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Abstract
We investigate factorizations of modified Helmholtz equations in Clifford algebra
Cl(V3,3). Using the method of fundamental solutions for modified Helmholtz
equations and Clifford calculus, we obtain some integral representation theorem in
Clifford analysis. The boundedness of singular integral operators in Hölder space is
given. Moreover, we establish solvability conditions of Riemann type problems for
modified Helmholtz equations in Clifford analysis. As applications, we solve a kind of
singular integral equations. The explicit representation of the solution is also given.
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1 Introduction
As we know, the Helmholtz equations can be regarded as a generalization of the Sturm-
Liouville equation to higher dimensions. The research on the Helmholtz equations �u ±
κu =  has drawn the attention of some physicists and mathematicians, we refer to [–
]. Using a new transform method, Fokas, ben-Avraham and Antipov translate some im-
portant boundary value problems for linear and for integral nonlinear partial differential
equations in physical plane to the corresponding modified Helmholtz equations. Novel
integral representations for the solution of the Helmholtz and the modified Helmholtz
equations formulated in the interior of a convex polygon are presented. These representa-
tions provide the basis for the development of certain analytical and numerical techniques
for diffusion-limited coalescence, see [–] for more details. This article focuses on mod-
ified Helmholtz equations in Clifford analysis.

The Clifford approach is a powerful mathematical tool for the treatment of partial differ-
ential equations in higher dimensions, see [–, , –]. Maxwell’s equations in physics
are the fundamental equations of electromagnetism and are recast into Helmholtz equa-
tions by using the Clifford approach, which is different from the vector calculus method.
The electric and magnetic fields are treated together, both encoded as bi-vector into one
part of a four-dimensional Clifford number in Clifford approach; we mention here [, –
]. It is natural to consider boundary value problems theory for Helmholtz equations and
modified Helmholtz equations in higher dimensions, for instance, Riemann type prob-
lems, Dirichlet type problems, and so on. Besides the pure mathematical interest, these
results are necessary for concrete problems in physics and engineering [, ]. In [], Rie-

© 2015 Gu and Fu. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-015-0487-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-015-0487-1&domain=pdf
mailto:fuzunwei@lyu.edu.cn


Gu and Fu Boundary Value Problems  (2015) 2015:217 Page 2 of 17

mann type problems for Helmholtz equations in the framework of Clifford algebra Cl(Vn,)
are considered. Based on some ideas from [], Riemann type problems for Helmholtz
equations in Hermitian Clifford analysis are studied in []. However, to the best of our
knowledge, some boundary value problems for modified Helmholtz equations and their
applications in integral equations in the framework of Clifford algebra Cl(Vn,n) (n ≥ )
have not been considered. The main motivation is that the modified Helmholtz opera-
tor has been exactly factorized by means of the so-called ±κ-Dirac operators (κ > ) i.e.,
� – κ = (D + κ)(D – κ) in the Clifford algebra Cl(V,).

In this article, motivated by [, ], in the framework of Clifford algebra Cl(V,), we
obtain second order generalized integral representations and solve some Dirichlet type
problems for modified Helmholtz equations. We define some integral operators which
are the generalization of classical Cauchy type integral operators, Teodorescu operators
in Clifford analysis, and we study some properties of them. Finally, we study Riemann type
problems for modified Helmholtz equations and give some applications.

2 Preliminaries
Let V, be an -dimensional real linear space with basis {e, e, e}, Cl(V,) be the Clifford
algebra over V, and the -dimensional real linear space with basis

{
eA, A = {l, . . . , lr} ∈PN ,  ≤ l < · · · < lr ≤ 

}
,

where N stands for the set {, , } and PN denotes the family of all order-preserving
subsets of N in the above way. Now denote e∅ by e and el···lr by eA for A = {l, . . . , lr} ∈PN .
The product on Cl(V,) is defined by

⎧
⎪⎨

⎪⎩

eAeB = (–)n((A∩B)\N)(–)P(A,B)eA�B, if A, B ∈PN ,
λμ =

∑
A,B∈PN λAμBeAeB, if λ =

∑
A∈PN λAeA,

μ =
∑

B∈PN μBeB,
(.)

where n(A) is the cardinal number of the set A, the number P(A, B) =
∑

j∈B P(A, j), P(A, j) =
n{i, i ∈ A, i > j}, the symmetric difference set A�B is order-preserving in the above way, and
λA ∈ R is the coefficient of the eA-component of the Clifford number λ. It follows from the
multiplication rule above that e is the identity element written now as  and, in particular,

{
e

i = , if i = , , ,
eiej = –ejei, if  ≤ i < j ≤ .

(.)

