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Background
Recently, many researches on timetabling problems have been reported from the view-
point of optimization (Burke and Petrovic 2002; Daskalaki et al. 2004; Causmaecker et al. 
2009; Burke et al. 2010; Abdullaha and Turabieh 2012). Most of them take the approach 
of utilizing a computer and generating a feasible timetable based on a mathematical pro-
gramming model (Nemhauser et al. 1989) which is formulated after the interview with the 
experts of the problem domain. On the other hand, generated timetables become rarely 
operative in the realistic situation, and human modifications are added to them in many 
cases. This always results from disability of mathematical programming model. In con-
trast, we consider an approach to generate a solution (i.e., a timetable) of the target prob-
lem by referring to the implicit knowledge from an operator. It is important to incorporate 
man–machine interaction explicitly into an optimization process in this approach.

Introduction
We propose iterative optimization method based on man–machine interaction for makeup 
classes timetabling problems specially in Toyama Prefectural University. In this university, there 
is an arranged period for the makeup classes in each semester, and it takes 5–6 days. A timeta-
ble has to be scheduled under the constraints of inhibition of overlapped time slots both for the 
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lecturer and the students. In the past of the university, one operator has scheduled a timetable 
of the makeup class, and the total scheduling time has been about 3 weeks. Our proposed sys-
tem was applied to the makeup classes of the second semester of 2013, the first and the second 
semester of 2014. Its effectiveness was evaluated quantitatively by comparing with the conven-
tional hand working method and qualitatively by the hearing survey to the staffs.

Mathematical programming models and makeup class timetabling problem
We first formulate a makeup class timetabling problem into an integer programming 
model. A makeup class is a class which is offered as a substitute for the canceled class in the 
ordinary course in the university. In Toyama Prefectural University, 5–6 days are arranged 
for a set of makeup classes requested by the lecturers in each semester, and timetables of 
the makeup classes are scheduled by a staff of the educational affairs section. A classroom 
for each makeup class is also scheduled simultaneously with the timetabling. When feasi-
ble timetables are not able to be found, a set of classes for operating in the arranged period 
needs to be selected. The rest of classes are operated in the ordinary course period.

Parameters

Parameters of the integer programming model are summarised as follows:

•  • Time slot Si (i ∈ I): Each Si corresponds to 90 min. Dummy time slots are also intro-
duced for the sake of convenience in order to represent the beginning/end of the 
arranged period and the turn of a day.
–– ID: a set of dummy time slots,
–– IE: a set of indices of the time slots which correspond to 11th and 12th period of 

a day. These time slots correspond to the evening time, and it is desirable to avoid 
these slots for allocation of the classes.

•  • Classroom Rj ( j ∈ J ):
–– pj: room capacity.

•  • Class Ck (k ∈ K)
–– Sk(⊆ I): a set of the desired time slots,
–– Rk(⊆ J ): a set of classrooms,
–– ak: number of time slots to be operated in succession,
–– mk: number of participation in Ck,
–– bSik ∈ {0, 1, ...}, i ∈ Sk: degree of favor for Si,
–– bRjk ∈ {0, 1, ...}, j ∈ Rk: degree of favor for Rj,
–– bCk : priority of operation of Ck.

•  • Student Uℓ (l ∈ L):
–– CSℓ (⊂ K): a set of registered classes.

•  • Lecturer Lm (m ∈ M):
–– CLm(⊂ K): a set of operable classrooms,
–– M

Q
m: a set of the classes which are desirable to be placed closely on a timetable,

–– MS
m: a set of the classes which are desirable to be placed separately on a timetable.

–– Here, the values of bSik, b
R
jk and bCk  are settled by the interview with the lecturers.
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Decision variables

Decision variables and dependent variables on them are defined as follows:

•  • Allocation of classroom Rj and time slot Si to class Ck: 

•  • Selection of the classes: 

•  • sk: the center of time slots of Ck.
•  • d

Q
kk ′, d

S
kk ′: difference of the time slots between Ck and Ck ′.

Constraints

In making a timetable, following constraints, where hard constraints and soft constraints 
are denoted with the symbols ‘⊲’ and ‘⋆’ respectively, should be taken into account. Here, 
every timetable is necessary to satisfy the hard constraints, whereas it need not always sat-
isfy the soft constraints. We first give the hard constraints:

⊲ Each class is assigned to ak time slots: 

⊲ Ck is operated in a succession of ak: time slots 

 These inequalities are able to express the constraints with ak ≤ 5.
⊲ The constraints on a dummy time slot: 

 Every class cannot be assigned on each dummy time slot.
⊲ A lecturer does not operate more than two classes at the same time slot. 

