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Abstract
We introduce an iterative algorithm for solving the multiple-sets split feasibility
problem with splitting self-adaptive step size. This step size is calculated directly from
the iteration process without need to know the spectral norm of linear operators. We
also generalize the chosen step size to a relaxed iterative algorithm. Theoretical
convergence is proved in an infinite dimensional Hilbert space. Some numerical
experiments are presented to verify the effectiveness of our proposed methods.
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1 Introduction
Linear inverse problems often arise in many real-world application problems such as sig-
nal and image processing, medical image reconstruction, etc. In , Censor et al. []
first introduced the multiple-sets split feasibility problem, which was motivated by the in-
verse problem of intensity modulated radiation therapy (IMRT). The multiple-sets split
feasibility problem (MSSFP for short) required to find a point closest to the intersection
of a family of closed convex sets in one space such that its image under a linear transfor-
mation A will be closest to the intersection of another family of closed convex sets in the
image space. The MSSFP includes the two-set split feasibility problem as its special case,
which was originally proposed by Censor and Elfving []. The two-set split feasibility prob-
lem is usually called the split feasibility problem (SFP) for simple. Byrne [, ] proposed
the so-called CQ algorithm to solve the SFP. It has been proved that the CQ algorithm
is equivalent to the gradient projection algorithms for solving a constrained optimization
problem, see, for example, Xu [].

The CQ algorithm used a fixed step size, which relies on the spectral norm of the linear
operator A. Qu and Xiu [] improved it by using the Armijo-like search method to solve
the SFP, for which there is no need to know the prior norm of A. They also used the Armijo-
like search way to a relaxed CQ algorithm. The relaxed CQ algorithm with constant step
size was introduced by Yang []. It was used to solve the SFP, where the closed convex
sets are level sets of convex functions. In comparison with the CQ algorithm, the relaxed
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CQ algorithm used orthogonal projections onto half-spaces instead of projections onto
the original convex sets. Since projections onto half-spaces can be directly calculated, it
reduced a lot of work for computing projections. Lopez et al. [] introduced a new self-
adaptive step size to improve the CQ and the relaxed CQ algorithm, which also did not
require to know the norm of A. This step size is a modification of Yang []. They proved the
convergence of an iterative sequence with the new self-adaptive step size and weakened
the assumptions used by Yang [].

Since the intersection of a family of closed convex sets is also a closed convex set, the
MSSFP could be viewed as the SFP as well. However, the iterative projection methods for
solving the SFP cannot be directly transferred to solve the MSSFP because one needs to
calculate the projection of the intersection of a family of sets instead of a single set. To
solve the MSSFP, Censor et al. [] defined a function (see ()) to measure the distance of a
point to all sets and proposed a gradient projection algorithm. In [], Xu transferred the
MSSFP to finding a common fixed point of a finite family of averaged mappings. Then,
he proposed several iterative algorithms to solve the MSSFP, which was inspired by fixed
point searching methods. Note that these iterative algorithms also used a fixed step size.
To overcome this shortage, Zhang et al. [] proposed a self-adaptive projection method
for solving the MSSFP, which was inspired by the work of He et al. []. Zhao and Yang
[] generalized the method used in [] to solve the MSSFP and also gave a self-adaptive
projection method. These iterative algorithms have a common feature that an inner iter-
ation number should be chosen before the updated iterative sequence. See also [–].
Recently, Zhao and Yang [] introduced a simple self-adaptive step size way to solve the
MSSFP. The new step size is computed by the objective function and its gradient informa-
tion without an inner iteration number. Inspired by this idea, Wen et al. [] also suggested
a self-adaptive step size to improve the results of Xu []. They proposed a cyclic and si-
multaneous iterative sequence with self-adaptive step size to solve the MSSFP.

In this paper, we propose a new iterative algorithm for solving the multiple-sets split
feasibility problem. The new iterative algorithm is combined with a splitting self-adaptive
step size. Thus, we need not know the prior norm of the linear operator. Further, we give
a relaxed version of this iterative algorithm to solve the MSSFP where the closed convex
sets are level sets of convex functions. The theoretical convergence results are proved in
infinite dimensional Hilbert spaces. To verify the effectiveness of our proposed methods,
we also give some numerical experiments.