Thus Cl(V,) is a real linear, associative, but non-commutative algebra. An involution is
defined by

{
eA = (–)

n(A)(n(A)+)
 eA, if A ∈PN ,

λ =
∑

A∈PN λAeA, if λ =
∑

A∈PN λAeA.
(.)

In view of the multiplication rule (.) and the definition of the involution (.), it is easy
to check that

{
ei = ei, if i = , , , ,
λμ = μλ, for any λ,μ ∈ Cl(V,).

(.)
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The norm of λ is defined by ‖λ‖ = (
∑

A∈PN |λA|) 
 . Throughout this article, suppose

� is an open bounded non-empty subset of R with a Lyapunov boundary ∂�, denote
�+ = �, �– = R

 \ �. We now introduce the Dirac operator D =
∑

i= ei
∂

∂xi
. In particular,

we have DD = � where � is the Laplacian over R. A function u : � 	→ Cl(V,) is said to
be left monogenic if it satisfies the equation D[u](x) =  for each x ∈ �. A similar definition
can be given for right monogenic functions. Elementary properties of the Dirac operators
and left monogenic functions can be found in [, , –].

The elliptic partial differential operator H = (�–κ), for κ > , corresponds to the mod-
ified Helmholtz equation:

Hu =
(
� – κ)u = , (.)

which has as fundamental solution the function

E
(
x,κ) =

e–κ‖x‖

π‖x‖ . (.)

We defined the operators Lκ , L–κ as follows:

Lκu = Du + κu, L–κu = Du – κu.

By the multiplication rule on Clifford algebra Cl(V,), the modified Helmholtz equation
may be written as

LκL–κu = L–κLκu = .

Denote

K(x, y,κ) =


π

(
y – x

‖y – x‖ +
κ(y – x)
‖y – x‖ +

κ

‖y – x‖
)

e–κ‖y–x‖, (.)

K∗(x, y,κ) =


π

(
y – x

‖y – x‖ +
κ(y – x)
‖y – x‖ –

κ

‖y – x‖
)

e–κ‖y–x‖, (.)

where y – x =
∑

i=(yi – xi)ei. It is clear that K(x, y,κ) and K∗(x, y,κ) are fundamental
solutions of Lκ =

∑
i= ei

∂
∂yi

+ κ and L–κ =
∑

i= ei
∂

∂yi
– κ , respectively.

3 Integral representation formulas and some properties of generalized Cauchy
integral operators

Let � be an open bounded nonempty subset of R with a Lyapunov boundary ∂�, u(x) =
∑

A eAuA(x), where uA(x) are real functions. u(x) is called a Hölder continuous functions
on � if the following condition is satisfied:

∥∥u(x) – u(x)
∥∥ =

[∑

A

∥∥uA(x) – uA(x)
∥∥
] 

 ≤ C‖x – x‖α ,

where for any x, x ∈ �, x �= x,  < α ≤ , C is a positive constant independent of x, x.
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Denote by Hα(∂�, Cl(V,)) the set of Hölder continuous functions with values in
Cl(V,) on ∂� (the Hölder exponent is α,  < α < ). Define the norm of u in Hα(∂�,
Cl(V,)) as

‖u‖(α,∂�) = ‖u‖∞ + ‖u‖α , (.)

where ‖u‖∞ := supx∈∂� ‖u(x)‖, ‖u‖α := supx,x∈∂�
x �=x

‖u(x)–u(x)‖
‖x–x‖α .

Lemma . [] The Hölder space Hα(∂�, Cl(V,)) is a Banach space with norm (.).

Lemma . Let f , g ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)). Then

∫

∂�

f dσyg =
∫

�

[f ]Lκg dV +
∫

�

fL–κ [g] dV =
∫

�

[f ]L–κg dV +
∫

�

fLκ [g] dV .

Proof From Stokes’ theorem in Clifford analysis in [], the results can be directly proved.
�

Theorem . If u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)) where � is an open bounded
nonempty subset of R with a Lyapunov boundary ∂�, then

∫

∂�

K∗(x, y,κ) dσyu(y) +


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y)

–


π

∫

�

e–κ‖y–x‖

‖y – x‖ H[u](y) dV =

{
u(x), x ∈ �,
, x ∈ R

 \ �,
(.)

where K∗(x, y,κ) is as in (.).

Proof Let x ∈R
 \ �. Using Lemma ., we get


π

∫

�

e–κ‖y–x‖

‖y – x‖ H[u](y) dV

=


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y) –


π

∫

�

[
e–κ‖y–x‖

‖y – x‖
]

LκLκ [u](y) dV

=


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y) +
∫

�

K∗(x, y,κ)Lκ [u](y) dV

=


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y) +
∫

∂�

K∗(x, y,κ) dσyu(y).

