequencing. For all par-
alogous 16S rRNA genes within the mock community,
no differences between paralogs could be observed for
13 species. For the 4 species with sequence variations
between the paralogs (all in species present in lower
than 1% in the uneven mock community), only one dif-
ference (for eight paralogs) or three differences (for two
paralogs) could be observed. However, this variation
could not contribute more than 0.1% to the total error
rate, and will certainly not lead to an inflation of OTUs
in the downstream analysis as the percentage difference
is much lower than the 3% difference cut-off used. As
we have to take into account the technical (e.g. pipetting
errors) and PCR bias that might result in an aberration
from the presumed concentrations, the raw sequencing
reads were mapped back using NAST [20] to the 17
reference genomes, leading to a compositional range
between 0.30% and 55.8% (see Additional file 1). The
sequencing data are submitted to the NCBI Sequence
Read Archive (PRJNA257992). Applying basic trimming
(described in detail in the “preprocessing sequencing
data” section) resulted in a mock community data set
consisting of 145,245 reads with an average length of
480 and a raw error rate of 0.0031.

Error calculation and chimera detection
To obtain erroneous positions (i.e. “the ground truth”)
in the TrainingDB dataset, each read was BLASTed [21]
against a database containing all the reference sequences
of the corresponding mock community. After finding
the potential reference sequence, an accurate alignment
was produced using ClustalW [22] adjusting the para-
meters as recommended in Gilles et al. [12], to get
the highest accuracy for the identification of insertions,
deletions and mismatches. This computationally costly
approach was needed to get the highest sensitivity in
identifying those errors that are used as training data
to build the classifier, and to obtain the positional infor-
mation of the sequencing errors needed to train the
classifier.
In the comparative study between different tools, the

global error rate was used to evaluate the accuracy of
each approach, reflecting the number of erroneous nu-
cleotides over the total number of nucleotides. For this
benchmarking step the mothur command seq.error as
implemented in Schloss et al. [5] was used to calculate
the over-all error rate. Importantly, this algorithm also
implements a highly efficient approach to detect chi-
meric sequences in mock communities. In a first step,
both the reference sequences and sequencing reads were
aligned using the NAST algorithm to the SILVA re-
ference alignment. In the second step, chimera were
detected via calculating the number of mismatches be-
tween each 454 pyrosequencing read and all possible
two-parent chimera that could be generated by the refe-
rence sequences. In those cases where a sequence is
at least three bases more similar to a multi-reference
chimera than to a single reference sequence it is con-
sidered a chimera, and thus excluded from error calcula-
tions. The percentage of chimera was found to be 8.6%
and 2.0% for MOCK1 and MOCK2 reads. Additionally
to the chimera detection step, the error rate is calculated
via counting the distance between the 454 reads and
closest reference sequence. It was applied on both MOCK1
and MOCK2 for the non-denoised data and after each
different denoising tool.

Denoising algorithms
Our newly introduced denoising algorithm was bench-
marked with four other commonly used denoising
algorithms: single linkage preclustering (SLP) [15],
AmpliconNoise [16], Acacia [17] and Denoiser [14].
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For SLP we used the implementation pre.cluster as avail-
able in mothur [18] (version 1.33.3). We will refer to this
algorithm as Pre-cluster in the text below. Similarly,
AmpliconNoise (PyroNoise and SeqNoise) was run
using the mothur commands shhh.flow and shhh.seqs.
For Denoiser we used Mac-QIIME implementation via
the denoise_wrapper.py (version 1.5.0) script. For Acacia
we used the original implementation (version 1.52) as
available online. All algorithms were run using their
default parameters.

Preprocessing sequencing data
As shown in the introduction, trimming of pyrosequenc-
ing reads is a common preprocessing step in 16S rRNA
amplicon sequencing [4,5,11]. In order to allow a fair
comparison between different denoising algorithms, the
same input data should be used for all tools, thereby
preventing the confounding effect of using different pre-
processing pipelines. Therefore, the same basic prepro-
cessing approach was applied as proposed in Schloss
et al. [5], i.e. culling reads with one or more ambiguities,
removing too short reads (<200 bp), and filtering out
reads with homo-polymers longer than 8 bp. This
approach – what we will refer to as “basic trimming” –
is applied on all datasets discussed in this work.
Following the basic trimming step, optionally a more