The paper is organized as follows. In the next section, we introduce some definitions
and lemmas, which will be used in the following. In Section , we propose an iterative al-
gorithm with splitting self-adaptive step size and prove its convergence. Further, a relaxed
iterative algorithm with splitting self-adaptive step size will be proposed in Section . In
Section , we present some preliminary numerical experiments to test these proposed
methods and compare with other methods. We give some conclusions in the final section.

2 Preliminaries
Let H be a real Hilbert space, 〈·, ·〉 and ‖·‖ be the inner product and the norm, respectively,
in H . We adopt the following notations: � denotes the solution set of the MSSFP; xk → x
(xk ⇀ x) represents {xk} converging strongly (weakly) to x, respectively; ωw(xk) means the
weak cluster of the sequence {xk}.

In this section, we introduce some definitions and basic results.
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Definition . ([]) Let T be a mapping from C ⊆ H into H . Then
(i) T is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;

(ii) T is said to be firmly nonexpansive if 〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈ C;
(iii) T is said to be an averaged mapping if there exist a nonexpansive mapping S and a

real number t ∈ (, ) satisfying T = ( – t)I + tS, where I represents the identity
mapping.

It is easily seen that a firmly nonexpansive mapping is nonexpansive due to the Cauchy-
Schwarz inequality. Recall that the orthogonal projection PC from H onto a nonempty
closed convex subset C ⊂ H is defined by the following:

PC(x) = arg min
y∈C

‖x – y‖.

The orthogonal projection has the following well-known properties.

Lemma . ([]) Let C be a nonempty closed and convex set in H , then for all x, y ∈ H
and z ∈ C,

(i) 〈x – PCx, z – PCx〉 ≤ ;
(ii) ‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉;

(iii) ‖PCx – z‖ ≤ ‖x – z‖ – ‖PCx – x‖.

We see from Lemma . that the orthogonal projection mapping is firmly nonexpansive
and nonexpansive. Moreover, it is not hard to show that I – PC is also firmly nonexpansive
and nonexpansive.

The mathematical form of the MSSFP can be formulated as finding a point x∗ with the
property

x∗ ∈
t⋂

i=

Ci such that Ax∗ ∈
r⋂

j=

Qj, ()

where t, r ≥  are nonnegative integers, {Ci}t
i= ⊆ H, {Qj}r

j= ⊆ H are closed convex sets
of Hilbert spaces H and H, respectively, and A : H → H is a bounded linear operator.
Letting t = r = , then the MSSFP reduces to the split feasibility problem (SFP) as follows:

Find a point x∗ ∈ C such that Ax∗ ∈ Q, ()

where C ⊆ H and Q ⊆ H are nonempty, closed and convex sets, respectively.
Censor et al. [] first defined a function g(x) to measure the distance of a point to all sets

g(x) :=



t∑

i=

αi
∥∥x – PCi (x)

∥∥ +



r∑

j=

βj
∥∥Ax – PQj (Ax)

∥∥, ()

where αi > , βj >  for all i and j, respectively, and
∑t

i= αi +
∑r

j= βj = . They proved the
following results.

Proposition . ([]) Suppose that the solution set of the MSSFP is nonempty, then the
following statements hold:
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(i) x∗ is a solution of the MSSFP iff g(x∗) = ;
(ii) the proximity function g(x) is convex and differentiable with gradient

∇g(x) =
t∑

i=

αi(x – PCi x) +
r∑

j=

βjA∗(I – PQj )(Ax), ()

and the Lipschitz constant of ∇g(x) is L =
∑t

i= αi + ‖A‖ ∑r
j= βj.

Fejér monotone sequences are very useful in the analysis of optimization iterative algo-
rithms.

Definition . ([]) Let C be a nonempty subset of H and let {xk} be a sequence in H .
Then {xk} is Fejér monotone with respect to C if

∥∥xk+ – z
∥∥ ≤ ∥∥xk – z

∥∥, ∀z ∈ C.

It is easy to see that a Fejér monotone sequence {xk} is bounded and the limit
limk→∞ ‖xk – z‖ exists.

The demiclosedness principle for nonexpansive mappings is well known in the Hilbert
spaces.

Lemma . (Demiclosedness principle of nonexpansive mappings []) Let C be a closed
convex subset of H , T : C → C be a nonexpansive mapping with nonempty fixed point sets.
If {xk} is a sequence in C converging weakly to x and {(I – T)xk} converges strongly to y, then
(I – T)x = y. In particular, if y = , then x = Tx.

The following lemma is essential in establishing theoretical convergence results for some
iteration methods.

