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Abstract

Background: Essentially all heterogeneous materials are dielectric, i.e., they are imperfect conductors that generally
display internal charge displacements that create dissipation and local charge accumulation at interfaces. Over the last
few years, the authors have focused on the development of an understanding of such behaviour in heterogeneous
functional materials for energy conversion and storage, called HeteroFoaM (www.HeteroFoaM.com). Using paradigm
problems, this work will indicate major directions for developing generally applicable methods for the multiphysics,
multi-scale design of heterogeneous functional materials.

Methods: The present paper outlines the foundation for developing validated predictive computational methods that
can be used in the design of multi-phase heterogeneous functional materials, or HeteroFoaM, as a genre of materials.
Such methods will be capable of designing not only the constituent materials and their interactions, but also the
morphology of the shape, size, surfaces and interfaces that define the heterogeneity and the resulting functional
response of the material system.

Results: Relationships to applications which drive this development are identified. A paradigm problem based on
dielectric response is formulated and discussed in context.

Conclusions: We report an approach that defines a methodology for designing not only the constituent material
properties and their interactions in a heterogeneous dielectric material system, but also the morphology of the shape,
size, surface, and interfaces that defines the heterogeneity and the resulting functional response of that system.
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Background
Heterogeneous materials
Essentially all heterogeneous materials are dielectric, i.e.,
they are imperfect conductors that generally display
internal charge displacements that create dissipation and
local charge accumulation at interfaces. Over the last
few years, the authors have focused on the development
of an understanding of such behaviour in heterogeneous
functional materials for energy conversion and storage,
called HeteroFoaM (www.HeteroFoaM.com). Using para-
digm problems, this work will indicate major directions
for developing generally applicable methods for the multi-
physics, multi-scale design of heterogeneous functional
materials.
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Heterogeneous functional materials are widely used in
our society as the materials systems that make batteries,
fuel cells, separation membranes, and many electrochem-
ical devices possible. They typically function by operating
on the fields applied to them to convert, transport, or
store energy from applied chemical, electrical, mechanical,
or thermal conditions. Figure 1 shows several examples of
the applications that drive the development of such mater-
ial systems. Figure 1(b) and (d) show particulate systems
as used in fuel cells and high temperature membrane
systems. Figure 1(b) shows an example of an anode of a
solid oxide fuel cell (SOFC) which consists (principally) of
particles that are electronic conductors, particles that are
ionic conductors, and a connected void phase that trans-
ports fuel to the SOFC for conversion into electricity. This
conversion requires that fuel gas be transported through
is an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
roperly credited.

https://core.ac.uk/display/192877098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.HeteroFoaM.com
http://www.HeteroFoaM.com
mailto:Reifsnider@sc.edu
http://creativecommons.org/licenses/by/4.0


Figure 1 Heterogeneous functional materials used in aerospace structures (a), solid oxide fuel cells (b), polymer membrane fuel cells
(c) and ceramic separation membranes for oxygen transport (d).
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the pore phase, adsorbed and oxidized to generate elec-
trons which are conducted away through the external
circuit (to drive an electric load), while oxygen ions are
transported by the second solid phase (from the cathode
side of the SOFC) to combine with the hydrogen (protons)
to form H2O, the product gas, which is transported away.
But the electrochemical reaction just described requires a
“triple point boundary” where the ionic and electronic
conductors are exposed to the hydrogen containing fuel
gas to enable the chemical reaction that drives the energy
conversion process. Triple point boundaries in Figure 1
are defined by the interfaces of the light and dark particles
that are exposed to the void phase.
Although similar discussions could be advanced for

the other microstructures shown in Figure 1, the SOFC
example exemplifies the problem addressed in the present
paper. The computational methods that we envisage
developing for the design of HeteroFoaM systems must
provide a foundation for the design of all of the local de-
tails of microstructure as well as support and represent
the controlling physics that drives the functionality of the
materials system. Several computational methods for these
general problems have already been developed and will be
discussed (Liu 2012; Liu 2011a; Liu & Reifsnider 2013;
Reifsnider et al. 2013). An extensive experimental program
has been conducted to validate our understanding at the
fundamental level (Baker et al. 2014). However, the charge
that accumulates at the material boundaries in such het-
erogeneous material mixtures is not yet fully described and
understood, and provides the focus of the present paper.
Methods
We consider a simple two-phase material with
morphology as shown in Figure 2 as a foundation
for describing our approach. We require that we be
able to determine the variation of sensible potential
at all points and boundaries caused by the applica-
tion of a vector electric field, which may be static
or harmonic. Figure 2 shows the direction of the
vector electric field. The paradigm problem depicted
in Figure 2(a) and (b) is one dimensional, i.e., the
material in our domain (and all applied conditions)
are constant to infinity in the vertical direction;
while Figure 2(c) depicts a two dimensional problem
with boundary conditions to be discussed in the
sequel.
For the purposes of this paper, we consider only the