stringent trimming approach – further referred to in the
text as “strict trimming” – can be applied. For prepro-
cessing the data used as input for Pre-cluster, Acacia,
Denoiser and our newly developed approach (NoDe), a
sliding window approach was used to trim reads until
the position where the average quality of this window
drops below a cut-off Phred score (trim.seqs command
in mothur [18]). As mentioned in the introduction, the
aim of this work is to develop a denoising algorithm
resulting in an acceptable error rate, while preserving
longer read lengths. These longer read lengths can be
guaranteed by using a sliding window of 100 nt and a
cut-off on the average Phred score of 30. For Amplicon-
Noise, a similar effect could be achieved by trimming
the sequencing data according to the guidelines stated in
the original paper describing the tool, [16], by retaining
only those reads with minimum flow length of 360 and
maximum flow length of 720.
For both approaches (basic and strict trimming) reads

were aligned to a 50,000-column wide SILVA-based ref-
erence alignment [23], using a NAST-based aligner [20],
as available in mothur [24] and filtered (align.seqs and
filter.seqs commands in mothur respectively), and sub-
sequently subjected to error calculation (using seq.error)
for comparative analysis. For assessing the impact of the
error correcting algorithms on the OTU clustering,
reads were clustered using the clustering algorithm as
integrated in UPARSE (a 0.97 cut-off without singletons
removal) using the UPARSE command with the follow-
ing options: sortbysize, cluster_otus, and usearch_global
[25]. Next, reads were classified using the RDP classifier
[26] with 80% cutoff by applying mothur classify.seqs
command. First, we applied this clustering approach (i.e.
clustering with cut-off 0.03 and classified using the RDP
classifier) on the selected V1-V3 region of the correct
reference sequences to assure that a correct taxonomic
classification could be obtained theoretically (i.e. by work-
ing on the correct reference sequences) (see Additional
file 2). The same algorithmic approach was used for taxo-
nomic classification of the MOCK2 reads after applying
the pre-processing as mentioned above.

Results
NoDe (Noise Detector) algorithm
Our algorithm consists of two steps. First, a pre-trained
classifier is used to identify those positions in the reads
that are conceivable to be erroneous nucleotides based
on a list of features potentially acting as a predictor for
sequencing errors. In a second step the SLP algorithm
[15] as implemented in mothur [18] is adapted in such a
way that those nucleotides being marked as potentially
erroneous are not penalized in the mismatch counting
used to cluster similar reads. Both steps are explained
more in detail below.
For training the NoDe classifier, an exhaustive list of

features potentially able to predict sequencing errors
was derived based on conclusions presented in Schloss
et al. [5], Gilles et al. [12] and Huse et al. [15]: i) the pos-
ition in the read, ii) PhreD score, iii) the presence and
exact location within a homopolymer, iv), the possibility
whether this position is sensitive to carry forward events,
and v) the flowgram signal intensity. Additionally we
also examined the predictive effect of characteristics
derived from neighbouring nucleotides (one position
before and after the investigated nucleotide): i) the Phred
Score, ii) the presence and exact location within a homo-
polymer, iii) flowgram signal intensity and iv) the highest
flowgram signal intensity score that did not result in a
base call, measured over all signal intensity levels in the
flowgram between the position studied and the neigh-
boring nucleotide. Combining those features lead to a
list of 13 attributes, five related to the position itself and
eight linked to the neighbouring positions. Those 13
attributes were extracted from the Standard Flowgram
Format (SFF) files. To properly describe the homo-
polymer status (presence and exact location within a
homopolymer), following annotation was used: “N” for
non-homopolymer, “A” and “Z” for the first and last pos-
ition in the homopolymer respectively, and for the sec-
ond, third, fourth, etc. position (if any) we use “B”, “C”,
“D”, etc. Since the exact microbial composition is known
for the TrainingDB, we were able to know for each
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position whether it was an error (insertion, deletion or
substitution) or not based upon the original genome se-
quence of the organism at hand. Principal Component
Analysis showed that all proposed features were needed
to explain 95% of the variation in the training data (see
Additional file 3).
For training the model, several classifiers were consi-