⊲ A lecturer does not operate more than two classes at the same classroom: 

⊲ Capacity of a classroom: 

xijk =

{

1: C k is operated on S i in R j ,
0: otherwise.

yk =

{

1: C k is operated in the period for makeup classes,
0: otherwise.

(1)

∑

i∈Sk

∑

j∈Rk

xijk = akyk , k ∈ K

(2)xijk − xi−1,jk − xi+1,jk ≤ 0, i ∈ I , j ∈ J , k|ak≥2 ∈ K

(3)xijk + xi+1,jk − xi−1,jk − xi+2,jk ≤ 1, i ∈ I , j ∈ J , k|ak≥4 ∈ K

(4)xijk = 0, i ∈ ID, j ∈ J , k ∈ K

(5)

∑

j∈J

∑

k∈CL
m

xijk ≤ 1, i ∈ I , m ∈ M

(6)

∑

k∈K

xijk ≤ 1, i ∈ I , j ∈ J

(7)

∑

k∈K

mkxijk ≤ pj , i ∈ I , j ∈ J
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Next, we denotes the soft constraints as follows:

⋆ A class is assigned to a time slot according to the degree of favor for it: 

⋆ A student does not attend more than two classes at the same time slot: 

 These constraints are originally classified as hard constraints. However, it is dif-
ficult to find the feasible schedule satisfying of them in the case of Toyama Prefec-
tural University. We therefore relax it and add a penalty term to the original objective 
functions.

⋆ Evaluation of degree of adjacency of the classes among MQ
m: 

⋆ Evaluation of degree of disjunctiveness of the time slots of the classes among MS
m: 

⋆ Evaluation of degree of avoidance of the slots in IE: 

⋆ Evaluation of degree of the priority of the class: 

Finally, we show the implicit constraints which cannot be represented in a linear ine-
quality form as follows:

(8)f A =
∑

k∈K

∑

i∈Sk

∑

j∈Rk

bSikxijk → maximize

(9)�iℓ =
∑

j∈J

∑

k∈CS
ℓ

xijk − 1, i ∈ I , ℓ ∈ L

(10)f B =
∑

i∈I

∑

l∈L

�iℓ → minimize

(11)sk =
1

ak

∑

i∈Sk

∑

j∈J

i · xijk , k ∈ K

(12)d
Q
kk ′ ≥ sk − sk ′ , k < k ′, k , k ′ ∈ MQ

m, m ∈ M

(13)d
Q
kk ′ ≥ sk ′ − sk , k < k ′, k , k ′ ∈ MQ

m, m ∈ M

(14)f C =
∑

m∈M

∑

k∈M
Q
m

∑

k ′ ∈ M
Q
m,

k ′ > k

d
Q
kk ′ → minimize

(15)dSkk ′ = sk ′ − sk , k < k ′, k , k ′ ∈ MS
m, m ∈ M

(16)f D =
∑

m∈M

∑

k∈MS
m

∑

k ′ ∈ MS
m,

k ′ > k

dSkk ′ → maximize

(17)
f E =

∑

i∈IE

∑

j∈J

∑

k∈K

xijk → minimize

(18)f F =
∑

k∈K

bCk yk → maximize
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⋆ Vacancy slots between the pair of the classes are not desirable for each student.
⋆ Constraint (10) is able to satisfied for the student by attending the class which is 
offered to the different department in the same faculty and also has the same course 
content. This movement can be reflected on the integer programming model by 
changing the value of CS

ℓ .
Equations (8), (10), (14), (16) and (18) have to be optimized (i.e., minimized or maxi-
mized) concurrently in order to achieve the timetable satisfying the all soft con-
straints. Therefore, the makeup class timetabling problem becomes a multiobjective 
optimization problem (Koksalan et al. 2011).

Iterative optimization method based on man–machine interaction
In this section, we model a procedure of interaction between an expert and a computer in 
making a timetable.

The original problem and its mathematical programming model

In our research, we focus on a problem, which cannot be formulated by existing math-
ematical programming models completely. Every optimization problem is originally mod-
eled into mathematical formulas, graph expression or computer languages by describing 
decision variables, parameters (i.e., constant values), constraints on the decision variables 
and objective functions.
In this paper, we give the following assumption in order to restrict our discussion on the 
university timetabling problem:

•	 the decision variables and the parameters can be described in a mathematical pro-
gramming manner completely.

Under this assumption, there exists the elements which cannot be formalized into a 
mathematical programming model among the constraints and the objective functions. 
Here, such constraints can be classified into the followings:

(A)	� The constraints which are described into mathematical formulas, and at the 
same time need not always be satisfied in making a timetable, and

(B)	� The constraints which cannot be formalized primarily. We call them implicit 
constraints.