Lemma . ([]) Let K be a nonempty, closed and convex subset of a Hilbert space H . Let
{xk} be a sequence in H satisfying the properties:

(i) limk→∞ ‖xk – x‖ exists for each x ∈ K ;
(ii) ωw(xk) ⊂ K .
Then {xk} converges weakly to a point in K .

We will use convex functions to define the closed convex sets {Ci}t
i= and {Qj}r

j=. Recall
that a function ϕ : H → R is said to be convex if

ϕ
(
λx + ( – λ)y

) ≤ λϕ(x) + ( – λ)ϕ(y) ()

for all λ ∈ [, ] and for all x, y ∈ H . Let x ∈ H . We say that ϕ is subdifferentiable at x if
there exists ξ ∈ H such that

ϕ(y) ≥ ϕ(x) + 〈ξ , y – x〉 for all y ∈ H . ()

The subdifferential of ϕ at x is denoted by ∂ϕ(x) which consists of all ξ satisfying rela-
tion ().
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The following lemma provides an important boundedness property of the subdifferen-
tial in finite-dimensional Hilbert spaces.

Lemma . ([]) Suppose that f : Rn → R is a convex function, then it is subdifferentiable
everywhere and its subdifferentials are uniformly bounded on any bounded subset of Rn.

3 An iterative algorithm with splitting self-adaptive step size for solving the
MSSFP

In this section, we propose a new iteration method with splitting self-adaptive step size
for solving the MSSFP.

Theorem . Assume that MSSFP () is consistent (i.e., the solution set � is nonempty).
For any initial x ∈ H, the iteration scheme {xk} with splitting self-adaptive step size is
defined by the following:

xk+ = xk +
ρk


∑t

i= αi‖PCi (xk) – xk‖

‖∑t
i= αi(PCi (xk) – xk)‖

t∑

i=

αi
(
PCi

(
xk) – xk)

+
ρk


∑r

j= βj‖PQj (Axk) – Axk‖

‖∑r
j= βjA∗(PQj (Axk) – Axk)‖

r∑

j=

βjA∗(PQj

(
Axk) – Axk), ()

where  < ρ ≤ ρk
 ≤ ρ < ,  < ρ ≤ ρk

 ≤ ρ < , and the parameters {αi}t
i= >  and

{βj}r
j= > , then the iterative sequence {xk} converges weakly to a solution of the MSSFP.

Proof In order to facilitate our proof, we introduce some notations first. Let dk
Ci

= PCi (xk)–
xk and dk

Qj
= PQj (Axk) – Axk for i = , , . . . , t and j = , , . . . , r, respectively. Define

λk
 =

ρk

∑t

i= αi‖dk
Ci

‖

‖∑t
i= αidk

Ci
‖

and λk
 =

ρk

∑r

j= βj‖dk
Qj

‖

‖∑r
j= βjA∗dk

Qj
‖

.

Then the iterative sequence {xk} in () can be rewritten as follows:

xk+ = xk + λk


t∑

i=

αidk
Ci

+ λk


r∑

j=

βjA∗dk
Qj

. ()

Let p ∈ � (the set of � is the solution set of MSSFP ()). By (), we have

∥∥xk+ – p
∥∥ =

∥∥∥∥∥xk + λk


t∑

i=

αidk
Ci

+ λk


r∑

j=

βjA∗dk
Qj

– p

∥∥∥∥∥



=
∥∥xk – p

∥∥ + 

〈
xk – p,λk



t∑

i=

αidk
Ci

〉

+ 

〈
xk – p,λk



r∑

j=

βjA∗dk
Qj

〉
+

∥∥∥∥∥λk


t∑

i=

αidk
Ci

∥∥∥∥∥



+

∥∥∥∥∥λk


r∑

j=

βjA∗dk
Qj

∥∥∥∥∥



+ 

〈
λk



t∑

i=

αidk
Ci

,λk


r∑

j=

βjA∗dk
Qj

〉
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≤ ∥∥xk – p
∥∥ + 

〈
xk – p,λk



t∑

i=

αidk
Ci

〉

+ 

〈
xk – p,λk



r∑

j=

βjA∗dk
Qj

〉
+ 

∥∥∥∥∥λk


t∑

i=

αidk
Ci

∥∥∥∥∥



+ 

∥∥∥∥∥λk


r∑

j=

βjA∗dk
Qj

∥∥∥∥∥



. ()