dered (multilayer perceptron, support vector machine
(SVM), decision tree, naive Bayes, nearest neighborhood,
logistic regression) as implemented in WEKA [27]. In
order to select the best performing classifier the training
dataset was split into two subsets, subset A for training,
and subset B for initial testing. For constructing these
subsets, the training dataset was dereplicated and dis-
tributed over subsets A and B with a ratio 1:9 in a strati-
fied way. Afterwards, normalization of the ratio between
different error types (Insertions, Deletions, Substitutions)
was applied to equally train and assess each type of error
(applied on subset A and B). Within subset A the native
ratio between erroneous versus non-erroneous instances
was 1:40, which would bias the classifier towards the more
abundant one (i.e.. non-erroneous instances). Therefore
subset A was reduced to have a count of 132 for each
error type as well as 700 non-erroneous instances via ran-
dom selection.
As evaluation criteria for assessing the best performing

classifier (tested on subset B), we used the sensitivity (i.e.
the proportion of actual erroneous positions that was
detected as such: true positives/(true positives + false
negatives)), and specificity (i.e. the proportion of actual
non-erroneous positions that was detected as such: true
negatives/(true negatives + false positives)). The best per-
forming classifier was found to be an SVM with a Pearson
VII Universal Kernel (PUK) [28] and sequential minimal
optimization algorithm [29], which achieved a sensitivity
of 0.62 and specificity of 0.95. The relative influence of
each feature was assessed using the feature weights of
each of them. However, as the PUK kernel is a non-linear
kernel, it does not directly allow to calculate feature
weights. Therefore, the feature weights were illustrated by
training a linear SVM for classification, showing again that
all features were essential for the optimal performance of
the classifier (see Additional file 3: Table S2). The selected
classifier (SVM with PUK kernel) optimally integrating
these 13 features was used as error predicting tool in the
NoDe algorithm. For any position predicted by this classifier
in NoDe to be erroneous, the nucleotide will be marked as
such.
In the second step, a modified version of the SLP

algorithm [15] as implemented via pre.cluster in mothur
[18] was developed. The pre.cluster implementation
merges the less redundant reads with no more than 2%
mismatches with the more redundant reads (parameter
setting recommended in Schloss et al. [5]). In NoDe,
the pre-cluster like algorithm is proceeded by a machine
learning approach identifying potentially erroneous nu-
cleotides, and those positions are masked. Accordingly,
we adapted the pre-cluster algorithm implemented in
NoDe in such a way that is able to ignore those masked
positions in the difference calculations of pre-cluster,
which means that those positions will not lead to an in-
crease in differences. After the clustering, the remaining
masked positions (i.e. positions in reads that are not
merged with a more abundant one) are converted back
to their original nucleotide upon rechecking the original
version of the read (pre-NoDe version). A schematic rep-
resentation of this approach is given in Additional file 4.
The source code and binaries for NoDe are freely

available at http://science.sckcen.be/en/Institutes/EHS/MCB/
MIC/Bioinformatics/NoDe.

Benchmarking of NoDe
The MOCK1 dataset was used to benchmark NoDe to
other state-of-the-art denoising tools: Pre-cluster [18],
Acacia [17], Denoiser [14] and AmpliconNoise (starting
with PyroNoise followed by SeqNoise [16]). Two evalu-
ation factors were used at this stage: the quality of those
sequences in terms of error rates retained after error
correction and the computational cost.
To assess the capability of each algorithm we tested

them on datasets after basic and strict trimming respect-
ively. The error rate of the MOCK1 data set after basic
trimming and without performing any error correction
step was found to be 0.0050, with an average read length
of 509 (888,635 total number of reads). NoDe resulted in
the lowest error rate (0.0012) while AmpliconNoise, SLP,
Acacia and Denoiser had an error rate of 0.0019, 0.0028,
0.0040 and 0.0045 respectively (Table 1). Although dif-
ferent denoising algorithms processed an equal amount
of data (comparable average lengths and number of se-
quence reads), the required computational time varied
dramatically. NoDe was found to yield an almost 40-fold
speed improvement over AmpliconNoise (9.5 hours for
NoDe versus 370 hours for AmpliconNoise on a single
Intel Xeon E5-2640 2.50 GHz CPU). On the other hand,
NoDe requires more computational time compared with
Acacia and Pre-cluster. However, this relatively small in-
crease in running time over the full preprocessing pipe-
line is largely compensated with a significant decrease of
the error rate. One sample was used for additional ana-
lysis, delivering a detailed overview of the computational
costs of the different preprocessing steps (trimming,
aligning, filtering, denoising, etc.). An overview is given
in Additional file 5. These computational costs can be
further reduced via utilizing multiple cores simultaneously,
which is an option available for NoDe, AmpliconNoise,
Denoiser and Pre-cluster. For Acacia this parallelization
can be done manually by the end user via staring up

http://science.sckcen.be/en/Institutes/EHS/MCB/MIC/Bioinformatics/NoDe
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Table 1 Benchmarking of different denoising algorithms using the MOCK1 dataset