Then the left-hand side of (.) apparently equals zero.
Now, let x ∈ � and take r >  such that B(x, r) ⊂ �. Invoking the previous case, we may

then write

∫

∂(�\B(x,r))
K∗(x, y,κ) dσyu(y) +


π

∫

∂(�\B(x,r))

e–κ‖y–x‖

‖y – y‖ dσyLκ [u](y)

–


π

∫

�\B(x,r)

e–κ‖y–x‖

‖y – y‖ H[u](y) dV = . (.)
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Here we take the limits for r → . As regards the weak singularity of e–κ‖y–x‖
‖y–x‖ , the third

term of (.) yields

lim
r→

∫

�\B(x,r)

e–κ‖y–x‖

‖y – x‖ H[u](y) dV =
∫

�

e–κ‖y–x‖

‖y – x‖ H[u](y) dV . (.)

Furthermore we write

∫

∂(�\B(x,r))
K∗(x, y,κ) dσyu(y) +


π

∫

∂(�\B(x,r))

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y)

=
∫

∂�

K∗(x, y,κ) dσyu(y) +


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y)

–
∫

∂B(x,r)
K∗(x, y,κ) dσyu(y) –


π

∫

∂B(x,r)

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y). (.)

We denote


(x) �
∫

∂B(x,r)
K∗(x, y,κ) dσyu(y) +


π

∫

∂B(x,r)

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y). (.)

It follows from the Stokes formula that


(x) =
e–κr

πr

∫

B(x,r)
u(y) dV +

κe–κr

πr

∫

B(x,r)
u(y) dV

+
e–κr

πr

∫

B(x,r)
(y – x)D[u](y) dV +

κe–κr

πr

∫

B(x,r)
(y – x)D[u](y) dV

+
e–κr

πr

∫

B(x,r)
�[u](y) dV . (.)

Applying the Lebesgue differentiation theorem, we have

lim
r→


(x) = u(x). (.)

Combining (.) with (.)-(.), we get the desired result. �

Theorem . If u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)) where � is an open bounded
nonempty subset of R with a Lyapunov boundary ∂�, then

∫

∂�

K(x, y,κ) dσyu(y) +


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyL–κ [u](y)

–


π

∫

�

e–κ‖y–x‖

‖y – x‖ H[u](y) dV =

{
u(x), x ∈ �,
, x ∈ R

 \ �,
(.)

where K(x, y,κ) is as in (.).

Proof The result can be similarly proved to Theorem .. �
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Corollary . If u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)) where � is an open bounded
nonempty subset of R with a Lyapunov boundary ∂� and H[u] = LκL–κ [u] =  in �, then

∫

∂�

K(x, y,κ) dσyu(y) +


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyL–κ [u](y) =

{
u(x), x ∈ �,
, x ∈R

 \ �,
(.)

where K(x, y,κ) is as in (.).

Corollary . If u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)) where � is an open bounded
nonempty subset of R with a Lyapunov boundary ∂� and H[u] = L–κLκ [u] =  in �, then

∫

∂�

K∗(x, y,κ) dσyu(y) +


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y) =

{
u(x), x ∈ �,
, x ∈R

 \ �,
(.)

where K∗(x, y,κ) is as in (.).

Corollary . Let f (x) ∈ C
c (�, Cl(V,)). The solution of the following Dirichlet boundary

value problem:

⎧
⎪⎨

⎪⎩

Hu = f , in �,
Lκ [u] = , on ∂�,
u = , on ∂�,

(.)

is

u(x) = –


π

∫

�

e–κ‖y–x‖

‖y – x‖ f (y) dV . (.)

Proof By Theorem ., the solution of (.) is formulated as

u(x) =
∫

∂�

K∗(x, y,κ) dσyu(y) +


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyLκ [u](y)

–


π

∫

�

e–κ‖y–x‖

‖y – x‖ H[u](y) dV , (.)

since Lκ [u] =  and u =  on ∂�, the result follows. �

Using Theorem ., we also have the following result which can be similarly proved to
Corollary ..

Corollary . Let f (x) ∈ C
c (�, Cl(V,)). The solution of the Dirichlet boundary value

problem

⎧
⎪⎨

⎪⎩

Hu = f , in �,
L–κ [u] = , on ∂�,
u = , on ∂�,

(.)

is

u(x) = –


π

∫

�

e–κ‖y–x‖

‖y – x‖ f (y) dV . (.)