As for the constraints of (A) (i.e., the soft constraints), it is a general approach to relax 
these constraints and to incorporate them into the objective functions where the degree 
of a violation of them is quantified and is minimized as shown in "Constraints". How-
ever, this problem deformation is equivalent to the multi-objectivization of the original 
problem, and it poses a problem of balancing multiple objective functions.

A solution space which is represented by the formulated constraints includes the origi-
nal solution space with implicit constraints in both case of (A) and (B).

Optimization process

We propose an optimization approach by newly introducing meta model for the prob-
lem described in "The original problem and its mathematical programming model". 
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Meta-model is a model which is allowed to include both the implicit constraints and the 
implicit objective functions. The implicit objective functions include the parameters which 
are difficult to be quantified. A mathematical programming model is generated by setting/
modifying these parameters by the operators.

On the other hand, the implicit constraints are reflected in the modifying process of 
the solutions generated by optimizing the acquired mathematical programming model. 
In other words, a computer processes the mathematical programming model, and an 
operator sets the values of the parameters of the meta-model and modifies the solution 
generated from the computer.

Figure 1 shows the proposed optimization process. In this figure, the following three 
steps are iterated:

1°	 Operators generate a mathematical programming model by setting the values of the 
parameters based on the reference of the solution X ′ acquired in the previous step in 
order to reflect the implicit objective functions.

2°	 A computer performs the optimization process and output a timetable X .
3°	 Operators directly modify the timetable X in order to reflect the implicit constraints.

These procedure can be illustrated in the solution space of Figure  1. In this figure, 
step 1° corresponds to generating a solution space M̂ which is drawn with a solid line. 
Step 2° outputs a solution X from a solution space M̂. X satisfies all hard constraints of 
Eqs. (1)–(7) and all soft constrains of Eqs. (8)–(18) under the parameters settled by the 
operators. Step 3° outputs a solution X ′ included in a solution space which corresponds 
to an original problem is shown with a broken line. X satisfies all hard constraints of 
Eqs.  (1)–(7) and all soft constrains of Eq.  (8). Meanwhile a conventional optimization 
process by utilizing a computer can be illustrated in Figure 2. In this figure, there does 

Meta model Mathematical
Model

Optimization
Algorithm

SolutionSolution
X X

Computer

Operator

ModificationParameter
Setting

Solution space M̂

Solution spaceM

SolutionX SolutionX

Meta model

Figure 1  Solution process for timetabling.
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not exist a meta-model explicitly, and exists one way process from a mathematical model 
to a modified solution X ′. It indicates that the optimization process possesses no feed 
back loops. This lack of feed back loops is thought to bring an obsolescence of the opti-
mization system associated with changes in environment. On the other hand, the pro-
posed method has the feedback loops explicitly, and the values of the model parameters 
are set/modified by the operators based on the current solutions generated by a math-
ematical programming solver. These values are listed in a CSV format, and the operator 
can edit them in a spreadsheet application in our experiments described in "Experi-
ments". In this paper, an integer programming model is used for the meta-model, and 
bSik, bRjk, bCk  correspond to the parameters in the implicit objective functions. These values 
are modified iteratively in the optimization loop after the interview with the lecturer.

An objective function defined as the weighted sum of the multiple objective func-
tions ( f A, . . . , f F described in "Constraints") which correspond to the soft constraints 
is newly introduced when we optimize the makeup class timetabling problem by using 
mathematical programming techniques such as branch-and-bound methods. The new 
objective function can be described as follows:

where wA, wD, wF < 0 and wB, wC, wE > 0. The weight parameters wA . . . , wF are also 
set and modified in the course of the iterative optimization process in Figure 1.

Experiments
In this section, we show the numerical experiments with the actual data to examine the 
performance of the proposed method. We used the timetabling data of Toyama Prefectural 
University from the second semester of 2013 to the second semester of 2014. Here, the 
decision of the classroom selection were excluded in this experiments in order to reduce 
the model size described in "Mathematical programming models and makeup class time-
tabling problem". One staff of the educational affairs section in Toyama Prefectural Uni-
versity scheduled a timetable by using our proposed method.

Problem specification

The problem specification we used is summarized as follows:

(19)wAf A + wBf B + wCf C + wDf D + wEf E + wFf F → minimize

Meta model Mathematical
Model

Optimization
Algorithm

SolutionSolution
X X

Computer

Operator

ModificationParameter
Setting

Figure 2  Solution process for timetabling (conventional).
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•	 The second semester of 2013 (we call SS2013)
–– Number of students: 994,
–– Number of slots arranged for makeup classes: 34,
–– Number of classes requested by the lecturers: 257.

•	 The first semester of 2014 (FS2014)
–– Number of students: 997,
–– Number of slots arranged for makeup classes: 36,
–– Number of classes requested by the lecturers: 280.