Basic trimming Average length Error CPU cost Number of seq

Denoiser 504 0.0045 112 hr 862279

Acacia 482 0.0040 8.8hr 845513

Pre-cluster 482 0.0028 8 hr 845513

AmpliconNoise 499 0.0019 370 hr 860273

NoDe 481 0.0012 9.5 hr 845513

Strict trimming Average length Error CPU cost Number of seq

Denoiser 439 0.0024 96 hr 785115

Acacia 424 0.0021 7.7hr 827123

Pre-cluster 424 0.0014 7 hr 827123

AmpliconNoise 424 0.0013 312 hr 818421

NoDe 425 0.0008 8.3 hr 827123

The comparison covers the final error rate as well as the computational cost (on a single CPU - Intel Xeon E5-2640 2.50 GHz) for the analysis pipelines including all
tested denoising algorithms (Acacia, Denoiser, Pre-cluster, AmpliconNoise, NoDe). Also the number of reads and average read length returned by the different
algorithms is displayed.
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different runs in parallel. Inherent to the mode-of-action of
NoDe is the linear increase of the computational time with
the number of unique reads. It should be noted that this
does not mean that NoDe will increase linearly with the
input data, as the number of unique reads will reach to
an asymptotic value upon increasing the coverage of the
sample.
The NoDe classifier consist of three processes: 1) ex-

tracting and preparing the data, 2) running the classifier,
and 3) the masking phase. The first and last process
(using Perl-scripting) required a maximum of 400 MBs
RAM memory using MOCK2 samples, and this during
80% of the execution time. During the residual 20%, the
classifier component using the WEKA software as im-
plemented in JAVA, required a maximum of 1,800 MBs
of RAM memory. For the other denoising tools, the
maximum RAM requirement was found to be 1,600
MBs, 2300 MBs, 100 MBs and 1,600 MBs for Amplicon-
Noise, Denoiser, Pre-cluster and Acacia, respectively.
Similarly, after applying the strict trimming step, the

error rate without applying any denoising algorithm was
found to be 0.0026 with an average read length of 441.
Applying NoDe on these sequencing data resulted in an
error rate of 0.0008, which is significantly lower than the
error rates obtained with Denoiser (0.0024), Acacia
(0.0021), Pre-cluster (0.0014) and AmpliconNoise (0.0013)
(Table 1). A graphical representation of the effect of the
different denoising tools on the sequencing data with re-
spect to the position of the error in the read is given in
Figure 1. As expected, these plots show that the total error
rate (i.e. sum of the fraction of insertions, deletions and
substitutions) is mainly increasing towards the end of the
read. In the second plot, the performance of each denois-
ing tool on different types of errors (average numbers are
given in Additional file 6) is illustrated. Also for the strictly
trimmed sequencing data, NoDe outperformed the second
best benchmarked tool (AmpliconNoise) in computing
time, as NoDe processed the same dataset in 8.3 hours
versus 312 hours for AmpliconNoise. An overview of
the computational cost of each step in the preprocessing
pipeline – including the different denoising algorithms – is
given in Table 2.

Impact of error correction methods on OTU clustering
The final step in amplicon sequencing-based community
profiling is the clustering of reads into Operational
Taxonomic Units (OTUs), which are believed to reflect
a well-delineated taxonomic group. However, different
proposed amplicon sequencing processing pipelines tes-
ted on artificial communities all lead to an inflation of
the number of OTUs reported, often multiple times
higher than the number of bacterial species present in
the tested mock community [1,3,4].
A second mock community (MOCK2, in-house

produced) was used to assess the influence of different
denoising and preprocessing methods on the OTU dis-
tribution. As the exact concentration of each species is
known in this uneven mock community, the accuracy of
the OTU clustering process can be followed up (e.g. a spe-
cies assigned to more than one OTU – i.e. oversplitting –
or absence of specific species). This MOCK2 community
consists of 17 species spread over a wide taxonomic range
and sequenced in triplicate as described in the methods
section. The difference in error rates between different
denoising algorithms for MOCK2 showed the same trend
as for MOCK 1, i.e. an error rate of 0.0021 for Amplicon-
Noise, 0.0037 for Denoiser, 0.0025 for Acacia, 0.0024 for
Pre-cluster while the lowest error rate of 0.0009 was
achieved by NoDe.
We applied the OTU clustering algorithm using

