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Abstract
The main object of the present paper is to introduce a subclass of analytic functions
using the Dziok-Raina operator associated with the quasi hypergeometric functions.
This class generalizes some well-known classes of starlike and convex functions. The
integral means inequalities and the p – γ -neighborhood of this class are considered.
Further, some results concerning the nth-Cesaro means of quasi hypergeometric
functions for the class above mentioned are considered.
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1 Introduction
Let A denote the class of functions of the form

f (z) = z +
∞∑
n=

anzn, (.)

which are analytic in the open unit disk U = {z : |z| < } on the complex plane C. Let S∗(δ),
C(δ) denote the subclasses of A consisting of functions, which are starlike of order δ and
convex of order δ, respectively. If f and g are analytic in U , we say that f is subordinate
to g in U , written f ≺ g , if and only if there exists the Schwarz function w, analytic in U
with w() =  and |w(z)| ≤  in U such that f (z) = g(w(z)) (z ∈ U ). The convolution (or
Hadamard product) f ∗ g of two functions f , g with series expansions f (z) = z +

∑∞
n= anzn

and g(z) = z +
∑∞

n= bnzn is defined by

(f ∗ g)(z) = z +
∞∑
n=

anbnzn.

A quasi hypergeometric series is a power series in one complex variable z. Let r, s be
nonnegative integers and consider the series

φr
s

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)
=

∞∑
n=

∏r
i= �(a′

i + b′
jn)zn∏s

j= �(aj + bjn)n!
, z ∈C,
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where a′
, . . . ,a′

r ,a, . . . ,as are complex numbers and b′
, . . . ,b′

r ,b, . . . ,bs are positive num-
bers, which have the relation

b′
 + · · · + b′

r = b + · · · + bs + .

This function is a general one in the single variable case. In [], the author showed that the
above series is convergent for |z| < c where c denotes the constant

c = b′–b′


 · · ·b′–b′
r

r b–b · · ·b–bss .

The function φr
s satisfies the differential equation

d
dz

φ =
s∏
j=

Pbj (aj,bj)
r∏
i=

Pb′
i

(
a′
i + b′

i, –b
′
i
)
φ,

where P defines a fractional derivative operator of order b as the following:

Pσ (a,b)f (z) =


�(b)

∫ 


ta–( – t)b–f

(
tσ z

)
dt, σ > .

For more details on this operator, see []. For b′
i = bj and r = s + , then the function φr

s

reduces to the hypergeometric function of higher order

φs+
s

((
a′
, . . . ,a′

s+

a, . . . ,as

)∣∣∣∣∣ z
)
,

and the above differential equation reduces to ordinary differential equation

s∏
j=

(
aj + z

d
dz

)
z
dz

φ =
s+∏
i=

(
a′
i + z

d
dz

)
φ.

Quasi hypergeometric functions are known as Fox-Wright functions and they appeared
as an extension of a generalized hypergeometric functions. Recently, these functions have
been given considerable attention by theoretical physicists. Indeed, those functions play
an important role in conformal field theory and fractional exclusion statistics such as the
quasi-algebraic functions and the partition functions. For a mathematical background for
these functions, see [, ].
Now for z ∈ U , and r ≤ s + , let

ψ

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)
= zφr

s

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)

and ψ is of the form

ψ(z) = z +
∞∑
n=

∏r
i= �(a′

i + b′
j(n – ))zn∏s

j= �(aj + bj(n – ))(n – )!
. (.)

We recall the Dziok-Raina linear operator [] as follows:
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For f ∈ A, the operator Mr
s[a′

i;aj;b′
i;bj] (i = , . . . , r, j = , . . . , s) is defined by the

Hadamard product

Mr
s

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)
f (z) = ψ

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)

∗ f (z).

For a function of the form (.) and function ψ of the form (.), we derive

Mr
s

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)
f (z) = z +

∞∑
n=

ϒnanzn, (.)

where, for convenience,

ϒn =
∏r

i= �(a′
i + b′

i(n – ))∏s
j= �(aj + bj(n – ))(n – )!

.

For the sake of simplicity, we write

Mr
s

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)
f (z) =Mr

s
[
a′
i;aj;b

′
i;bj

]
f (z).