conservation of charge: the charge displacement due
to dielectric polarization, D, generates the flux, ρ, so
that ρ =∇ ·D, where D is related to the applied field
by the permittivity of the kth phase, εκ according
to the relationship D = ϵo ∙ ϵk ∙ E (where ϵo is the per-
mittivity of vacuum), and the charge flux caused
by conduction, J, is related to the applied field, E, by
J = σ ∙ E where σ is the conductivity. Neglecting source
terms, we model the conservation of charge in the
form

∇ ∙ J þ dρ
dt

¼ 0; → ∇ ∙ J þ ∂D
∂t

� �
¼ 0: ð1Þ



Figure 2 Representative volume elements for the design of a dielectric heterogeneous material with two phases: (a) plate of infinite
extent in the vertical direction, vector electric field applied across boundaries in the horizontal direction to uniform interior material;
(b) same as case (a) except that a second phase material is added in the interior (shaded region); (c) 2-D domain with prescribed
boundary conditions on the top and bottom (e.g., symmetrical/repeating, insulating, etc.) and a uniform applied field in the
horizontal direction.
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Recognizing that the field, E, is the gradient of the
sensible local potential,V it follows that

∇ ∙ σ∇Vð Þ þ d
dt

∇ ��o∇V Þ ¼ 0:ð ð2Þ

If the applied field is harmonic, proportional to e− jωt,
then Eq. (2) takes on a form that is typically solved by
codes such as COMSOL (Ref ?), namely

−∇ ∙ d σ þ jωεε0ð Þ∇V− J c þ jωPð Þ½ � ¼ dQj; ð3Þ

where σ and ε are the conductivity and permittivity,
respectively, of a given phase, ω is the frequency of
oscillation of the electric field, ∇ is the gradient oper-
ator, j≡

ffiffiffiffiffiffi
−1

p
, P is the polarization, while Jc and Qj denote

source terms. In a series of previous publications, we
have applied equation (3) to some of the complex micro-
structures illustrated in Figure 1 at the conformal level,
and have included electrochemical effects on the result-
ing flux terms shown in that equation. However, in this
publication, we are only concerned with constructing a
predictive method for time dependent electric charge
distribution (including surface charge) in heterogeneous
materials at the fundamental level, and the validation of
such a method (Liu 2012; Liu 2011a; Liu & Reifsnider
2013; Reifsnider et al. 2013; Baker et al. 2014; Liu 2011b;
Raihan et al. 2014). Therefore, without loss of generality
for the present discussion, we neglect all source terms
and concern ourselves with the following simplified ver-
sion of Eq. (1):

−∇ ∙ d σ þ jωε0ð Þ∇V½ � ¼ 0; ð4Þ

where d denotes the thickness of our domain per-
pendicular to the diagram. There are many forms of
the material constants in Eq. (2), but generally they
may have both real (in phase) and imaginary (out of
phase) components. If we consider a transcendental
form for φ and take only the real part of the material
property coefficient in Eqs. (2) and (4), one could consider
the form

∇ ∙ d σ −ωε sin ωtð Þ∇Vð � ¼ 0;½ ð5Þ
or, for our physical discussion, taking (d = 1) and the
modulus of the transcendental term to be of order one,
we simply discuss the design equation