In order to prove that the iterative sequence {xk} is Fejér-monotone with respect to �, we
make the following estimations, which are based on the property of projection operator
(Lemma .(i)),

〈
xk – p,λk



t∑

i=

αidk
Ci

〉
= λk



t∑

i=

αi
〈
xk – p, dk

Ci

〉

= λk


t∑

i=

αi
(〈

xk – PCi

(
xk), dk

Ci

〉
+

〈
PCi

(
xk) – p, dk

Ci

〉)

≤ –λk


t∑

i=

αi
∥∥dk

Ci

∥∥ ()

and

〈
xk – p,λk



r∑

j=

βjA∗dk
Qj

〉

= λk


r∑

j=

βj
〈
Axk – Ap, dk

Qj

〉

= λk


r∑

j=

βj
(〈

Axk – PQj

(
Axk), dk

Qj

〉
+

〈
PQj

(
Axk) – Ap, dk

Qj

〉)

≤ –λk


r∑

j=

βj
∥∥dk

Qj

∥∥. ()

Inserting () and () into () yields

∥∥xk+ – p
∥∥ ≤ ∥∥xk – p

∥∥ – λk


t∑

i=

αi
∥∥dk

Ci

∥∥ – λk


r∑

j=

βj
∥∥dk

Qj

∥∥

+ 

∥∥∥∥∥λk


t∑

i=

αidk
Ci

∥∥∥∥∥



+ 

∥∥∥∥∥λk


r∑

j=

βjA∗dk
Qj

∥∥∥∥∥



=
∥∥xk – p

∥∥ – ρk

(
 – ρk


) (

∑t
i= αi‖dk

Ci
‖)

‖∑t
i= αidk

Ci
‖

– ρk

(
 – ρk


) (

∑r
j= βj‖dk

Qj
‖)

‖∑r
j= βjA∗dk

Qj
‖

. ()
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Since  < ρ ≤ ρk
 ≤ ρ <  and  < ρ ≤ ρk

 ≤ ρ < , it follows from () that

∥∥xk+ – p
∥∥ ≤ ∥∥xk – p

∥∥.

Therefore, the iterative sequence {xk} is Fejér-monotone with respect to p ∈ �. As a con-
sequence, limk→∞ ‖xk – p‖ exists.

Noticing that ρk
 ∈ [ρ,ρ] ⊂ (, ), we can obtain from () that

ρ( – ρ)
(
∑t

i= αi‖dk
Ci

‖)

‖∑t
i= αidk

Ci
‖

≤ ρk

(
 – ρk


) (

∑t
i= αi‖dk

Ci
‖)

‖∑t
i= αidk

Ci
‖

≤ ∥∥xk – p
∥∥ –

∥∥xk+ – p
∥∥. ()

This implies that

lim
k→∞

(
∑t

i= αi‖dk
Ci

‖)

‖∑t
i= αidk

Ci
‖

= . ()

Since dk
Ci

is -Lipschitz continuous and the sequence {xk} is bounded, there exists a con-
stant M >  such that ‖∑t

i= αidk
Ci

‖ ≤ M. Then we can deduce from () that

lim
k→∞

t∑

i=

αi
∥∥dk

Ci

∥∥ = .

Hence, for i = , , . . . , t, we obtain

lim
k→∞

∥∥dk
Ci

∥∥ = . ()

Similarly, we can prove that

lim
k→∞

∥∥dk
Qj

∥∥ =  ()

for any j = , , . . . , r.
Next, we show that the weak limit points of {xk} belong to �, i.e., ωw(xk) ⊂ �. Indeed,

since the iterative sequence {xk} is bounded, then ωw(xk) �= ∅. Let x̂ ∈ ωw(xk) and {xkn} be
a subsequence of {xk} which converges weakly to x̂. Using the demiclosedness principle of
nonexpansive mappings, we can conclude from () and () that

x̂ ∈
t⋂

i=

Ci and Ax̂ ∈
r⋂

j=

Qj,

i.e., x̂ ∈ �. So ωw(xk) ⊂ �.
Since conditions (i) and (ii) of Lemma . are satisfied, by Lemma . we can get that

the iterative sequence {xk} converges weakly to a solution of MSSFP (). This completes
the proof. �

Let r = t =  in Theorem ., we obtain a new iteration process for solving the SFP.
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Corollary . Assume that SFP () is consistent. For any initial x ∈ H, the iteration
scheme {xk} with splitting self-adaptive step size is defined by the following:

xk+ = xk + ρk

(
PC

(
xk) – xk)

+ ρk


‖PQ(Axk) – Axk‖

‖A∗(PQ(Axk) – Axk)‖ A∗(PQ
(
Axk) – Axk), ()

where  < ρ ≤ ρk
 ≤ ρ < ,  < ρ ≤ ρk

 ≤ ρ < , then the iterative sequence {xk} converges
weakly to a solution of the SFP.