Gu and Fu Boundary Value Problems  (2015) 2015:217 Page 7 of 17

Next, we introduce the following generalized Teodorescu operatorsT±κ , the generalized
Cauchy integral operators F±κ , and the generalized Cauchy singular integral operators
S±κ :

Tκ [u](x) � –
∫

�

K∗(x, y,κ)u(y) dV , x ∈ �, (.)

T–κ [u](x) � –
∫

�

K(x, y,κ)u(y) dV , x ∈ �, (.)

Fκ [u](x) �
∫

∂�

K∗(x, y,κ) dσyu(y), x ∈R
 \ ∂�, (.)

F–κ [u](x) �
∫

∂�

K(x, y,κ) dσyu(y), x ∈R
 \ ∂�, (.)

Sκ [u](x) � 
∫

∂�

K∗(x, y,κ) dσyu(y), x ∈ ∂�, (.)

S–κ [u](x) � 
∫

∂�

K(x, y,κ) dσyu(y), x ∈ ∂�, (.)

where κ ≥ , u ∈ Hα(∂�, Cl(V,)).

Lemma . [] Let � be an open nonempty bounded subset ofR with a Lyapunov bound-
ary ∂�, u ∈ Hα(∂�, Cl(V,)),  < α ≤ . Then

lim
x→x∈∂�

x∈�

Fκ [u](x) =
u(x)


+



Sκ [u](x), (.)

lim
x→x∈∂�

x∈R\�

Fκ [u](x) = –
u(x)


+



Sκ [u](x), (.)

lim
x→x∈∂�

x∈�

F–κ [u](x) =
u(x)


+



S–κ [u](x), (.)

lim
x→x∈∂�

x∈R\�

F–κ [u](x) = –
u(x)


+



S–κ [u](x). (.)

Theorem . Let � be an open bounded non-empty subset of R with a Lyapunov bound-
ary ∂�, u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)). Then for x ∈ �,

LκTκ [u](x) = u(x). (.)

Proof Step . Because u(x) has its compact support supp[u] ��, we have

Tκ [u](x) = –
∫

�

K∗(x, y,κ)u(y) dV

= –
∫

R
K∗(x, y,κ)u(y) dV

= –
∫

R
K∗(x, y + x,κ)u(y + x) dV .
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In view of u(x) having a compact support, the operator Lκ acting on Tκ [u](x) may be
interchanged with integration. Thus we get

LκTκ [u](x) = – lim
r→

∫

R\B(,r)

[ ∑

i=

ei
∂

∂xi

[
K∗(x, y + x,κ)u(y + x)

]

+ κK∗(x, y + x,κ)u(y + x)

]

dV

= – lim
r→

∫

R\B(,r)

[ ∑

i=

eiK∗(x, y + x,κ)
∂

∂xi
u(y + x)

+ κK∗(x, y + x,κ)u(y + x)

]

dV

= – lim
r→

∫

R\B(,r)

[ ∑

i=

eiK∗(x, y + x,κ)
∂

∂yi
u(y + x)

+ κK∗(x, y + x,κ)u(y + x)

]

dV

= – lim
r→

∫

R\B(,r)

[ ∑

i=

ei
∂

∂yi

[
K∗(x, y + x,κ)u(y + x)

]
]

dV .

Using the Stokes formula, we conclude that

LκTκ [u](x) = lim
r→

∫

‖y‖=r
dσyK∗(x, y + x,κ)u(y + x)

= lim
r→

∫

‖y‖=r
dσyK∗(x, y + x,κ)

[
u(y + x) – u(x)

]

+ lim
r→

∫

‖y‖=r
dσyK∗(x, y + x,κ)u(x)

= lim
r→


π

∫

‖y‖=r
dσy

(
y

‖y‖ +
κy

‖y‖ –
κ

‖y‖
)

e–κ‖y‖u(x)

= lim
r→

(
e–κr

πr

∫

‖y‖≤r
dV +

κe–κr

πr

∫

‖y‖≤r
dV

)
u(x)

= u(x). (.)

Thus we have proved that (.) follows for any u(x) ∈ C
c (�, Cl(V,)).

Step . We prove that (.) holds for any u(x) ∈ C(�, Cl(V,)). We take a neighborhood
V of x such that x ∈ V � �, a real-valued function � ∈ C∞(�) such that �|V =  and
supp� � �. Then

u(x) = u� + u( – �) := u(x) + u(x).

It is obvious that u(x) ∈ C
c (�, Cl(V,)), u(x) ∈ C(�, Cl(V,)) and u|V = u, u|V = .

Following step , we obtain

LκTκ [u](x) = u(x) = u(x), x ∈ V . (.)