UPARSE [25] as described in the Methods section. As a
validation step we first applied this algorithm on the 17



Figure 1 Effect of denoising algorithms with respect to position in read. A) Plot showing the error rate versus the position in the read after
being treated with different denoising algorithms, including: Acacia (orange), Denoiser (blue), SLP (Green), AmpliconNoise (violet) and NoDe (red),
with the raw error rate in black. B) Plots showing the insertion (upper), deletion (middle) and substitution (lower) error rates produced in the raw
reads (black), as well as after being treated by different approaches, versus the position in the read.

Table 2 Tabular overview of the computational cost of the different denoising algorithms

Denoising approach SFF extraction Trim reads Denoising algorithm
(average memory)

Aligning Filter alignment Total time

NoDe 00:00:12 00:00:02 00:02:16 (760 MBs) 00:06:40 00:01:00 00:10:05

Pre-cluster 00:00:12 00:00:02 00:00:13 (100 MBs) 00:06:40 00:01:00 00:08:02

AmpliconNoise 00:00:12 00:00:01 08:25:17 (1,900 MBs) 00:03:40 00:01:00 08:30:27

Denoiser 00:00:12 00:00:01 00:38:17 (2,300 MBs) 00:02:30 00:01:00 00:42:00

Acacia 00:00:12 00:00:02 00:00:55 (1,600 MBs) 00:06:40 00:01:00 00:08:49

To have an idea about the computational cost for each step, the complete pipeline was subdivided in different steps to illustrate its running time, as described
above. From the table, it can be observed that the computational burden added to the complete preprocessing pipeline (by integrating the NoDe algorithm) was
relatively small, and it was largely compensated with a significant improvement in the error rate, that exceeded the second best performing (but computationally
intensive) algorithm AmpliconNoise. For the denoising algorithms, the average amount of memory required was added.
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reference sequences only, resulting in 17 distinct OTUs
each representing a species in the MOCK2 dataset. In
the ideal case, such 17 distinct OTUs would also be
returned upon analyzing the 16S amplicon pyrosequenc-
ing data. To check to which extent this could achieve
using any of the denoising tools, UPARSE was applied on
each of the denoised sequencing data sets obtained after
applying AmpliconNoise, Pre-cluster, Acacia, Denoiser
and NoDe, and the number of OTUs are reported as aver-
age number over the three replicates. NoDe had the smal-
lest number of OTUs (22 OTUs on average, which is the
closest to the optimal number of 17), while Amplicon-
Noise, Denoiser, Pre-cluster and Acacia had 29, 24, 46 and
46 OTUs on average respectively. When omitting the
error correcting algorithms (i.e. when doing OTU clus-
tering on the data directly after basic trimming) the num-
ber of OTUs even further inflated to 58 OTUs, pointing
out the importance of integrating a denoising algorithm in
a 16S rRNA metagenomics pipeline.
All the OTUs obtained were evaluated qualitatively

(checking the taxonomic classification of each OTU)
and quantitatively (checking the redundancy of the
OTUs). For the qualitative analysis, we counted the num-
ber of “correct OTUs” (classified as one of the species
present in the mock community), “noisy OTUs” (classified
as one of species in the mock but unclassified at
the Genus, Family or/and Order level), “missed OTUs”
(species present in the mock community but totally
absent in the OTU classification), “over-splitted OTUs”
(correct yet redundant classification), “contaminant
OTUs” (classified as species which should not be in the
mock community) and “other OTUs” (OTUs unclassified
at the Class level or higher).
All of the different preprocessing pipelines determined

the correct relative percentage for each mock species.
However, from a qualitative point of view some of the
species suffered from OTU oversplitting (i.e. one species
is split up over different OTUs), and is observed with all
Table 3 OTUs produced after treating the data with different