4 A relaxed iterative algorithm with splitting self-adaptive step size for solving
the MSSFP

In this section, we give a relaxed projection scheme of (). The relaxed projection scheme
uses orthogonal projections onto half-spaces instead of projections onto the original
closed convex sets. In what follows, we assume that the convex sets {Ci}t

i= and {Qj}r
j=

satisfy the following assumptions (A) and (A).
(A) Define the closed convex sets {Ci}t

i= as the level sets:

Ci =
{

x ∈ H : ci(x) ≤ 
}

,

where ci : H → R, i = , , . . . , t, are convex functions. The set {Qj}r
j= is given by

Qj =
{

y ∈ H : qj(y) ≤ 
}

,

where qj : H →R, j = , , . . . , r, are convex functions. Assume that both ci and qj are sub-
differentiable on H and H, respectively, and that ∂ci and ∂qj are bounded operators (i.e.,
bounded on bounded sets). It is worth mentioning that these assumptions are automati-
cally satisfied if H and H are finite dimensional Hilbert spaces (see Lemma .). Namely,
the subdifferentials

∂ci(x) =
{
ξi ∈ H : ci(z) ≥ ci(x) + 〈ξi, z – x〉,∀z ∈ H

}

for all x ∈ Ci, i = , , . . . , t, and

∂qj(y) =
{
ηj ∈ H : qj(u) ≥ qj(y) + 〈ηj, u – y〉,∀u ∈ H

}

for all y ∈ Qj, j = , , . . . , r.
(A) Define Ck

i and Qk
j to be the following half-spaces:

Ck
i =

{
x ∈ H : ci

(
xk) +

〈
ξ k

i , x – xk 〉 ≤ 
}

,

where ξ k
i ∈ ∂ci(xk), i = , , . . . , t, and

Qk
j =

{
y ∈ H : qj

(
Axk) +

〈
ηk

j , y – Axk 〉 ≤ 
}

,

where ηk
j ∈ ∂qj(Axk), j = , , . . . , r.
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By the definition of the subgradient, it is clear that Ci ⊆ Ck
i , Qj ⊆ Qk

j , and the orthogonal
projections onto Ck

i and Qk
j can be directly calculated.

Since the projections onto half-spaces Ck
i and Qk

j have closed-form expressions, the fol-
lowing algorithm is easy to be implemented.

Theorem . Assume that MSSFP () is consistent (i.e., the solution set � is nonempty).
For any initial x ∈ H, define the iteration scheme with splitting self-adaptive step size as
follows:

xk+ = xk +
ρk


∑t

i= αi‖PCk
i
(xk) – xk‖

‖∑t
i= αi(PCk

i
(xk) – xk)‖

t∑

i=

αi
(
PCk

i

(
xk) – xk)

+
ρk


∑r

j= βj‖PQk
j
(Axk) – Axk‖

‖∑r
j= βjA∗(PQk

j
(Axk) – Axk)‖

r∑

j=

βjA∗(PQk
j

(
Axk) – Axk), ()

where  < ρ ≤ ρk
 ≤ ρ < ,  < ρ ≤ ρk

 ≤ ρ < , and the parameters {αi}t
i= >  and

{βj}r
j= > . Assume that conditions (A) and (A) hold, then the iterative sequence {xk}

converges weakly to a solution of the MSSFP.