•	 The second semester of 2014 (SS2014)
–– Number of students: 997,
–– Number of slots arranged for makeup classes: 34,
–– Number of classes requested by the lecturers: 257.

We used IBM ILOG CPLEX12  (IBM Corp 2011) on a Core i5 (1.8GHz) computer 
for solving the integer programming model described in "Mathematical programming 
models andmakeup class timetabling problem". The branch-and-bound techniques 
are employed in it. The scheduling staff was instructed that it is allowed to terminate 
the optimization procedure by the computer after a dual gap, which is the difference 
between upper and lower bounds of the objective values, is less than 1%. The val-
ues of the upper and lower bounds can be found in the course of applying IBM ILOG 
CPLEX12. Figure 3 shows a screen shot of the implemented system.

Results

The model specification and the scheduling results are summarized as follows:

•	 SS2013
–– Number of variables: 41,472
–– Number of constraints: 45,259
–– Number of classes not operated in the period for the makeup classes: 8
–– Computational time (for each optimization by a computer): 1,088–5,384 s
–– Duplication of classes for the students [which is equal to �iℓ in Eq. (9)]: 12
–– Number of feedback loops for generation and evaluation of the timetables X : 240

Figure 3  A screen shot of the implemented system.
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•  • FS2014
–– Number of variables: 50,288
–– Number of constraints: 53,782
–– Number of classes not operated in the period for the makeup classes: 4
–– Computational time (for each optimization by a computer): 0.03–6,064 s
–– Duplication of classes for the students [which is equal to �iℓ in Eq. (9)]: 10
–– Number of feedback loops for generation and evaluation of the timetables X : 382

•  • SS2014
–– Number of variables: 43,153
–– Number of constraints: 46,876
–– Number of classes not operated in the period for the makeup classes: 1
–– Computational time (for each optimization by a computer): 0.00–41,324 s
–– Duplication of classes for the students: 35
–– Number of feedback loops for generation and evaluation of the timetables X : 134

The results by the conventional scheduling techniques (i.e., hand working) are 
obtained as a comparison from the hearing survey to the staff, and they are also sum-
marized as follows:

•	 The first semester of 2013 (we call FS2013)
∗ Number of students: 994,
∗ Total period of a makeup classes: 6 days
∗ Number of classes requested by the lecturers: 257

–– Number of classes not operated in the period for the makeup classes: 4
–– Duplication of classes for the students: 44

Figure 4 summarizes the operation time including both the operation by the staff and 
the computation by the computer. Here, the operation time is divided into the time for 
data input and for the parameter setting. In our all experiments, the modification of 
solution X by the operators was never occurred. On the other hand, the priority param-
eter bSik, and bCk  were updated by the operators with referring to X ′ in the optimization 
loop.
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Discussion

We conducted hearing surveys for the staffs after the experiments. We asked open-ended 
questions on the workloads and the contents of operation. From the hearing surveys and 
the results described in "Results", the following points are observed:

•  • The physical load for the staff was reduced to about a half of FS2013.
•  • Timetables with a few duplication of classes were acquired in early iterations in the 

optimization loop.
•  • The model parameters such as bSik, b

C
k  were modified by the operators in the optimi-

zation loop. On the other hand, the modification step of Figure 1 was not necessary 
for almost every iteration.

•  • Various timetables could be evaluated and compared by changing the model param-
eters.

•  • The computational time of the branch-and bound techniques can vary significantly 
depending on the model parameters corresponding to the implicit objective func-
tions.

•  • The requests from the lectures are different among the three data sets, and it pro-
vided significant differences on the computation time of the branch-and-bound algo-
rithm.

•  • The staffs could attend some other duties during the optimization process by a com-
puter.

•  • Every acquired schedule was actually conducted in Toyama Prefectural University.

Conclusions
In this paper, we focus on a timetabling problem of university makeup classes and con-
struct a scheduling system based on man–machine interaction. Makeup classes which 
are requested by the lecturers have to be assigned to a specified time slot under the hard 
and soft constraints. A constraint based scheduling model is newly introduced and several 
parameters of the model are settled through the repetition of the solution evaluation by the 
operators. Through the numerical experiment with the actual data, workloads of the oper-
ators could be reduced to about a half of the case of the conventional hand working, and 
timetables with a few duplication of classes could be obtained. Every acquired timetables 
by the proposed method had a potential to be conducted in the actual use environment.

In our studies, the following issues have left to be investigated:

•  • Visualization of the factors which provides infeasible solutions in the constraints,
•  • Reduction of the computational costs by a computer, and
•  • Construct an expert model which can optimize the parameters of the meta model as 

an agent.
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