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Abstract
In the present paper, we study the weighted norm inequalities for higher-order
commutators formed by a class of one-sided oscillatory singular integrals and BMO
functions. We obtain that the boundedness of these commutators can be deduced
by that of one-sided Calderón-Zygmund singular integral operators.
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1 Introduction
The aim of this paper is to further study the one-sided version of the following oscillatory
singular integral, which was first introduced and studied by Ricci and Stein []:

Tf (x) = p.v.
∫
Rn

eiP(x,y)K(x – y)f (y) dy,

where P(x, y) is a nontrivial real-valued polynomial defined on R
n × R

n, and K is a
Calderón-Zygmund kernel. We say that a function in L

loc(Rn \{}) is a Calderón-Zygmund
kernel if the following properties are satisfied []:

() there exists a finite constant C such that

∣∣K(x – y) – K(x)
∣∣ ≤ C|y|

|x| for all |x| > |y|;

() there exists a finite constant C such that

∣∣∣∣
∫

ε<|x|<N
K(x) dx

∣∣∣∣ ≤ C for all ε and N such that  < ε < N ;

() there exists a finite constant C such that

∣∣K(x)
∣∣ ≤ C

|x| for all x �= .
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Ricci and Stein [] studied the norm inequalities for T on Lp(Rn) spaces with  < p < ∞.
Weighted inequalities arise naturally in Fourier analysis, but their use is best justified by
the variety of applications in which they appear. For example, the theory of weights plays
an important role in the study of boundary value problems inherent in Laplace equations
on Lipschitz domains. Many people are interested in the study of the events that occur
when the weight function belongs to the Muckenhoupt classes Ap:

(


|B|
∫

B
w(x) dx

)(


|B|
∫

B
w(x)–p′

dx
)p–

≤ C.

Here  < p < ∞, and B denotes any ball in R
n. The classes A are defined as Mw ≤ Cw,

where M is the classical Hardy-Littlewood maximal operator. Lu and Zhang [, ] gave
the boundedness of T on Lp(w) ( < p < ∞) spaces with weight functions w ∈ Ap. For other
classical works on T , see, for example, [–] and the references therein. In what follows,
we restrict our attention on n =  in order to introduce the one-sided operators defined
on R.

Many operators in harmonic analysis have one-sided versions. It is well known that the
one-sided Hardy-Littlewood maximal operators are required in ergodic theory. Sawyer
[] introduced the integral version of these operators as

M+f (x) = sup
h>


h

∫ x+h

x

∣∣f (y)
∣∣dy and M–f (x) = sup

h>


h

∫ x

x–h

∣∣f (y)
∣∣dy.

The good weights for M+ and M– are the one-sided version of Ap classes. Sawyer []
studied these one-sided weights in depth for the first time. We recall their definitions:

A+
p : sup

a<b<c


(c – a)p

∫ b

a
w(x) dx

(∫ c

b
w(x)–p′

dx
)p–

≤ C for  < p < ∞,

A–
p : sup

a<b<c


(c – a)p

∫ c

b
w(x) dx

(∫ b

a
w(x)–p′

dx
)p–

≤ C for  < p < ∞,

and

A+
 : M–w ≤ Cw and A–

 : M+w ≤ Cw.

In [], the classes A+∞ and A–∞ were introduced as

A+
∞ =

⋃
≤p<∞

A+
p and A–

∞ =
⋃

≤p<∞
A–

p .

The important point to note here is that the one-sided Muckenhoupt classes are larger
than the classical Muckenhoupt classes. For instance, the function ex ∈ A+

 , but ex /∈ A. In
fact, it is easy to see that for  ≤ p ≤ ∞, Ap � A+

p , Ap � A–
p , and Ap = A+

p ∩A–
p . Furthermore,

both the reverse Hölder inequality and the doubling condition are not true for the one-
sided Muckenhoupt classes. Therefore, some different ideas are needed here to deal with
the weighted norm inequalities for one-sided operators. The classes w ∈ A+

p are of interest,
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not only because they control the boundedness of the one-sided Hardy-Littlewood max-
imal operators, but also they are the right classes for the weighted estimates of one-sided
Calderón-Zygmund singular integral operators [] defined by