∇ ∙ σ−ωεð Þ∇V½ � ¼ 0: ð6Þ

Results and discussion: forward problem
These forms help us to define the local physics that
is to be specified in our design of the material sys-
tem, and help us to properly set a design analysis. Al-
though we are considering only a balance of charge
in the present case, the analysis can be extended to
other conservation equations (e.g., for mass, momentum,
and energy) to support a multiphysics design with a more
general discussion. However, the present discussion
will adequately define the methodology for more general
applications.
At the most general level, examination of the physical

domain in Figure 2 together with Eqs. (1) – (6) indicate
that for an applied vector electric field, the slope of the
potential in that direction multiplied by a material con-
stant which controls the charge displacement in that
material is constant, as we know and expect from elec-
trostatics. So in Figure 2(a) for a uniform material the
sensible voltage, V , is a straight line across the material.
If the material is an ideal conductor, the slope of that
line is simply the conductivity of the material, σ, for the
static case. However, if the material has some permittiv-
ity, the slope of V may be greater or smaller at various
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frequencies of the input field; at very high input frequen-
cies, the system acts like a parallel plate capacitor, as it
must, and the slope of the potential (V) across the plates
approaches zero.
Before leaving this simple case, we note that our

design is not only concerned with the variation of the
potential from point to point. More generally, we are
asked to design the microstructure to control the flux
and the polarization, i.e., to control the charge distribu-
tion in the heterogeneous system, for minimizing, e.g.,
the dissipation and losses in electrical devices or for
enhancing the storage of charge in energy storage
devices like capacitors or batteries. To accomplish such
goals, we must design the surface charge that defines the
polarizations when the electric field is applied to a
multi-phase material. In Figure 2(b), we introduce an
infinite plate in the gap between our applied voltages on
the left and right boundaries of our domain in Figure 2
(a). In Figure 2(b), the second phase has a higher con-
ductivity (and/or permittivity) than the “matrix” phase
around it, so that the slope of the potential across that
region is smaller than in the surrounding material. Such
a change also affects the surface charge in the system.
At the interface between two phases, the voltage must
remain continuous across the boundary, i.e.,Vi =Vo and

εo
dV o

dn
− εi

dV i

dn
¼ σ f ; ð7Þ

where σf denotes the free charge across an interface,
d/dn denotes the derivative along the normal to the
interface surface, while the superscripts “o” and “i”
denote the “outside” and “inside” material regions, re-
spectively. Since we are not concerned with free
charge in this paper, we can set σf = 0 in Eq. (7).
Using Gauss’s law to calculate the total interface charge
density across a heterogeneous material interface yields

−εo
dV o

dn
þ εi

dV i

dn
¼ σ t : ð8Þ

As we can see from Figure 2, and as is well known,
introducing a dielectric (or conductor) in the region
between the “parallel plates” of Figure 2(a) creates a
larger change in slope at the boundary and also a
surface charge at the interior interface, resulting in
an increase in charge storage and resulting capaci-
tance of the domain (Liu 2011b). But the extrapola-
tion of this simple reasoning to the design of more
general geometries and, eventually, more complex micro-
structures is not a straightforward extension of these
simple rationales.
The next simplest design situation is a two dimensional

heterogeneous domain in which the included phase is a
simple cylinder, as shown in Figure 2(c). In this case, the
domain is finite in the plane of observation, a square in
cross section for example, and all variables are constant
along the axis in and out of the plane of the figure. The
equations have the same formal appearance but the
material properties are discontinuous across the curved
boundary between the included phase (the “inside phase”
in our publications), and the matrix phase around it (the
“outside phase”). Gauss’ law indicates that the surface
charge on the included surface of the inclusion is propor-
tional to the local change in slope of the potential in the
direction of the surface normal, i.e., proportional to the
change in local field in the material in that direction. But
now the field direction is not constant w.r.t. the surface
normal direction, and therefore, the surface charge varies
around the circumference of the cylindrical inclusion. In
earlier calculations we have determined that distribution,
as shown for the example calculations in Figure 3 (Liu
2012; Liu 2011a; Liu & Reifsnider 2013; Reifsnider et al.
2013). Moreover, we have confirmed that the predicted
potential distributions for circular and elliptical second
phase inclusions (for various orientations to the vector
electric field direction) are correct from direct measure-
ments with an atomic force microscope (Baker et al. 2014).
Our data confirm that for highly conductive inclusion in a
poorly conductive, high permittivity matrix (epoxy in this
case), the time dependent response shown in Figure 4
is observed.
If we were to use this analysis approach for design, we

could, in principle, “run the forward problem” many
times, for many candidate morphologies, and invoke a
variety of optimization methods to determine “what the
picture should look like”. Although for simple single-
physics problems such an approach might be feasible;
such an approach for a multi-physics analysis would be
akin to the many body problem (which often involves
additional nonlinear response associated with coupling,
etc.), which would quickly become computationally in-
tractable and unpredictable.