Qualitative

Approaches Total
OTUs

Correclt
OTUs

Over-splitted
OTUs

Missed
OTUs

Noisy C

NoDe 22 17 4 0 1 0

AmpliconNoise 29 16 4 1 2 1

Denoiser 24 16 3 1 1 0

Pre-cluster 46 17 24 0 4 0

Acacia 46 17 23 0 5 1

Non denoised 58 17 29 0 5 1

The left side of the table displays the qualitative OTU assessment and the right side
number of “correct OTUs” (classified as one of the mock species), “noisy OTUs” (clas
level), “missed OTUs” (number of undetected mock species), “over-splitted OTUs” (c
no belonging to mock) and “other OTUs” (OTUs unclassified at the Class level or hig
below 0.1% (rare OTUs) and the ones with a redundancy above 0.1% (Redundant O
error-correcting algorithms (Table 3 and Additional file 2)
however at different levels. The number of over-splitted
OTUs was 4, 4, 3, 24 and 23 for NoDe, AmpliconNoise,
Denoiser, Pre-cluster and Acacia, respectively. Additio-
nally, the number of unclassified OTUs (the sum of ‘noisy’
or ‘others’ OTUs) could also be used as a quality criterion,
since all organisms present in MOCK2 are well-known
species present in all standard reference databases (e.g.
SILVA). As such this number of unclassified OTUs should
be as low as possible. For this mock community 1, 7, 5, 4
and 5 unclassified OTUs were detected for NoDe, Ampli-
conNoise, Denoiser, Pre-cluster, and Acacia respectively.
For both aberrant types of OTUs NoDe showed the lowest
number compared to other tested denoising algorithms,
showing the beneficial influence of an accurate error
correction tool. Additionally, over-clustering was assessed
by checking the number of missed OTUs. Upon checking
the closely related species (two species of Staphylococcus
and three of Streptococcus) within MOCK1, we could see
that on average both Denoiser and AmpliconNoise suffer
from a missing OTU due to over-clustering, while NoDe,
Acacia an Pre-cluster do not have this problem.
In the quantitative analysis, we count the number

of OTUs with a redundancy below 0.1% (rare OTUs)
and the ones with a redundancy above 0.1% (redundant
OTUs). If we used the number of rare OTUs as an in-
dicator for a better error correction step (the lower the
better), the noise removal step was more accurate with
NoDe resulting in only 4 rare OTUs, while Amplicon-
Noise, Denoiser, Pre-cluster and Acacia had 11, 7, 22
and 21 rare OTUs respectively. Indeed, the number of rare
OTUs is – with exception of Denoiser – proportional to
the error rate produced. Although, as Denoiser is return-
ing the highest error rate yet resulting in a low number of
rare OTUs, an extra analysis was performed plotting the
expected percentage of a species versus the observed per-
centage after OTU clustering (Additional file 7: Figure S1).
From these plots it can be derived that the percentages of
noise removal approaches

Quantitative

ontaminants Others Approaches Rare-OTUs Redundant
OTUs

0 NoDe 4 18

5 AmpliconNoise 11 18

4 Denosier 7 17

0 Pre-cluster 22 24

0 Acacia 21 25

7 Non Denoised 35 17

displays the quantitative analysis. For the qualitative analysis, we counted the
sified as one of mock species but only classified until Class, Order or Family
orrect yet redundant classification), “contaminant OTUs” (classified as species
her). In the quantitative analysis, the number of OTUs with a redundancy
TUs) were counted.
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the different species in the MOCK communities obtained
using different denoising strategies correlate better with
the actual percentages with decreasing error rate. This is
largely reflected by the R-square goodness of fit value
derived for each denoising algorithm, resulting in the
highest value for NoDe (0.978), while observing the lowest
R-square value for Denoiser (0.928) showing the highest
error rate. The same conclusion could be drawn when
using the method as described in Bragg et al. [17] for
assessing the correspondence between the theoretical and
observed proportions of the species in the mock com-
munity. Also here, the average relative deviation of the ob-
served concentration of a species after analyzing the data
versus the theoretical concentration was the lowest for
NoDe, while Denoiser was one of the tools with the
highest deviation (Additional file 7: Figure S2).

Discussion
New sequencing technologies have revolutionized the
way microbial communities are characterized, but still
suffer from amplification and sequencing artifacts. In
this work we proposed a new denoising methodology
NoDe which is able to significantly reduce the sequen-
cing error rates at a low computational cost (CPU). In
general our method consists of a two-step approach.
First an artificial intelligence based classifier is trained to
identify those positions in 454 sequencing reads having a
high sequencing error probability. These positions are
identified via a set of features that are able to predict less
reliable sequencing regions. By marking those positions,
a quality-driven clustering of reads is made possible via
a modified version of the Pre-cluster command in
mothur in the second step.
When comparing our algorithm with other denoising