Gu and Fu Boundary Value Problems  (2015) 2015:217 Page 9 of 17

Since u(x) equals zero in V , we get

LκTκ [u](x) = Lκ

[
–

∫

�

K∗(x, y,κ)u(y) dV
]

= Lκ

[
–

∫

�\V
K∗(x, y,κ)u(y) dV

]

= . (.)

It follows from (.) and (.) that

LκTκ [u](x) = u(x). (.)

Because x is taken arbitrarily in �, the result follows. �

Corresponding to Theorem ., we have the following theorem.

Theorem . Let � be an open bounded non-empty subset of R with a Lyapunov bound-
ary ∂�, u ∈ C(�, Cl(v,)) ∩ C(�, Cl(V,)). Then for x ∈ �,

L–κT–κ [u](x) = u(x). (.)

In the following, we need to consider Hölder’s boundedness of the singular integral op-
erators S±κ . It is necessary to solve the following boundary value problems in Clifford
analysis.

Theorem . Let � be an open nonempty bounded subset of R
 with a Lyapunov

boundary ∂�. Then the generalized Cauchy integral operator Sκ : Hα(∂�, Cl(V,)) 	→
Hα(∂�, Cl(V,)) defined by (.) is bounded, i.e.

∥∥Sκ [u]
∥∥

(α,∂�) ≤ C‖u‖(α,∂�), (.)

where C = max{C
π

η–α(|∂�|+ 
–α

) + C, C(|∂�|+η+η)
πη

+ κ(Cη+C|∂�|)
η

} and |∂�| denotes the
surface area of �.

Proof For x ∈ ∂�, we have

∥∥Sκ [u](x)
∥∥ =

∥∥∥∥


π

∫

∂�

[
y – x

‖y – x‖ +
κ(y – x)
‖y – x‖ –

κ

‖y – x‖
]

e–κ‖y–x‖ dσyu(y)
∥∥∥∥

≤
∥∥∥∥


π

∫

∂�

κ(y – x)
‖y – x‖ e–κ‖y–x‖ dσyu(y)

∥∥∥∥

+
∥∥∥∥


π

∫

∂�

κ

‖y – x‖e–κ‖y–x‖ dσyu(y)
∥∥∥∥

+
∥∥∥∥


π

∫

∂�

y – x
‖y – x‖ e–κ‖y–x‖ dσyu(y)

∥∥∥∥

:= J + J + J. (.)
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Since ∂� is Lyapunov boundary, the normal vector n is continuous on ∂�. Therefore, we
can choose  < η ≤  such that for the scalar product

(
n(x); n(y)

) ≥ 


(.)

for all x, y ∈ ∂� with ‖y – x‖ ≤ η. It is enough to consider the case of ‖y – x‖ being suffi-
ciently small such that the set ∂L � {y ∈ ∂� : ‖y – x‖ ≤ η} is connected for each x ∈ ∂�.
Then the condition (.) implies that ∂L can be bijective into the tangent plane to ∂� at
the point x. Using polar coordinates (r,ω) in the tangent plane with origin in x, for any
u ∈ Hα(∂�, Cl(V,)), we arrive at

∥∥∥∥

∫

∂L

κ(y – x)
‖y – x‖ e–κ‖y–x‖ dσyu(y)

∥∥∥∥ ≤ κC‖u‖∞
∫

∂L


‖y – x‖ dS ≤ πκC‖u‖∞

∫ η


dr

= πκCη‖u‖∞, (.)

where C, C denote nonnegative constants which are independent of u. Here we use the
facts that ‖x – y‖ ≥ r, that the surface element

dS =
r dr dω

(n(x), x(y))
(.)

can be estimated with the aid of (.) by dS ≤ r dr dω, and that the projection ∂L into
the tangent plane is contained in the interior of the sphere of radius η and center x. Fur-
thermore,

∥∥∥∥

∫

∂�\∂L

κ(y – x)
‖y – x‖ e–κ‖y–x‖ dσyu(y)

∥∥∥∥ ≤ πκC‖u‖∞
∫

∂�\∂L
η– dS

≤ πκC‖u‖∞η–|∂�|, (.)

where |∂�| is the surface area of �. Inequalities (.) with (.) imply

J ≤ κCη
 + κC|∂�|

η
‖u‖∞. (.)

Using a similar method to the proof of J, we obtain

J ≤ κCη
 + κC|∂�|

η
‖u‖∞. (.)