T̃+f (x) = lim
ε→+

∫ ∞

x+ε

K(x – y)f (y) dy and T̃–f (x) = lim
ε→+

∫ x–ε

–∞
K(x – y)f (y) dy,

where K is the Calderón-Zygmund kernel with support in R
– = (–∞, ) and R

+ = (, +∞),
respectively (also called the one-sided Calderón-Zygmund kernel). An example of such a
kernel is

K(x) =
sin(log |x|)
(x log |x|) χ(–∞,)(x),

where χE denotes the characteristic function of a set E.
Highly inspired by these statements for the oscillatory singular integral operators and

the one-sided operator theory, Fu, Lu, Shi, and their coauthors introduced the one-sided
oscillatory singular integral operators and studied some weighted norm inequalities for
these operators with one-sided weights, including the strong weighted Lp ( < p < ∞)
boundedness [], the weighted weak (, ) type norm inequalities [] and the weighted
norm estimates on one-sided Hardy spaces []. We recall the definition of one-sided os-
cillatory integral operators:

T+f (x) = lim
ε→+

∫ ∞

x+ε

eiP(x,y)K(x – y)f (y) dy

and

T–f (x) = lim
ε→+

∫ x–ε

–∞
eiP(x,y)K(x – y)f (y) dy,

where P(x, y) are real-valued polynomials defined on R × R, and K are the one-sided
Calderón-Zygmund kernels.

Let b be a locally integrable function on R
n, and let T be an integral operator. Then we

define the commutator operator for a proper function f by

Tb(f ) := b(T f ) – T (bf ).

The function b is also called the symbol function of Tb. The investigation of the operator
Tb begins with Coifman-Rochberg-Weiss pioneering study of the operator T []. There
are two major reasons for considering the problem of commutators. The first one is that
the boundedness of commutators can produce some characterizations of function spaces
[, ]. The other one is that the theory of commutators plays an important role in the
study of the regularity of solutions to elliptic and parabolic partial differential equations
(PDEs) of the second order [, ]. It is well known that many people are interested in the
study of commutators for which the symbol functions belong to BMO spaces. In harmonic
analysis, a function b of bounded mean oscillation, also known as a BMO function, is a
real-valued function whose mean oscillation is bounded, that is,


|B|

∫
B

∣∣b(x) – bB
∣∣dx < ∞,
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where B is a ball in R
n. The BMO space is the function space with the norm

‖b‖BMO(Rn) = sup
B


|B|

∫
B

∣∣b(x) – bB
∣∣dx.

In some precise sense, the space BMO(Rn) plays the same role in the theory of Hardy
spaces Hp ( < p < ) as that the space L∞ of essentially bounded functions plays in the
theory of Lp spaces with  < p < ∞. The commutator formed by the oscillatory integral
operator T and a BMO function b can be defined by

Tbf (x) = p.v.
∫
Rn

eiP(x,y)K(x – y)
(
b(x) – b(y)

)
f (y) dy.

The commutators of degree k (k ∈ Z
+) of T were defined by

Tk
b f (x) = p.v.

∫
Rn

eiP(x,y)K(x – y)
(
b(x) – b(y)

)kf (y) dy.

It is immediate that T
b = T . In the literature, there are a great deal of results on the norm

inequalities for Tk
b ; see, for example, [–] and the references therein.

For the one-sided case, Lorente and Riveros [, ] introduced the commutators of
some one-sided operators. Here we collect the definitions of commutators for the one-
sided Hardy-Littlewood maximal operators and the one-sided Calderón-Zygmund singu-
lar integral operators as follows. Let k = , , . . . and b ∈ BMO(R). The commutators of
degree k generated by M+ (M–) and b are defined by

Mk,+
b f (x) = sup

h>


h

∫ x+h

x

∣∣b(x) – b(y)
∣∣k∣∣f (y)

∣∣dy

and

Mk,–
b f (x) = sup

h>


h

∫ x

x–h

∣∣b(x) – b(y)
∣∣k∣∣f (y)

∣∣dy.

The kth commutators generated by T̃+ (T̃–) and b are defined by

T̃+,k
b f (x) = p.v.

∫ ∞

x
K(x – y)

(
b(x) – b(y)

)kf (y) dy

and

T̃–,k
b f (x) = p.v.