It should be remarked that the linear operator (.) is a generalization of many opera-
tors considered earlier. For b′

i =  (i = , . . . , r) and bj =  (j = , . . . , s), r = s+ , we obtain the
Dziok-Srivastava linear operator []. This includes (as its special cases) various other lin-
ear operators, for example, the ones introduced and studied by Ruscheweyh [], Carlson-
Shaffer [] and Bernardi-Livingston operators [–]. Also, many interesting subclasses
of analytic functions associated with the operator (.) and one may refer to [, ].

Lemma . [] For f ∈A, we have the following:
(i) M

[;–; ; –]f (z) = f (z),
(ii) M

[;–; ; –]f (z) = zf ′(z).

Now usingMr
s[a′

i;aj;b′
i;bj]f , we define the following subclass of analytic functions.

Definition . Given α ∈ (, ] and functions


(z) = z +
∞∑
n=

λnzn, �(z) = z +
∞∑
n=

μnzn,

analytic in U such that λn ≥ , μn ≥ , λn ≥ μn, n ≥ , we say that f ∈ A is in
Mr

s[a′
i,aj,b′

i,bj,
,� ,α] if f (z) ∗ �(z) 	=  and

∣∣∣∣Mr
s[a′

i;aj;b′
i;bj](f ∗ 
)(z)

Mr
s[a′

i;aj;b′
i;bj](f ∗ �)(z)

– 
∣∣∣∣ < α,

whereMr
s[a′

i;aj;b′
i;bj]f (z) is given by (.). We further let

MT
r
s
[
a′
i;aj;b

′
i;bj;
,� ,α

]
=Mr

s
[
a′
i;aj;b

′
i;bj,
,� ,α

] ∩ T ,
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where

T =

{
f ∈A : f (z) = z –

∞∑
n=

|an|zn, z ∈ U
}
, (.)

a subclass ofA being introduced and studied by Silverman [].

By suitable choices of the values r, s, a′
i, aj, b′

i, bj, 
, � , and α, we obtain various sub-
classes. As illustrations, we present some examples.

Example . For r = , s = , we have

MT

(,–, , –,
,� ,α) = DT (
,� ,α)

=
{
f ∈ T :

∣∣∣∣ (f ∗ 
)(z)
(f ∗ �)(z)

– 
∣∣∣∣ < α

}
.

If α = –δ
(–ν) , then we have the class

MT



(
,–, , –,
,� ,

 – δ

( – ν)

)
=

{
f ∈ T :

∣∣∣∣ (f ∗ 
)(z)
(f ∗ �)(z)

– 
∣∣∣∣ <  – δ

( – ν)

}
.

This class was studied by Frasin [], Frasin and Darus [, ].

Example . For r = , s = , α =  – δ, we obtain

MT

(,–, , –,
,� ,  – δ) =DT (
,� , δ) =

∣∣∣∣ (f ∗ 
)(z)
(f ∗ �)(z)

– 
∣∣∣∣ <  – δ,

where DT (
,� , δ) was studied by Juneja et al. []. In particular, for r = , s = , 
(z) =
z

(–z) , �(z) = z
–z , α =  – δ

MT



(
,–, , –,

z
( – z)

,
z

 – z
,α =  – δ

)
= S∗

T (δ) =
{
f ∈ T :

∣∣∣∣zf ′(z)
f (z)

∣∣∣∣ <  – δ

}

and for r = , s = , 
(z) = z+z
(–z) , �(z) = z

(–z) , α =  – δ, we have

MT



(
,–, , –,

z + z

( – z)
,

z
( – z)

,α =  – δ

)
= CT (δ) =

{
f ∈ T :

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ <  – δ

}
,

where S∗
T (δ) and CT (δ) is the subclasses of T that are starlike of order δ and convex of

order δ, respectively, which were studied by Silverman [].

Example . For r = , s = , we get

MT

(,–, , –,
,� ,α) =

∣∣∣∣ (f ∗ 
)′(z)
(f ∗ �)′(z)

– 
∣∣∣∣ < α.

Example . For r = , s = , 
(z) = z
(–z) , �(z) = z

–z , we obtain

MT



(
,–, , –,

z
( – z)

,
z

 – z
,α

)
=

{
f ∈ T :

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ < α

}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/192
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Example . For r = , s = , 
(z) = z+z
(–z) , �(z) = z

(–z) , we have

MT



(
,–, , –,

z + z

( – z)
,

z
( – z)

,α
)
=

{
f ∈ T :

∣∣∣∣z(zf ′′′(z) + f ′′(z))
zf ′′(z) + f ′(z)

– 
∣∣∣∣ < α

}
.