Proof For convenience, we define some notations first. Let dk
Ck

i
= PCk

i
(xk) – xk for i =

, , . . . , t, dk
Qk

j
= PQk

j
(Axk) – Axk for j = , , . . . , r, and

λk
 =

ρk

∑t

i= αi‖dk
Ck

i
‖

‖∑t
i= αidk

Ck
i
‖

, λk
 =

ρk

∑r

j= βj‖dk
Qk

j
‖

‖∑r
j= βjA∗dk

Qk
j
‖

,

respectively.
Then the iterative sequence {xk} of () can be reformulated as follows:

xk+ = xk + λk


t∑

i=

αidk
Ck

i
+ λk



r∑

j=

βjA∗dk
Qk

j
. ()

Let p ∈ �, by the same argument of Theorem ., we can obtain the following inequality:

∥∥xk+ – p
∥∥ ≤ ∥∥xk – p

∥∥ – ρk

(
 – ρk


) (

∑t
i= αi‖dk

Ck
i
‖)

‖∑t
i= αidk

Ck
i
‖

– ρk

(
 – ρk


) (

∑r
j= βj‖dk

Qk
j
‖)

‖∑r
j= βjA∗dk

Qk
j
‖

. ()

Notice the conditions of {ρk
 } and {ρk

}, we can see from () that the iterative sequence
{xk} is a Fejér-monotone sequence, and the limit limk→∞ ‖xk – p‖ exists.

From () and  < ρ ≤ ρk
 ≤ ρ < , we obtain

ρ( – ρ)
(
∑t

i= αi‖dk
Ck

i
‖)

‖∑t
i= αidk

Ck
i
‖

≤ ρk

(
 – ρk


) (

∑t
i= αi‖dk

Ck
i
‖)

‖∑t
i= αidk

Ck
i
‖

≤ ∥∥xk – p
∥∥ –

∥∥xk+ – p
∥∥. ()
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Letting k → ∞ on both sides of the above inequality, we have

lim
k→∞

(
∑t

i= αi‖dk
Ck

i
‖)

‖∑t
i= αidk

Ck
i
‖

= . ()

Similarly, we can get that

lim
k→∞

(
∑r

j= βj‖dk
Qk

j
‖)

‖∑r
j= βjA∗dk

Qk
j
‖

= . ()

Since {dk
Ck

i
} and {dk

Qk
j
} are -Lipschitz continuous and the iterative sequence {xk} is

bounded, then
∑t

i= αidk
Ck

i
and

∑r
j= βjA∗dk

Qk
j

are bounded. Therefore, we can get from ()

and () that

lim
k→∞

∥∥dk
Ck

i

∥∥ =  for i = , , . . . , t ()

and

lim
k→∞

∥∥dk
Qk

j

∥∥ =  for j = , , . . . , r. ()

Next, we will prove that ωw(xk) ⊂ �. For each j = , , . . . , r, since ∂qj is bounded on
bounded sets, there exists η >  such that ‖ηk

j ‖ ≤ η, where ηk
j ∈ ∂qj(Axk). Then, for j =

, , . . . , r, notice that PQk
j
(Axk) ∈ Qk

j , we have

qj
(
Axk) ≤ 〈

ηk
j , Axk – PQk

j

(
Axk)〉

≤ η
∥∥Axk – PQk

j

(
Axk)∥∥. ()

By (), we know that

lim sup
k→∞

qj
(
Axk) ≤  ()

for any j = , , . . . , r.
Let x̂ ∈ ωw(xk), there exists a subsequence {xkn} ⊂ {xk} such that xkn ⇀ x̂ as n → ∞. By

the weak lower semicontinuity of the convex function qj and (), we have

qj(Ax̂) ≤ lim inf
n→∞ qj

(
Axkn

) ≤ ,

which means that Ax̂ ∈ Qj for j = , , . . . , r, i.e., Ax̂ ∈ ⋂r
j= Qj.

Similarly, since εk
i ∈ ∂ci(xk) is bounded, PCk

i
(xk) ∈ Ck

i and (), for each i = , , . . . , t, we
obtain

ci
(
xk) ≤ 〈

εk
i , xk – PCk

i

(
xk)〉

≤ ∥∥εk
i
∥∥∥∥xk – PCk

i

(
xk)∥∥

→  as k → ∞. ()
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By the weak lower semicontinuity of the convex function ci, we get

ci(x̂) ≤ lim inf
n→∞ ci

(
xkn

) ≤ . ()

Consequently, x̂ ∈ Ci, i = , , . . . , t. Therefore, x̂ ∈ �. Notice that for any p ∈ �,
limk→∞ ‖xk – p‖ exists and ωw(xk) ⊂ �. Now we can apply Lemma . to get that the
full iterative sequence {xk} converges weakly to a solution of MSSFP (). This completes
the proof. �

Based on Theorem ., we can obtain the following corollary immediately.