∫ x

–∞
K(x – y)

(
b(x) – b(y)

)kf (y) dy.

Here K are one-sided Calderón-Zygmund kernels defined as before. The corresponding
weighted norm inequalities for these commutators will be stated in Section . Highly in-
spired by the results for one-sided operators, Fu et al. [] introduced the commutators
formed by T+ (T–) and b ∈ BMO(R) as follows:

T+
b f (x) = p.v.

∫ ∞

x
eiP(x,y)K(x – y)

(
b(x) – b(y)

)
f (y) dy
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and

T–
b f (x) = p.v.

∫ x

–∞
eiP(x,y)K(x – y)

(
b(x) – b(y)

)
f (y) dy.

For k ∈ Z
+, the high-order commutators of T+ (T–) and b ∈ BMO(R) can be deduced as

Tk,+
b f (x) = p.v.

∫ ∞

x
eiP(x,y)K(x – y)

(
b(x) – b(y)

)kf (y) dy

and

Tk,–
b f (x) = p.v.

∫ x

–∞
eiP(x,y)K(x – y)

(
b(x) – b(y)

)kf (y) dy.

This paper is devoted to the weighted norm inequalities for Tk,+
b and Tk,–

b with k > .
Due to their similarities, we further consider only the operator Tk,+

b .
Now, we can formulate our results.

Theorem . Let  < p < ∞, k ∈ Z
+, w ∈ A+

p , and let b ∈ BMO(R). Then the operator Tk,+
b

is bounded on Lp(w).

Theorem . Let p, w, and b be defined as in Theorem .. Then the truncated operator

T̃k,+
b, f (x) = p.v.

∫ x+

x
K(x – y)

(
b(x) – b(y)

)kf (y) dy

is bounded on Lp(w).

We end this section with the outline of this paper. In Section , some lemmas are col-
lected for the proofs of our main results. Section  contains the proofs of Theorem . and
Theorem .. Throughout this paper, the letter C will denote a positive constant that may
vary from line to line but will remain independent of the relevant quantities.

2 Basic lemmas
We provide in this section some lemmas that are crucial for the proofs in Section . To-
gether with the characterizations of the weighted inequalities for one-sided operators, we
can obtain some properties of the classes A+

p and A–
p .

Lemma . [, , ]
() If w ∈ A+

p , then w+ε ∈ A+
p for some ε >  with  ≤ p < ∞.

() Let  < p < ∞. Then w ∈ A+
p if and only if there exist w ∈ A+

 and w ∈ A–
 such that

w = w(w)–p.
() Let  < p < ∞. Then w ∈ A+

p if and only if w–p′ ∈ A–
p′ , where 

p + 
p′ = .

() Let  < p < ∞ and w ∈ A+
p . Then A+

p(δλ(w)) = A+
p(w), where δλ(w)(x) = w(λx) for all

λ > .

In [], the authors obtained some weighted norm estimates for Mk,+
b .

Lemma . The following conditions are equivalent:
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() Mk,+
b is bounded on Lp(w) for every  < p < ∞ with w ∈ A+

p .
() Mk,+

b is bounded on Lp(dx) for some  < p < ∞.
() b ∈ BMO(R).

Lemma . []
() Let  < p < ∞, and let b ∈ BMO(R). Then there exists λ >  such that eλb ∈ A+

p .
() Let  < p < ∞ and λ > . Then there exists η = η(λ, p) >  such that for b ∈ BMO(R)

and ‖b‖BMO(R) < η, we have eλb ∈ A+
p .

To prove Theorem ., we still need a celebrated interpolation theorem of operators with
change of measures.

Lemma . [] Suppose that u, v, u, v are positive weight functions, and  < p, p <
∞. Assume that a sublinear operator S satisfies

‖Sf ‖Lp (u) ≤ C‖f ‖Lp (v) and ‖Sf ‖Lp (u) ≤ C‖f ‖Lp (v).

Then

‖Sf ‖Lp(u) ≤ C‖f ‖Lp(v)

for any  < θ <  and /p = θ/p + ( – θ )/p, where u = upθ/p
 up(–θ )/p

 , v = vpθ/p
 vp(–θ )/p

 ,
and C ≤ Cθ

C–θ
 .