Theorem . Let a function f be defined by (.). Then f ∈ MT
r
s[a′

i,aj,b′
i,bj,
,� ,α] if

and only if

∞∑
n=

[λn – ( – α)μn]
α

|ϒn||an| ≤ , α ∈ (, ]. (.)

The result is sharp with the extremal functions

fn(z) = z –
α

σ (α,n)
zn, n≥ ,

where σ (α,n) = [λn – ( – α)μn]|ϒn|, α ∈ (, ].

Proof The above condition is necessary and sufficient for f to be in the class MT
r
s[a′

i,aj,
b′
i,bj,
,� ,α]. To prove this theorem, we use similar arguments as given by Darus [].

�

Remark . In [], the author introduced the class T Wη(φ,ϕ;A,B), we observe that if
η = , A = α, B =  and

φ = ψ

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)

∗ 
,

ϕ = ψ

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)

∗ � .

Then Theorem . can be obtained from Theorem  in [].

2 Integral means inequalities
In [], Silverman found that function f(z) = z – z

 is often an extremal for the family T .
He applied this function to prove the integral means inequality in [], that is for all f ∈ T ,
η >  and  < r < 

∫ π



∣∣f (reiθ )∣∣η dθ ≤
∫ π



∣∣f(reiθ )∣∣η dθ .

In the following theorem, we obtain the integral means inequality for the classMT
r
s[a′

i,aj,
b′
i,bj,
,� ,α]. We first state a lemma given by Littlewood [] as follows.

Lemma. If the functions f and g are analytic inU with g ≺ f , then for η >  and  < r < ,

∫ π



∣∣g(reiθ )∣∣η dθ ≤
∫ π



∣∣f (reiθ )∣∣η dθ .

The next theorem is as the following.

http://www.journalofinequalitiesandapplications.com/content/2013/1/192
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Theorem . Let f ∈ MT
r
s[a′

i,aj,b′
i,bj,
,� ,α], σ (α,n) be a nondecreasing sequence and

f(z) be defined by

f(z) = z –
α

σ (α, )
z,

where

σ (α, ) =
[
λ – ( – α)μ

]|ϒ| (.)

and ϒ is given by

ϒ =
∏r

i= �(a′
i + b′

i)∏s
j= �(aj + bj)

.

Then for z = reiθ ,  < r < , we obtain

∫ π



∣∣f (reiθ )∣∣η dθ ≤
∫ π



∣∣f(reiθ )∣∣η dθ . (.)

Proof For a function f of the form (.) and z = reiθ , the inequality (.) is equivalent to

∫ π



∣∣∣∣∣ –
∞∑
n=

|an|zn–
∣∣∣∣∣
η

dθ ≤
∫ π



∣∣∣∣ – α

σ (α, )
z
∣∣∣∣
η

dθ .

By Lemma ., it suffices to show that

∞∑
n=

|an|zn– ≺ α

σ (α, )
z. (.)

Setting
∑∞

n= |an|zn– = α
σ (α,)w(z), we have from (.) and (.),

∣∣w(z)∣∣ =
∣∣∣∣∣

∞∑
n=

σ (α, )
α

|an|zn–
∣∣∣∣∣ ≤ |z|

∞∑
n=

σ (α, )
α

|an| ≤ |z| < .

By the definition of subordination, we have (.) and this completes the proof. �

In the view of last theorem, we state the next corollaries.

Corollary . Let f ∈ MT

o[,–, , –,
,� ,α] = DT (
,� ,α), α ∈ (, ] and f(z) be de-

fined by

f(z) = z –
α

λ – ( – α)μ
z.

Then for z = reiθ ,  < r < , we obtain

∫ π



∣∣f (z)∣∣ηdθ ≤
∫ π



∣∣f(z)∣∣η dθ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/192
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Corollary . Let f ∈MT

o[,–, , –,

z
(–z) ,

z
–z ,α] = S∗

T (α) and f(z) be defined by

f(z) = z –
α

(α + )
z.

Then for z = reiθ ,  < r < , (.) holds true.