Now we estimate J. Combining u ∈ Hα(∂�, Cl(V,)) with


π

∫

∂�

y – x
‖y – x‖ dσy =




, for x ∈ ∂�,

we have

J ≤
∥∥∥∥


π

∫

∂�

y – x
‖y – x‖ dσy

[
e–κ‖y–x‖(u(y) – u(x)

)]
∥∥∥∥

+
∥∥∥∥


π

∫

∂�

y – x
‖y – x‖ dσy

[
u(x)e–κ‖y–x‖ – u(x)

]
∥∥∥∥ +

∥∥u(x)
∥∥
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≤ C‖u‖α


π

∫

∂�


‖y – x‖–α

dS + C


π
‖u‖∞

∫

∂�


‖y – x‖ dS + ‖u‖∞

≤ C

π

(∫

∂�\∂L


‖y – x‖–α

dS +
∫

∂L


‖y – x‖–α

dS
)

‖u‖α

+
C

π

(∫

∂�\∂L


‖y – x‖ dS +

∫

∂L


‖y – x‖ dS

)
‖u‖∞ + ‖u‖∞

≤ C

π

(
η–α|∂�| +

η–α

 – α

)
‖u‖α +

C

π

(
η–|∂�| + η + 

)‖u‖∞. (.)

Combining (.), (.), (.), and (.), we get

∥∥Sκ [u]
∥∥∞ ≤ C

π
η–α

(
|∂�| +


 – α

)
‖u‖α

+
[

C(|∂�| + η + η)
πη

+
κ(Cη

 + C|∂�|)
η

]
‖u‖∞, (.)

where C, C, C denote nonnegative constants which are independent of u.
On the other hand, for x, x ∈ ∂�, it is enough to consider the case of ‖x – x‖ being

sufficiently small. It is obvious that

e–κ‖y–xi‖u(y) ∈ Hα
(
∂� × ∂�, Cl(V,)

)
, i = , ,

and

‖y – x‖e–κ‖y–xi‖u(y) ∈ Hα
(
∂� × ∂�, Cl(V,)

)
, i = , .

Applying some properties of the Hilbert transform in Clifford analysis (see [, , , ])
and the weak singularity of y–x

‖y–x‖ and 
‖y–x‖ , we conclude

∥∥Sκ [u](x) – Sκ [u](x)
∥∥ ≤ C‖u‖α‖x – x‖α , (.)

where C is a nonnegative constant independent of x and x. It follows from (.) and
(.) that

∥∥Sκ [u]
∥∥

(α,∂�) ≤ C‖u‖(α,∂�),

where C = max{C
π

η–α(|∂�| + 
–α

) + C, C(|∂�|+η+η)
πη

+ κ(Cη+C|∂�|)
η

}. The proof is com-
plete. �

Remark . By the same technique we obtain the following result that the generalized
Cauchy integral operator S–κ : Hα(∂�, Cl(V,)) 	→ Hα(∂�, Cl(V,)) defined by (.) is
bounded.

Remark . We assume u ∈ Hα(∂�, Cl(V,)). All integrals are understood in the Rie-
mann integral sense in Lemma . and Theorem .. Now, let Lp(∂�, Cl(V,)),  ≤ p < ∞
be the space of all Clifford algebra valued functions, whose pth power is Lebesgue inte-
grable in ∂�. If u ∈ Lp(∂�, Cl(V,)) then one has to understand F±κ as a Lebesgue integral,



Gu and Fu Boundary Value Problems  (2015) 2015:217 Page 12 of 17

and the necessary changes can be easily made. For instance, the limits exist almost every-
where on ∂� with respect to the surface Lebesgue measure in Lemma .. Using classical
Calderón-Zygmund theory, an Lp formulation of Theorem . holds.

In the framework of Clifford algebra Cl(V,), we come back to the modified Helmholtz
equation (� – κ)[u](x) = , x ∈ �. By Theorem ., Theorem ., Theorem ., and
Theorem ., we have the following theorem.

Theorem . Suppose that � is an open nonempty bounded subset ofR with a Lyapunov
boundary ∂�, f , g ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)), L–κ [f ] =  and Lκ [g] =  in �. Then
the function u(x) is determined by

u(x) = Tκ [f ](x) + g(x) (.)

or

u(x) = T–κ [g](x) + f (x). (.)

Conversely, suppose u(x) ∈ C(�, Cl(V,)) and u(x) is a solution of the modified Helmholtz
equation. Then u may be represented by (.) or (.), where L–κ [f ] =  and Lκ [g] = 
in �.

4 Some boundary value problems for modified Helmholtz equations and its
application

We consider the following Riemann type problem now:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hu = , in R
 \ ∂�,

u+(x) = u–(x)f (x) + g(x), x ∈ ∂�,
Lκ [u]+(x) = Lκ [u]–(x)A + g(x), x ∈ ∂�,
lim‖x‖→∞ u(x) = ,

(.)

where A is any invertible Clifford constant. g(x), g(x), and f (x) are Clifford value func-
tions in Hα(∂�, Cl(V,)),  < α < , H = � – κ, κ ≥ . We establish solvability conditions
of the Riemann type problem (.).