3 Proofs of the main results
The proof of Theorem . is a by-product of the following two lemmas.

Lemma . Let p, K , k, w, and b be as in Theorem .. Then the operator

Tk,+
b, f (x) = p.v.

∫ x+

x
eiP(x,y)K(x – y)f (y)

(
b(x) – b(y)

)k dy

is bounded on Lp(w).

Lemma . Let p, K , k, w, and b be as in Theorem .. Then the operator

Tk,+
b,∞f (x) =

∫ ∞

x+
eiP(x,y)K(x – y)f (y)

(
b(x) – b(y)

)k dy

is bounded on Lp(w).

3.1 Proof of Lemma 3.1
Lemma . can be proved by induction on k. For k = , by [], Theorem ., Lemma .,
we have the boundedness of the operator

T,+
b, f (x) =: T+

 f (x) = p.v.
∫ x+

x
eiP(x,y)K(x – y)f (y) dy
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on Lp(w). We now assume that Lemma . holds for k – , that is, for any f ∈ Lp(w) with
w ∈ A+

p , we have

∥∥Tk–,+
b, f

∥∥
Lp(w) ≤ C‖f ‖Lp(w). (.)

Next, we claim that

∥∥Tk,+
b, f

∥∥
Lp(w) ≤ C‖f ‖Lp(w).

In fact, by Lemma . there exists ε >  such that, for any f ∈ Lp(w+ε),

∥∥Tk–,+
b, f

∥∥
Lp(w+ε) ≤ C‖f ‖Lp(w+ε). (.)

By Lemma . with λ = p(+ε)
ε

, there is η >  such that

e
pb(+ε)

ε ∈ A+
p whenever ‖b‖BMO(R) < η.

On the other hand, the fact that for every θ ∈ [, π ], b cos θ ∈ BMO(R) and

‖b cos θ‖BMO(R) ≤ ‖b‖BMO(R) < η

shows that eg(p,b,ε,θ ) ∈ A+
p with g(p, b, ε, θ ) := pb(+ε) cos θ

ε
. Therefore, we can conclude from

(.) that for every θ ∈ [, π ],

∥∥Tk–,+
b, f

∥∥
Lp(g(p,b,ε,θ )) ≤ C‖f ‖Lp(g(p,b,ε,θ )), (.)

where C depends on p, b, and w but not on k and θ . Applying Lemma . to (.) and (.),
we have

∥∥Tk–,+
b, f

∥∥
Lp(wepb cos θ ) ≤ C‖f ‖Lp(wepb cos θ ) for every θ ∈ [, π ],

where C and δ >  are independent of k and θ . Moreover, if we set gθ (x) = f (x)e–b(x)eiθ , then
gθ ∈ Lp(wepb cos θ ) and

‖gθ‖Lp(wepb cos θ ) = ‖f ‖Lp(w). (.)

For simplicity, we denote

Kk–(x, y) = eiP(x,y)K(x – y)
(
b(x) – b(y)

)k–
χ<y–x<(x – y).

Now, for z ∈ C (here z is not of the form z = x + iy, with x, y variables of P(x, y)), g(z) =
ez(b(x)–b(y)) is analytic on C. Thus, by the Cauchy integral formula we get

b(x) – b(y) = g ′() =


π i

∫
|z|=

g(z)
|z| dz =


π

∫ π


eeiθ [b(x)–b(y)]e–iθ dθ .
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Then

Tk,+
b, f (x) =

∫ x+

x
Kk–(x, y)

(
b(x) – b(y)

)
f (y) dy =


π

∫ π


Tk–,+

b, (gθ )(x)eeiθ b(x)e–iθ dθ .

This, combined with (.), (.), and Minkowski’s inequality, gives

∥∥Tk,+
b, f

∥∥
Lp(w) ≤ 

π

∫ π



∥∥Tk–,+
b, (gθ )

∥∥
Lp(wepb cos θ ) dθ

≤ C


π

∫ π


‖gθ‖Lp(wepb cos θ ) dθ

= C‖f ‖Lp(w),

which shows Lemma ..