algorithms, we could show a significant improvement at
the level of error rate reduction (i.e. 37% to 73% more
errors that could be corrected compared with the second
best performing algorithm). As such, NoDe manages to
bring the error rate of 454 pyrosequencing reads to an
acceptable level in MOCK1 (0.0008 with strict trimming
and 0.0012 with basic trimming) while retaining a large
proportion of the sequencing data. The latter is reflected
in a long read length (>400 bp) which will result in a
more precise taxonomic classification [30]. Moreover,
when comparing the required computational resources
of NoDe with the second best denoising algorithm
(AmpliconNoise), more than an order of magnitude re-
duction in computational cost could be obtained. The
computational burden added by NoDe in the complete
preprocessing pipeline as implemented in mothur is very
limited, and largely compensated by the improvement in
the error rate (e.g. 0.0012 versus 0.0028 in MOCK1 after
basic trimming, and 0.0009 versus 0.0024 in MOCK2 for
NoDe and Pre-cluster respectively).
Additionally, we could show that denoising using NoDe
has a beneficial effect on the number of OTUs returned
after clustering, reaching almost a one-to-one relationship
between the number of OTUs and the number of species
that are present in our artificial community. Moreover this
process could be completed at a reasonably low computa-
tional cost. Such a close correlation between the number
of OTUs and the number of present bacteria could not be
achieved on the studied mock community using any of the
other error correcting algorithms. Moreover, also applying
the UPARSE pipeline without integrating the error correc-
tion step leads to a larger deviation from the one to one re-
lationship between OTUs and species present in the tested
communities. However, it should be noted that obtaining
such a one-to-one relationship with NoDe was obtained
using mock communities, and caution should be taken
when extrapolating those results to real biological samples.
In this work we focused on applying error correction

on 16S rRNA amplicon sequencing data. However, in
principle this method is applicable to all amplicon se-
quencing data obtained via the Roche 454 pyrosequen-
cing technology. As a proof of concept, we successfully
tested our algorithm on the sequencing data presented
in Gilles et al. [12] containing control DNA fragment
type I sequences as provided with 454 sequencing kits
(data not shown). Similarly, the NoDe implementation
is trained and benchmarked using different 454 GS-FLX
titanium sequencing data set. However a highly similar
approach (eventually by fine-tuning some parameters)
could also work with sequencing data obtained via the
recent GS-FLX+ technology, producing reads longer than
1000 bp. Moreover, the theoretical framework presented in
this paper can also be applied to other sequencing platforms
like Illumina HiSeq or MiSeq, an implementation which is
currently under development.

Conclusions
We have developed a new denoising algorithm NoDe that
produces lower error rates compared with other existing
denoising algorithms. Moreover, using the MOCK2 com-
munity we could show that error correcting algorithms
are a necessary and powerful step to come to biologically
relevant numbers of OTUs, which were hard to obtain
without any denoising step. NoDe is able to perform this
error correcting step in a computational realistic time
frame, without being a bottleneck in the preprocessing
pipeline.

Additional files

Additional file 1: MOCK2 composition. Table giving the targeted
concentrations for the MOCK2 community, and the exact concentrations
together with the number of paralogous genes in the 16S genes of the
reference genomes).

http://www.biomedcentral.com/content/supplementary/s12859-015-0520-5-s1.pdf


Mysara et al. BMC Bioinformatics  (2015) 16:88 Page 10 of 10
Additional file 2: Taxonomic classification of MOCK2. Excel sheet of
the detail taxonomic classification of each of the three MOCK2 replicates
after being treated with the different denoising approaches, together
with the taxonomic classification of the reference sequences for the
same region.

Additional file 3: Principal Component Analysis performed on the
training data. Information on the feature selection procedure, including
data on the Principal Component Analysis of the training data, and the
relative weight of each feature in the classifier.

Additional file 4: NoDe algorithm workflow. Schematic overview
showing the different steps of the NoDe algorithm.

Additional file 5: Schematic overview of the computational cost.
Schematic overview of the computational cost of the different denoising
algorithms.

Additional file 6: Illustration of the rates of different error types.
Illustration of the percentage of different error types (insertion, deletion
and substitution) after being treated by different denoising algorithms
using the MOCK1 dataset.

Additional file 7: Denoising algorithms effect on OTU level. Three
figures. A) the logarithmic percentage of each OTU against the expected
percentage, B) the relative deviation from the expected value for each
OTU. C) Information on extra analyses performed to assess the effect of
denoising algorithms on the OTU-clustering.
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