Theorem . Suppose f (x), g(x), g(x) ∈ Hα(∂�, Cl(V,)),  < α < , and f (x) satisfies the
following condition:

∥∥ – f (x)
∥∥

(α,∂�) <


C + 
, (.)

where C is a positive constant mentioned in Theorem .. Then there exists a unique so-
lution to the Riemann type problem (.).

Proof Combining H[u](x) = L–κ [Lκ [u]](x) =  and u(∞) = , we easily check L–κ [u](x) = 
and ω(∞) = . Let ω(x) = Lκ [u](x). Then

ω+(x) = ω–(x)A + g(x), x ∈ ∂� (.)
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holds. Furthermore, we obtain

ω(x) =

{∫
∂�

K(x, y,κ) dσyg(y), x ∈ �+,
∫
∂�

K(x, y,κ) dσyg(y)A–, x ∈ �–.
(.)

Let

u(x) =

{


π

∫
∂�

e–κ‖y–x‖
‖y–x‖ dσyg(y), x ∈ �+,


π

∫
∂�

e–κ‖y–x‖
‖y–x‖ dσyg(y)A–, x ∈ �–.

(.)

It is easy to see that

Lκ [u – u](x) = , x ∈R
 \ ∂�. (.)

Denote u(x) – u(x) := ϕ(x), x ∈ R
 \ ∂�, applying the transmission condition

u+(x) = u–(x)f (x) + g(x), x ∈ ∂�,

we have

ϕ+(x) = ϕ–(x)f (x) + g̃(x), x ∈ ∂�, (.)

where

g̃(x) = g(x) –

ω

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyg(y) +

ω

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyg(y)A–f (x).

It is clear that g̃(x) ∈ Hα(∂�, Cl(V,)),  < α < . We have ϕ(∞) = . Combining (.) with
(.), we have

{
Lκ [ϕ] = , in R

 \ ∂�,
ϕ+(x) = ϕ–(x)f (x) + g̃(x), x ∈ ∂�,ϕ(∞) = .

(.)

We only need to consider the existence of solutions to (.). The solution to this problem
may be written in the form

ϕ(x) =
∫

∂�

K∗(x, y,κ) dσyϕ(y), (.)

where ϕ(y) is a Hölder continuous function to be determined on ∂�. Using Lemma .,
(.) can be reduced to an equivalent singular integral equation for ϕ,

ϕ(x) =
[

ϕ(x)


–
∫

∂�

K∗(x, y,κ) dσyϕ(y)
](

 – f (x)
)

+ g̃(x). (.)

We set

(Tϕ)(x) =
[
ϕ(x) – (Sκϕ)(x)

] ( – f (x))


+ g̃(x). (.)
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For any ω,ω ∈ Hα(∂�, Cl(V,)),

‖Tω – Tω‖(α,∂�) ≤ ‖ω – ω‖(α,∂�)‖ – f ‖(α,∂�)( + C). (.)

From (.), the integral operator T is a contraction operator mapping the Banach space
Hα(∂�, Cl(V,)) into itself. Then the operator T has a unique fixed point. Thus there exists
a unique solution to (.). The proof is finished. �

Remark . In the above Theorem ., the existence and uniqueness of solutions of the
Riemann type problem for the modified Helmholtz equation with variable coefficient i.e.,
f (x) ∈ Hα(∂�, Cl(V,)) is illustrated. Particularly, when f (x) is just an invertible Clifford
constant, for the boundary value problem (.) there exists a unique solution. Moreover,
we have obtained an explicit representation of solutions in [].

As applications, using Lemma . and the results of the boundary value problem, we
consider two kinds of singular integral equations and obtain their explicit representations
of solutions.

Theorem . Consider the singular integral equation:

u(x)A + 
∫

∂�

K∗(x, y,κ) dσyu(y)B = f (x), x ∈ ∂� ⊂R
, (.)

where f (x) ∈ Hα(∂�, Cl(V,)), B is a non-zero Clifford constant, A + B and A – B are in-
vertible Clifford constants, and (A + B)– and (A – B)– are invertible elements, respectively.
Then:

. If u(x) ∈ Hα(∂�, Cl(V,)) is a solution to (.), and

F∗(x) =
∫

∂�

K∗(x, y,κ) dσyu(y), x ∈R
 \ ∂�, (.)

then

F
+
∗(x) = F

–
∗(x) · (A – B)(A + B)– + f (x)(A + B)–, x ∈ ∂� (.)

and

lim‖x‖→∞F∗(x) = . (.)