Results and discussion: design for response
The “direct” or “forward” problem” solves the “parameter-
to-output” mapping that describes the “cause-to-effect”
relationship in the respective physical process. Taking
Eq. (3), for example, the “forward (or direct) problem”
consists in solving it subject to appropriate boundary
conditions to obtain the solution V(x), which is in turn
used to compute the model responses r[V(x); α(x)],
where α(x) ≡ [d(x), σ(x), ω, ε(x), Jc(x), P(x),Qj(x)] denotes
the vector of spatially-(x -)dependent model parameters.
The necessary and sufficient conditions for the direct
problem to be well-posed were formulated by Hadamard
(1865–1963), and can be stated as follows: (i) For each
source, Qj, there exists a solution V(x); (ii) The solution
V(x) is unique; (iii) The dependence of V(x) upon “the



Figure 3 Calculated charge distribution around the circum-ference
of a circular inclusion as a function of angle to the direction of
the applied vector electric field.
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data” α(x) and boundary conditions is continuous. A
problem that is not well-posed is called ill-posed. In
general, two problems are called inverses of one another
if the formulation of each involves all or part of the
solution of the other. Several inverse problems can be
formulated, as follows: (a) The classical “inverse source
identification problem”: given the responses r, the
known boundary conditions, and the parameters α(x),
determine the sources Qj; (b) “Parameter identification
problem”: given the responses r and the sources Qj,
determine the parameters α(x); (c) When the domain
contains inhomogeneous materials, and the responses r
are given, identify internal boundaries between the
Figure 4 Time-variation of distribution of charge computed with
COMSOL using Eq. (4).
inhomogeneous materials, identify the description of
the system’s structure (“structural identification”), etc.
The existence of a solution for an inverse problem

is, in most cases, secured by defining the data space
to be the set of solutions to the direct problem. This
approach may fail if the data is incomplete, perturbed
or noisy. Problems involving differential operators, for
example, are notoriously ill-posed, because the differ-
entiation operator is not continuous with respect to
any physically meaningful observation topology. If the
uniqueness of a solution cannot de secured from the
given data, additional data and/or a priori knowledge
about the solution need to be used to further restrict
the set of admissible solutions. Of the three Hadamard
requirements, stability is the most difficult to ensure
and verify. If an inverse problem fails to be stable,
then small round-off errors or noise in the data will
amplify to a degree that renders a computed solution
useless.
Designing “HeteroFoaM” materials is fundamentally

an inverse problem. The difficulties that must be over-
come when developing validated predictive computa-
tional methods for designing multi-phase heterogeneous
functional materials (HeteroFoaM) can be illustrated by
considering the “inverse source identification problem”
for a one-dimensional domain extending from x = 0 to
x = d (considered to be infinite in the y- and z-directions),
and having perfectly known constant material properties,
in which the potential,V(x), is driven by a spatially varying
source, Q(x) ≡ dQj. For such an idealized material, Eq. (3)
takes on the simple form

−Ad2V xð Þ=dx2 ¼ Q xð Þ; 0 < x < d;

with A≡d σ þ jωεε0ð Þ; Q xð Þ≡dQj:

ð9Þ

The “inverse source determination problem” is to
determine the source Q(x) from measurements of the
potential, V(x). A measurement would be recorded as a
“detector” or “instrument response” that can be repre-
sented in the form

M≡
Zd

0

V xð ÞRd xð Þdx; ð10Þ

where Rd(x) represents the detector’s response func-
tion. For a known (measured) response value M, it is
evident that Eq. (10) represents a Fredholm equation
of the first kind for the determination of the
spatially-dependent voltage, V(x), which cannot be
solved as it stands to produce a unique solution V(x)!
Moreover, Fredholm equations of the first kind are
notoriously ill-posed, since the integration over the
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kernel [in this case, Rd(x)] of the Fredholm equation
has a “smoothing” effect on the high-frequency com-
ponents, and may include cusps, and edges in V(x).
This effect stems from the well-known Riemann-
Lebesgue lemma, which for the purposes of this work
can be written in the form

lim
ω→∞

Zb

a

f xð Þejωxdx→0; with f xð Þ ¼ piecewise continuous:

ð11Þ

It can therefore be expected that the (inverse) deter-
mination of V(x) using the Fredholm Eq. (10) will amp-
lify high frequency components (such as those stemming
from measurement errors) in the measured “detector
response” M.
In practice, the Fredholm equation (10) must be dis-

cretized in order to determine V(x). There are two main
classes of methods for discretizing integral equations,
namely quadrature methods and Galerkin (which include
collocation, spectral, and pseudo-spectral) methods. Con-
sider, for simplicity, that

Rd xð Þ ¼ Cdδ x−xnð Þ ð12Þ
where Cd is an appropriate “measurement conversion
function”, so that the detector provides, at any spatial
location xn, a measurement of the form

Mn≡CdV xnð Þ; n ¼ 0; 1;…;N : ð13Þ
On the other hand, in order for Eq. (9) to make phys-

ical sense, it is clear that the function V(x) must be
square integrable, piecewise continuous, and of bounded
variation (having at most a finite set of discontinuities of
finite magnitudes within the slab). Therefore, the func-
tion V(x) must admit a spectral (e.g., Fourier) repre-
sentation, and the choice of basis-functions can be
conveniently adapted to boundary conditions and pos-
sible periodicities and/or symmetries inherent in the
problem under consideration. For our illustrative inverse
problem, we expect to be able to measure V(x) at least
at the left and right boundaries of the slab, i.e., at x = 0,
and at x = d, respectively, obtaining two values,
which will be conveniently denoted as M0 ≡CdV(0) and
MN =CdV(xN), xN ≡ d, respectively. From the point of view
of the forward problem, these measurements would math-
ematically provide (two) Dirichlet boundary conditions for
V(x), namely

V 0ð Þ ¼ Cd=M0; V xNð Þ ¼ Cd=MN ; ð14Þ
to complement the differential equation (9), thus render-
ing the forward problem [namely, to determine the
function V(x) when the source Q(x) is known] to be per-
fectly well-posed in the sense of Hadamard. Actually, the
unique and exact solution, Vexact(x), of the forward prob-
lem consisting of Eqs. (9) and (14), is

V exact xð Þ ¼
X∞
n¼1

cexactn sin
nπx
d

; ð15Þ

with the coefficients cexactn given by the expression

cexactn ≡
nπ=d −1ð Þnþ1 V xNð Þ þ V 0ð Þ� �þ qn=A

nπ=dð Þ2 ;

qn≡
Z d

0
Q xð Þ nπx

d
dx:

ð16Þ

Returning now to the inverse problem at hand, it be-
comes clear that the spectral representation shown in
Eq. (15) underscores that fact the determination of Vexact

(x) would require infinitely many measurements, Mn, in
order to determine all of the coefficients cexactn . But it is
practically impossible to perform infinitely many mea-
surements. In practice, therefore, the determination of
the first J coefficients (c1,…, cJ) necessitates J mea-
surements of V(x) at locations (x1,…, xJ), in order to
construct the following system of equations (for determin-
ing the coefficients c1,…, cJ):

SC ¼ M; S≡
sin

πx1
d

… sin
Jπx1
d

⋮ ⋱ ⋮

sin
πxJ
d

⋯ sin
JπxJ
d

0
BB@

1
CCA;

C≡
c1
⋮
cJ

0
@

1
A; M≡

M1

⋮
MJ

0
@

1
A:

ð17Þ

Solving the above system yields the coefficients (c1,…, cJ)
as the solution of the equation

C ¼ S−1R: ð18Þ

It is clear from the foregoing considerations that the co-
efficients cn cannot possibly be determined perfectly, for at
least the following three reasons: (i) it is impossible to per-
form infinitely many measurements; (ii) the measurements
Mj cannot be performed perfectly, so they will be afflicted
by measurement errors; and (iii) inverting the matrix S
will introduce additional numerical errors. Therefore, the
reconstructed coefficients cn will be affected by errors,
which can be considered to be additive, of the form

cn ¼ cexactn þ εn: ð19Þ
where cexactn denotes the exact, but unknown nth-coeffi-
cient, while εn denotes the corresponding error. Hence,
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the reconstructed potential, denoted here as Vrec(x), will
have the form