Corollary . Assume that SFP () is consistent. For any initial x ∈ H, define the itera-
tion scheme with splitting self-adaptive step size as follows:

xk+ = xk + ρk

(
PCk

(
xk) – xk)

+ ρk


‖PQk (Axk) – Axk‖

‖A∗(PQk (Axk) – Axk)‖ A∗(PQk
(
Axk) – Axk), ()

where  < ρ ≤ ρk
 ≤ ρ < ,  < ρ ≤ ρk

 ≤ ρ < . Assume that conditions (A) and (A)
hold, where r = t = . Then the iterative sequence {xk} converges weakly to a solution of the
SFP.

5 Numerical experiments
In this section, we present some preliminary numerical results and show the efficiency
of our proposed methods. All the experiments are performed on a personal Lenovo
ThinkStation computer with Intel Core i- CPU . GHz and RAM . GB.

We make two experiments: the first is LASSO problem, the second is two examples of
MSSFP introduced by Zhao and Yang [].

5.1 LASSO problem
In this part, we consider the least absolute shrinkage and selection operator (LASSO)
problem

min
x



‖Ax – b‖

 subject to ‖x‖ ≤ ε, ()

where A is an m × n feature matrix, b is m ×  observed data, predictors x is n × , and
ε >  is a tuning parameter. LASSO () was first introduced by Tibshirani []. It pre-
sented good performance in the variable selection problem of an ordinary linear regres-
sion model. Some properties of the LASSO model were established in Xu [].

A closely related problem of LASSO is the basis pursuit denoising (BPDN) [] problem,

min
x

‖x‖ subject to


‖Ax – b‖

 ≤ t, ()

where t > .
It has been proved that the LASSO and BPDN can be solved by the following uncon-

strained optimization problem under a proper choice of parameter λ > ,

min
x



‖Ax – b‖

 + λ‖x‖. ()
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However, there does not exist a safe rule to choose the regularization parameter λ in prac-
tice. The LASSO is still promising, especially when the prior norm of ‖x‖ is known in
advance.

If the objective function reaches zero, then the LASSO problem is a special case of SFP
(), where Q := {b}, C := {x|‖x‖ ≤ ε}. Thus, PC(·) is the Euclidean projection onto the
�-ball. We compare three methods to solve the LASSO problem.

() The CQ algorithm with constant step size of Byrne [].
() Self-adaptive step size of the CQ algorithm by Lopez et al. [].
() The proposed iterative algorithm () with splitting self-adaptive step size.
The data were generated from the model b = Ax, where Am×n is generated randomly

from a standard normal distribution N(, ), and the K-sparse signal xn× is constructed
from a uniform distribution in the interval [–, ] with K-values not equal to zero. The
stopping criteria for all methods is set as ‖xk+ – xk‖ ≤ e–. The comparison results of
the three iterative algorithms are reported in Table .

Figure , Figure  and Figure  show the simulated example with m = , n = ,
and K =  by the above three iterative methods. Since we found that all the three itera-
tive methods exhibit nearly the same performance when the K-sparse signal is recovered,
so we report the objective function values when the iteration process is stopped under

Table 1 The performance of the three iterative algorithms solving the LASSO in terms of the
objective function values

Problem size Sparse level Methods Objective function values

m = 120, n = 512 K = 10 Byrne [4] 1.2608e–08
Lopez et al. [8] 2.4775e–08
Iterative sequence (17) 2.8735e–10

K = 20 Byrne [4] 8.0515e–08
Lopez et al. [8] 1.3245e–08
Iterative sequence (17) 3.0803e–10

m = 240, n = 1,024 K = 10 Byrne [4] 1.2997e–08
Lopez et al. [8] 4.0332e–08
Iterative sequence (17) 5.2898e–10

K = 20 Byrne [4] 2.5992e–08
Lopez et al. [8] 5.9182e–08
Iterative sequence (17) 5.5932e–10

K = 30 Byrne [4] 5.4290e–08
Lopez et al. [8] 1.3325e–07
Iterative sequence (17) 6.1643e–10

Figure 1 The random sparse signal is recovered by our proposed iterative sequence (17).
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Figure 2 The random sparse signal is recovered by Byrne [4].

Figure 3 The random sparse signal is recovered by Lopez et al. [8].

the given criteria. We can see from Table  that our proposed iterative sequence reaches
smaller values than the other two methods.