Corollary . Let f ∈MT

o[,–, , –,

z+z
(–z) ,

z
(–z) ,α] = CT (α) and f(z) be defined by

f(z) = z –
α

(α + )
z.

Then for z = reiθ ,  < r < , (.) holds true.

Remark . In [], the author introduced the class T Wη(φ,ϕ;A,B), we observe that if
η = , A = α, B =  and

φ = ψ

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)

∗ 
,

ϕ = ψ

(
{a′

,b′
}, . . . , {a′

r ,b′
r}

{a,b}, . . . , {as,bs}

∣∣∣∣∣ z
)

∗ � .

Then Theorem . can be obtained from Theorem  in [].

3 Neighborhoods of the classMT
r
s[a

′
i ,aj,b

′
i ,bj,�,� ,α]

For f of the form (.), and γ ≥ , Frasin and Darus [] investigated the p – γ -
neighborhood of f as the following:

Mp
γ (f ) =

{
g ∈ T : g(z) = z –

∞∑
n=

bnzn,
∞∑
n=

np+|an – bn| ≤ γ

}
, (.)

where p is a fixed positive integer. In particular, for the identity function e(z) = z, we im-
mediately have

Mp
γ (e) =

{
g ∈ T : g(z) = z –

∞∑
n=

bnzn,
∞∑
n=

np+|bn| ≤ γ

}
.

We note that M
γ (f ) ≡ Nγ (f ), M

γ (f ) ≡ Mγ (f ), where Nγ (f ) is called a γ -neighborhood
of f introduced by Ruscheweyh [] andMγ (f ) was defined by Silverman [].
Now, we investigate p – γ -neighborhood for functions in the class MT

r
s[a′

i,aj,b′
i,bj,
,

� ,α].

Theorem. If σ (α,n)/np+ is a nondecreasing sequence, thenMT
r
s[a′

i,aj,b′
i,bj,
,� ,α]⊂

Mp
γ (e), where

γ =
p+α
σ (α, )

and σ (α, ) is defined as in (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/192
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Proof It follows from (.) that if f ∈MT
r
s[a′

i,aj,b′
i,bj,
,� ,α], then

∞∑
n=

np+|an| ≤ p+α
σ (α, )

.

This gives thatMT
r
s[a′

i,aj,b′
i,bj,
,� ,α]⊂Mp

γ (e). �

Corollary . DT [
,� ,α]⊂Mp
γ (e), where

γ =
p+α

λ – ( – α)μ
.

Corollary . DT [
,� , –δ
(–ν) ] ⊂Mp

γ (e), where

γ =
p+( – δ)

( – ν)λ – ( + δ – ν)μ
.

Corollary . MT

[,–,–,
,� ,α]⊂Mp

γ (e), where

γ =
p+α

[λ – ( – α)μ]
.

Corollary . MT

[,–,–,

z
(–z) ,

z
–z ,α] ⊂Mp

γ (e), where

γ =
p+α
( + α)

.

Corollary . MT

[,–,–,

z+z
(–z) ,

z
(–z) ,α]⊂ Mp

γ (e), where

γ =
p+α
( + α)

.

4 Cesaromeans
In this section, we investigate results on Cesaro means for the function ψ defined by the
form (.) and for the class MT

r
s[a′

i,aj,b′
i,bj,
,� ,α]. Quasi hypergeometric functions

were considered as a generalization to the generalized hypergeometric functions studied
by Ruscheweyh [], which he observed the following results.

Lemma . Let  < a ≤ b if b ≥  or a + b ≥  then the function of the form f (z) =∑∞
n=

(a)n
(b)n z

n+, z ∈ U is convex.
Note that (x) is the Pochhammer symbol defined by:

(x)n =
�(x + n)

�(x)
=

{
, n = ;
x(x + ) · · · (x + n – ), n = , , . . .

}
.