. Assume F∗(x) is solution of Riemann type problem (.) and Lκ [F∗](x) = ,
x ∈R

 \ ∂�, F+∗(x),F–∗(x) ∈ Hα(∂�, Cl(V,)). Let

u(x) = F
+
∗(x) – F

–
∗(x).

Then u(x) is the solution of the singular equation (.) u(x) ∈ Hα(∂�, Cl(V,)).

Proof . Using Lemma ., we have

F
+
∗(x) =

u(x)


+
∫

∂�

K∗(x, y,κ) dσyu(y), (.)
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F
+
∗(x) = –

u(x)


+
∫

∂�

K∗(x, y,κ) dσyu(y). (.)

Combining (.) with (.), we get

[
F

+
∗(x) – F

–
∗(x)

]
A +

[
F

+
∗(x) + F

–
∗(x)

]
B = f (x) (.)

i.e.,

F
+
∗(x) = F

–
∗(x) · (A – B)(A + B)– + f (x)(A + B)–, x ∈ ∂�. (.)

It is clear that F(∞) = . The result follows.
. In view of Theorem . and Remark ., we obtain

F∗(x) =
∫

∂�

K∗(x, x,κ) dσyu(y). (.)

By Lemma ., we get

F
+
∗(x) =

u(x)


+
∫

∂�

K∗(x, y,κ) dσyu(y), (.)

F
–
∗(x) = –

u(x)


+
∫

∂�

K∗(x, y,κ) dσyu(y). (.)

Combining (.), (.), and (.), the result follows. �

Theorem . The singular integral equation (.) is solvable in Hα(∂�, Cl(V,)) and the
solution may be represented by the following formula:

u(x) =
f (x)


[
(A + B)– + (A – B)–]

+
∫

∂�

K∗(x, y,κ) dσyf (y)
[
(A + B)– – (A – B)–], x ∈ ∂�. (.)

Proof In view of Theorem ., we consider the following Riemann boundary value prob-
lem:

⎧
⎪⎨

⎪⎩

Lκ [F] = , in R
 \ ∂�,

F+∗(x) = F–∗(x) · (A – B)(A + B)– + f (x)(A + B)–, x ∈ ∂�,
F∗(∞) = .

(.)

We have

F∗(x) =

{∫
∂�

K∗(x, y,κ) dσyf (y)(A + B)–, x ∈ �+,
∫
∂�

K∗(x, y,κ) dσyf (y)(A – B)–, x ∈ �–.
(.)

Using again Theorem ., the proof is complete. �
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Remark . When A = , the singular integral equation (.) is solvable in Hα(∂�,
Cl(V,)) and the solution may be represented by the following formula:

u(x) = 
∫

∂�

K∗(x, y,κ) dσyf (y)B–, x ∈ ∂�.

The following theorems can be similarly proved as Theorem . and Theorem ..

Theorem . Consider the singular integral equation:

u(x)C + 
∫

∂�

K(x, y,κ) dσyu(y)D = f (x), x ∈ ∂� ⊂R
, (.)

where f (x) ∈ Hα(∂�, Cl(V,)), D is a non-zero Clifford constant, C + D and C – D are in-
vertible Clifford constants, and (C +D)– and (C –D)– are invertible elements, respectively.
Then:

. If u(x) ∈ Hα(∂�, Cl(V,)) is a solution to (.), set

F(x) =
∫

∂�

K(x, y,κ) dσyu(y), x ∈R
 \ ∂�. (.)

Then

F
+
 (x) = F

–
 (x) · (A – B)(A + B)– + f (x)(A + B)–, x ∈ ∂� (.)

and

lim‖x‖→∞F(x) = . (.)

. Conversely, if F(x) is solution of Riemann type problem (.) and L–κ [F](x) = ,
x ∈R

 \ ∂�, F+
 (x),F–

 (x) ∈ Hα(∂�, Cl(V,)). Let

u(x) = F
+
 (x) – F

–
 (x).

Then u(x) is the solution of singular equation (.), u(x) ∈ Hα(∂�, Cl(V,)).

Theorem . The singular integral equation (.) is solvable in Hα(∂�, Cl(V,)) and the
solution may be represented by the following formula:

u(x) =
f (x)


[
(C + D)– + (C – D)–]

+
∫

∂�

K(x, y,κ) dσyf (y)
[
(C + D)– – (C – D)–], x ∈ ∂�.

Remark . When C = , the singular integral equation (.) is solvable in Hα(∂�,
Cl(V,)) and the solution may be represented by the following formula:

u(x) = 
∫

∂�

K∗(x, y,κ) dσyf (y)D–, x ∈ ∂�.
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