Vrec xð Þ ¼
XJ

n¼1

cexactn sin
nπx
d

þ
XJ

n¼1

εn sin
nπx
d

: ð20Þ

The above representation of the potential clearly indi-
cates that its reconstruction from measurements intro-
duces errors over the entire spatial-frequency spectrum. It
is especially important to note that the highest-frequency
spatial errors cannot be controlled from the “measure-
ment side” since they arise precisely because of the trun-
cation to finitely many terms, which actually stems from
the inability to perform infinitely many measurements.
The effects of the errors displayed in Eq. (19) on

attempting to determine the source Q(x) from Eq. (9) can
now be displayed explicitly, as follows. If the exact expres-
sion, Vexact(x), given in Eq. (15) were available, if the
model represented by Eq. (9) were perfect, and if the
boundary values given in Eq. (14) were perfectly well
known, then the exact expression for the source,
Qexact(x), could be obtained by replacing Eq. (15)
into Eq. (9). The expression thus obtained for Qexact(x)
would be

Qexact xð Þ ¼ A
X∞
n¼1

cexactn
nπ
d

� �2
sin

nπx
d

; ð21Þ

where the exact coefficients cexactn would decay suffi-
ciently fast, as functions of n, to ensure the convergence
of the infinite series on the right side of Eq. (20). This
property can be readily verified by using Eq. (16) to
compute the exact coefficients, cexactn , that would result
from various particular forms of the source Qexact(x).
However, the exact potential Vexact(x), is unavailable!

Only the reconstructed potential,Vrec(x), given in Eq. (20)
is available. Replacing this expression into Eq. (9) yields

A
XJ

n¼1

cexactn
nπ
d

� �2
sin

nπx
d

þ A
XJ

n¼1

εn
nπ
d

� �2
sin

jπx
d

¼ Qexact xð Þ þ Qerror x; Jð Þ;
ð22Þ

where

Qerror x; Jð Þ≡A
XJ

n¼1

εn
nπ
d

� �2
sin

nπx
d

−A
X∞
n¼Jþ1

cexn
nπ
d

� �2
sin

nπx
d

:

ð23Þ
Even though the exact values of the coefficients εj are

unknown, they are nevertheless some numerical con-
stants, and the crucial fact is that they do not depend on
n. It therefore follows that, in the limit of large J, the
second sum in Eq. (23) will vanish, but the first sum will
diverge to infinity, so that

lim
J→∞

Qerror x; Jð Þ→∞: ð24Þ

The above behavior of Qerror(x, J) clearly highlights the
destructive effect of high frequency errors when attempting
to determine the source from flux measurements by using
the forward Eq. (3): high-frequency error components aris-
ing from the reconstruction of the flux from measurements
cause a large deviation between the true source and the
source that would be reconstructed from flux measure-
ments. Furthermore, this discrepancy between the true and
the reconstructed source is the larger the higher the fre-
quency of the error component in the reconstructed po-
tential from measurements. The fundamental reason
for this behavior is that the non-compact Laplace op-
erator the “amplifies” the high-frequency error compo-
nents if the forward equation is used to reconstruct the
source, Q(x), from measurements of the potential,V(x).
The procedures used to solve approximately an ill-

posed problem such as that described above are called
regularization procedures (methods), after the systematic
works by Philipps (Phillips 1962) and, who obtained
“optimal solutions” by solving the minimization prob-
lem for a “cost functional”, F(x), containing user-defined
parameters and meant to minimize a user-defined
“error”; usually, this minimization problem takes on the
form

Min
x

F xð Þ½ �; F xð Þ≡ Ax−dj j2 þ β x−x0k k2 ð25Þ

where the Lagrange-like multiplier β is a “free param-
eter” meant to accomplish a “user-defined compromise”
between two requirements: (i) to satisfy the model equa-
tion Ax − d = 0, and (ii) to be close to the a priori know-
ledge x0. A rich literature (too numerous to cite here) of
variations on the Tichonov-Philips regularization pro-
cedure has since emerged; their common characteristic
is the fundamental dependence of the “regularized solu-
tion” on “user-tunable” parameters, like β in Eq. (25).
In an attempt to eliminate the appearance of “user-tun-