5.2 Two MSSFP problems
In this part, we present two examples of MSSFP and compare several existing iterative
algorithms.

() Self-adaptive methods proposed by Zhao and Yang [].
() Cyclic iterative algorithm and simultaneous iterative algorithm with self-adaptive

step size proposed by Wen et al. [].
() Our proposed iterative algorithms () and ().
In what follows, we define a vector e = {, , . . . , }T and choose ρk

 = . and ρk
 = .

in the iterative sequences () and (), respectively. The iterative parameters in Zhao and
Yang [] and Wen et al. [] were chosen as suggested by the authors.

Example . The MSSFP with Ci = {x ∈ R
n|‖x – di‖ ≤ ri}, i = , , . . . , t, and Qj = {y ∈

R
m|Lj ≤ y ≤ Uj}, j = , , . . . , r. Let A = (aij)m×n and aij ∈ [, ], where di ∈ [e, e], ri ∈

[, ], Lj ∈ [e, e] and Uj ∈ [e, e] are all generated randomly.

Example . The MSSFP with Ci = {x ∈ R
n|‖x – di‖ ≤ ri}, i = , , . . . , t, and Qj =

{y ∈ R
m| 

 yT Bjy + bT
j y + cj ≤ }, j = , , . . . , r, where di ∈ (e, e), ri ∈ (, ), bj ∈

(–e, –e), cj ∈ (–, –), and all elements of the matrix Bj (in the interval (, ))
are all generated randomly. The matrix A is the same as in Example ..

The numerical results are reported in Table  and Table , respectively.
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Table 2 Example 5.1 with t = r = 20, m = 60, n = 80

Methods Initial point δ = 10–5 δ = 10–6 δ = 10–7 δ = 10–8

k k k k

Zhao and Yang [17] e 311 433 539 629
100e 318 366 447 527
–100e 214 276 321 353

Cyclic of Wen et al. [18] e 119 145 170 196
100e 139 169 198 227
–100e 128 156 183 210

Simultaneous of Wen et al. [18] e 1,743 2,431 3,135 3,841
100e 1,991 2,724 3,473 4,226
–100e 1,819 2,589 3,354 4,131

Iterative sequence (7) e 494 613 725 834
100e 514 640 762 878
–100e 513 643 762 878

The number of k is the iteration number when the objection function g(x) of (3) satisfies g(x) ≤ δ for some given small δ.

Table 3 Example 5.2 with t = r = 30, m = 50, n = 60

Methods Initial point δ = 10–5 δ = 10–6 δ = 10–7 δ = 10–8

k k k k

Zhao and Yang [17] e 268 328 375 402
100e 9,806 10,529 10,643 11,724
–100e 8,778 9,264 9,479 9,566

Cyclic of Wen et al. [18] e 9 13 14 14
100e 273 278 293 311
–100e 173 194 195 202

Simultaneous of Wen et al. [18] e 192 238 247 248
100e 5,679 6,865 7,103 7,334
–100e 3,163 3,428 3,726 3,952

Iterative sequence (18) e 312 515 538 756
100e 5,157 5,636 7,017 10,078
–100e 2,140 3,393 3,656 5,925

The numerical results obtained by the relaxed iterative algorithm of Zhao and Yang [17], Wen et al. [18] and iterative
sequence (18), where k is the same as in Table 2.

It follows from Table  and Table  that we find the (relaxed) cyclic iterative sequence of
Wen et al. [] converges with less iteration numbers than the other iterative sequences.
Because of the (relaxed) cyclic iteration method, an updated iteration number after all
constrained sets is calculated. Our new proposed iterative sequence () and relaxed itera-
tive sequence () are better than the simultaneous iterative sequence of Wen et al. [] in
Example . and Zhao and Yang [] in Example ., respectively. From a practical point
of view, it is better to use all the proposed methods to solve a desired problem in practice
and decide to choose a suitable one.

6 Conclusions
There has been much interest in the MSSFP in the past few years. Many efficient iterative
algorithms have been proposed to solve it. In this paper, we proposed a new iterative al-
gorithm with splitting self-adaptive step size. The new self-adaptive step size is different
from Zhao and Yang [] and Wen et al. []. It also gives a new self-adaptive way to solve
the SFP. Under mild assumptions, we proved the convergence of the iterative algorithms
in an infinite dimensional Hilbert space. Further, we gave a relaxed projection algorithm
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with the new step size and proved its convergence. Numerical experiments in the LASSO
problem and two MSSFP examples showed that our proposed methods perform better
than other methods in some ways.
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