3.2 Proof of Lemma 3.2
We can proceed analogously to the proof of Lemma . by induction as in Lemma ..
Write

Tk,+
b,∞f (x) =

∞∑
j=

Tk,+
b,j f (x) =

∞∑
j=

∫ x+j

x+j–
eiP(x,y)K(x – y)

(
b(x) – b(y)

)kf (y).

We next claim that, for some δ > ,

∥∥Tk,+
b,j f

∥∥
Lp(w) ≤ –δj‖f ‖Lp(w). (.)

Indeed, when k = , we have

∥∥T,+
b,j f

∥∥
Lp =

∥∥T+
j f

∥∥
Lp ≤ C–ηj‖f ‖Lp (.)

following arguments similar to those in [], p., where C depends only on the total
degree of P and η > . On the other hand, it is easy to check that

∣∣T,+
b,j f (x)

∣∣ =
∣∣T+

j f (x)
∣∣ ≤ C

∫ x+j

x+j–

|f (y)|
|x – y| dy ≤ CM+(f )(x),

where C is independent of j. Then it follows from Lemma . and Lemma . that there
exists ε >  such that w+ε ∈ A+

p and

∥∥T,+
b,j f

∥∥
Lp(w+ε) ≤ C‖f ‖Lp(w+ε), (.)

where C is independent of j. Applying Lemma . to inequalities (.) and (.), it follows
that

∥∥T,+
b,j f

∥∥
Lp(w) ≤ C–ηj‖f ‖Lp(w), (.)

where η >  is independent of j and f . Inequality (.) implies that (.) holds for k = .
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We now assume that (.) holds for k – , that is, for any f ∈ Lp(w) with w ∈ A+
p ,

∥∥Tk–,+
b,j f

∥∥
Lp(w) ≤ C–ηk–j‖f ‖Lp(w). (.)

By Lemma ., given w ∈ A+
p , there exists ε >  such that w+ε ∈ A+

p . Then for any f ∈
Lp(w+ε), we have

∥∥Tk–,+
b,j f

∥∥
Lp(w+ε) ≤ C–η′

k–j‖f ‖Lp(w+ε). (.)

Taking λ = p(+ε)
ε

, by Lemma . there exists η >  such that

e
pb(+ε)

ε ∈ A+
p whenever ‖b‖BMO(R) < η.

On the other hand, for every θ ∈ [, π ], b cos θ ∈ BMO(R) and

‖b cos θ‖BMO(R) ≤ ‖b‖BMO(R) < η.

Thus, eg(p,b,ε,θ ) ∈ A+
p for g(p, b, ε, θ ) := pb(+ε) cos θ

ε
. Hence, by inequality (.) we have

∥∥Tk–,+
b,j f

∥∥
Lp(eg(p,b,ε,θ )) ≤ C–η′′

k–j‖f ‖Lp(eg(p,b,ε,θ )), (.)

where C and η′′
k– depend on p, b, and w but not on j, k, and θ .

Applying Lemma . to inequalities (.) and (.), we have

∥∥Tk–,+
b,j f

∥∥
Lp(wepb cos θ ) ≤ C–ηj‖f ‖Lp(wepb cos θ ),

where C and δ >  are independent of j, k, and θ . Setting gθ (x) = f (x)e–b(x)eiθ , it is easy to
check that for θ ∈ [, π ], we have gθ ∈ Lp(wepb cos θ ) and

‖gθ‖Lp(wepb cos θ ) = ‖f ‖Lp(w). (.)

Denote by

Kk–(x, y) = eiP(x,y)K(x – y)
(
b(x) – b(y)

)k–
χj–<y–x<j (x – y).

Then, for z ∈C, g(z) = ez(b(x)–b(y)) is analytic on C, which shows

b(x) – b(y) = g ′() =


π i

∫
|z|=

g(z)
|z| dz =


π

∫ π


eeiθ [b(x)–b(y)]e–iθ dθ .