able parameters”, Cacuci and co-workers (Barhen et al.
1980) combined concepts from information theory and
Bayes’ theorem to calibrate (“adjust”) simultaneously sys-
tem (model) responses and parameters, in order to obtain
best-estimate values for both the responses and system
parameter, with reduced uncertainties, with applications to
reactor physics and design. Several years later, these
methods (Barhen et al. 1980; Barhen et al. 1982) were re-
discovered by workers in other fields, e.g., earth and atmos-
pheric sciences (Barhen et al. 1982), mechanics of materials
(Bui 1994), environmental sciences (Faragó et al. 2014), etc.
We are given a functional result and asked to design the
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system to make that happen. For large-scale complex
systems, it is practically impossible to run all possible
cases in the “forward” direction (even with multivariate
optimization algorithms) or to solve the inverse problem.
Adjoint methods, which stem from Lagrange’s method of
“integration by parts” (~1755), and were set on a rigorous
mathematical foundation by Hilbert and Banach, were used
(already in the 1940s) for solving efficiently linear problems
in nuclear and reactor physics, and (a decade later) optimal
control, by avoiding the need to solve repeatedly forward or
inverse problems with altered model parameter values.
However, these early adjoint methods were applicable solely
to linear problems, since nonlinear operators do not admit
“adjoints”, as is universally known. Cacuci and co-workers
(Cacuci et al. 1980a; Cacuci et al. 1980b) initiated the appli-
cation of adjoint methods for computing sensitivities
of simple responses in simple nonlinear problems. In a
remarkable breakthrough, Cacuci (Cacuci 1981a; Cacuci
1981b; Cacuci 1988) developed in 1981 a mathematic-
ally-rigorous “adjoint sensitivity analysis” theory applic-
able to completely general nonlinear systems. Since the
late 1980s, adjoint methods enjoyed a remarkably
fast and wide-spread field of applications, from inter-
pretation of seismic reflection data (Yedlin & Pawlink
2011), to airfoil design (e.g., the Boeing 747 wing,
(Kress et al. 1991)), to numerical error control (Kress et al.
1991).
In recent years, Cacuci and co-workers (Cacuci 2003;

Cacuci et al. 2005; Cacuci and Mihaela Ionescu-Bujor 2010;
Cacuci et al. 2014; Cacuci 2014a) have embarked on an
effort to formulate a new conceptual framework that unifies
Figure 5 Calculated charge distribution around the circum-ference of a c
applied vector electric field.
the currently disparate fields of “inverse problems”, data as-
similation, model calibration and validation, by developing
a unified framework based on physics-driven mathematical
procedures founded on the maximum entropy principle,
dispensing with the need for “minimizing user-defined
cost functionals” (which characterizes virtually all of the
methods currently in use). This fairly self-explanatory
framework is depicted in Figure 5, and aims at developing
validated predictive computational methods that can be
used in the design of multi-phase HeteroFoaM materials.
Such methods will be capable of designing not only the
constituent materials and their interactions, but also
the morphology of the shape, size, surfaces and interfaces
that define the heterogeneity and the resulting functional
response of the material system. Last but not least,
this framework is envisaged to provide the foundation
for developing game-changing high-order (to at least
fourth-order, including skewness- and kurtosis-like
moments of the predicted distributions for design
parameters and responses of interest) predictive direct
and inverse modelling capabilities, empowered by a
new high-order adjoint sensitivity analysis procedure
(HO-ASAP) for computing exactly and extremely effi-
ciently (“smoking fast”) response sensitivities of arbi-
trary order to any and all parameters in large-scale
coupled multi-physics models. The high efficiency of
the second-order adjoint sensitivity analysis procedure
(SO-ASAP) has been illustrated (Cacuci 2014b) via an
application to a paradigm particle diffusion problem;
a series of papers documenting the HO-ASAP are currently
in preparation.
ircular inclusion as a function of angle to the direction of the
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Conclusions
The present paper has outlined a foundation for devel-
oping validated predictive computational methods that
can be used in the design of a genre of multi-phase het-
erogeneous functional materials that we call HeteroFoaM.
We have defined and discussed analysis methods that will
be capable of designing not only the constituent mate-
rials and their interactions, but also the morphology of
the shape, size, surfaces and interfaces that define the
heterogeneity and the resulting functional response of
the functional material system. We have also discussed
applications which drive this development. The problem
of designing a heterogeneous functional material for
specified dielectric performance, specifically addressing
the role of space charge at heterogeneous interfaces,
was presented as an example of the multi-scale func-
tional behaviour that drives this approach and the meth-
odology discussed.
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