Thus,

Tk,+
b,j f (x) =

∫ x+j

x+j–
Kk–(x, y)

(
b(x) – b(y)

)
f (y) dy

=


π

∫ π


Tk–,+

b,j (gθ )(x)eeiθ b(x)e–iθ dθ .
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Finally, combining (.), (.), and the Minkowski inequality, we get the following esti-
mate:

∥∥Tk,+
b,j f

∥∥
Lp(w) ≤ 

π

∫ π



∥∥Tk–,+
b,j (gθ )

∥∥
Lp(wepb cos θ ) dθ

≤ C


π

∫ π


–δj‖gθ‖Lp(wepb cos θ ) dθ

= C–δj‖f ‖Lp(w).

We thus complete the proof of Lemma . by the following observation:

∥∥Tk,+
b,∞f

∥∥
Lp(w) ≤

∞∑
j=

∥∥Tk,+
b,j f

∥∥
Lp(w) ≤ C‖f ‖Lp(w).

3.3 Proof of Theorem 1.2
For any λ ∈R, if a nontrivial polynomial P(x, y) satisfies

P(x, y) =
∑
α,β

aα,β (x – λ)α(y – λ)β + R(x,λ) + R(y,λ)

:= P(x – λ, y – λ) + R(x,λ) + R(y,λ),

where R and R are real polynomials, then by Theorem ., Tk,+
b is bounded on Lp(w).

Rewrite the kernel K as

K(x – y) = K(x – y) + K∞(x – y) := K(x – y)χ{|x–y|<}(y) + K(x – y)χ{|x–y|>}(y)

and consider the corresponding splitting

Tk,+
b f (x) = Tk,+

b, f (x) + Tk,+
b,∞f (x)

=:
∫ ∞

x
eiP(x,y)K(x – y)

(
b(x) – b(y)

)kf (y) dy

+
∫ ∞

x
eiP(x,y)K∞(x – y)

(
b(x) – b(y)

)kf (y) dy.

Since both Tk,+
b,∞ and Tk,+

b, are bounded on Lp(w), it follows that, for any h ∈R,

(∫
|x–h|<

∣∣Tk,+
b, f (x)

∣∣pw(x) dx
) 

p
≤ C

(∫
|y–h|<

∣∣f (y)
∣∣pw(y) dy

) 
p

, (.)

where C is independent of h and f (see also []).
For h ∈R, set

T̃k,+
b, f (x) = e–iR(x,h)p.v.

∫ x+

x
eiP(x,y)Kk(x, y)f (y)e–iP(x–h,y–h)e–iR(y,h) dy,
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where Kk(x, y) = K(x – y)(b(x) – b(y))k . Then express e–iP(x–h,y–h) by the Taylor series

e–iP(x–h,y–h) =
∞∑

m=

(–i)m

m!
(
P(x – h, y – h)

)m

=
∞∑

m=

(–i)m

m!

(∑
α,β

aα,β(x – h)α(y – h)β
)m

=
∞∑

m=

(–i)m

m!
∑

l

cm,lbμ,ν,l(x – t)μ(y – t)ν ,

where μ := μ(α,β , l) and ν := ν(α,β , l) are multiindices. By (.), if we set |x – h| ≤ ξ < 
and |y – h| ≤ η < , then we the inequalities

(∫
|x–h|<

∣∣T̃k,+
b, f (x)

∣∣pw(x) dx
) 

p

≤
∞∑

m=

∑
l |cm,lbμ,ν,l|

m!

(∫
|x–h|<

∣∣Tk,+
b,

[
e–iR(·,h)f (·)| · –h|ν](x)

∣∣pw(x) dx
) 

p

≤
∞∑

m=

∑
l |cm,lbμ,ν,l|

m!

(∫
|y–h|<

∣∣f (y)(y – h)ν
∣∣pw(y) dy

) 
p

≤ C
∞∑

m=

∑
l |cm,lbμ,ν,l|

m!

(∫
|y–h|<

∣∣f (y)
∣∣pw(y) dy

) 
p

≤ C
∞∑

m=

(
∑

α,β |aα,β |ξαηβ )m

m!

(∫
|y–h|<

∣∣f (y)
∣∣pw(y) dy

) 
p

≤ Ce(
∑

α,β |aα,β |)
(∫

|y–h|<

∣∣f (y)
∣∣pw(y) dy

) 
p

≤ C
(∫

|y–h|<

∣∣f (y)
∣∣pw(y) dy

) 
p

for all h ∈R, which implies that T̃k,+
b, is bounded on Lp(w).
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