Lemma . Suppose that  <
∏r

i= �(a′
i + b′

in) ≤
∏s

j= �(aj + bjn), then

Re

{
ψ(z)
z

}
>


, for all z ∈ U .

http://www.journalofinequalitiesandapplications.com/content/2013/1/192
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Now let us recall the following by defining S∗, C ,QS∗ andQC the subclasses ofA con-
sisting of functions that are starlike in U and convex in U . By the definitions, we have

S∗ =
{
ψ ∈A : Re

{
zψ ′(z)
ψ(z)

}
> , z ∈ U

}
,

C =
{
ψ ∈A : Re

{
 +

zψ ′′(z)
ψ ′(z)

}
> , z ∈ U

}
,

QS∗ =
{
ψ ∈A : ∃g ∈ S∗ such that Re

{
zψ ′(z)
g(z)

}
> , z ∈ U

}
,

QC =
{
ψ ∈A : ∃g ∈ C such that Re

{
(zψ ′(z))′

g ′(z)

}
> , z ∈ U

}
.

We observe that

ψ(z) ∈ C ⇔ zψ ′(z) ∈ S∗ (.)

and

ψ ∈QC ⇔ zψ ′(z) ∈QS∗. (.)

From the above definitions it is easily to observe the following lemma.

Lemma . []
(i) If ψ ∈ C , and g ∈ S∗ then ψ ∗ g ∈ S∗.
(ii) If ψ ∈ C , g ∈ S∗ and p ∈P (the class of Caratheodory functions) with p() = , then

ψ ∗ gp = (ψ ∗ g)p, where p(U ) ⊂ closed convex hull of p(U ).

Definition . The nth Cesaro means of order β , β ≥  of the series of the form (.) can
be defined as

τ
β

k (z,ψ) = τ
β

k (z) ∗ ψ(z) =
k∑

n=

(k–n+β

k–n
)

(k+β

k
)

∏r
i= �(a′

i + b′
in)zn+∏s

j= �(aj + bjn)n!
, (.)

where k is a positive number and
(a
b
)
= a!

b!(a–b)! .

Clearly that τ
β

k (z) is the nth Cesaro mean of the geometric series z
–z of order β .

Lemma . [] Let f ∈A such that for some β ≥  we have

(
τ

β

k (z, f )
)′ 	= , z ∈ U ,k ∈N .

Then

τ
β+m
 (z, f )≺ τ

β+m
 (z, f ) ≺ · · · ≺ τ

β+m
k (z, f ) ≺ · · · ≺ f (z), m ∈ N .

Theorem . Let ψ ∈A be given in the form (.) and convex in U and τ
β

k (z,ψ) is the nth
Cesaro mean of ψ ,β ≥ , then

τ
β+m
 (z,ψ) ≺ τ

β+m
 (z,ψ) ≺ · · · ≺ τ

β+m
k (z,ψ) ≺ · · · ≺ ψ(z), m ∈N .
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Proof First, we note that τ
β

k (z,ψ ′) = (τβ

k (z,ψ))′, for k ∈ N , z ∈ U and β ≥  Let ϕ(z) =∑∞
n=(n + )zn+ be defined such that

zψ ′(z) = ϕ(z) ∗ ψ(z)

=
∞∑
n=

n + 
n!

∏r
i=r �(a′

i + nb′
i)∏s

j= �(aj + nbj)
zn+.

Then

τ
β

k
(
z,ψ ′) = ψ ′(z) ∗ τ

β

k (z)

=
zψ ′(z) ∗ zτβ

k
z

=
ψ ′(z) ∗ ϕ(z) ∗ zτβ

k
z

=
ψ(z) ∗ z(zτβ

k )′

z
.

In view of Lemma ., the relation (.) and the fact that zτβ

k is convex yield that there
exists a function g ∈ S∗ and p ∈P with p() =  such that

ψ(z) ∗ z(zτβ

k )′

z
=

ψ(z) ∗ gp(z)
z

=
(ψ(z) ∗ g(z))p(z)

z
	= .

It is known that Re{p(z)} >  and that ψ(z) ∗ g(z) =  if and only if z = . So we have
τ

β

k (z,ψ ′) 	= . By using Lemma ., we obtain

τ
β+m
 (z,ψ) ≺ τ

β+m
 (z,ψ) ≺ · · · ≺ τ

β+m
k (z,ψ) ≺ · · · ≺ ψ(z), m ∈N . �

Now, we consider the nth Cesaro means for functions in the class MT
r
s[a′

i,aj,b′
i,bj,
,

� ,α].
Let f ∈MT

r
s[a′

i,aj,b′
i,bj,
,� ,α], then the nth Cesaro means of f of order β defined by

the form

τ
β

k (z, f ) =
k∑

n=

(k–n+β

k–n
)

(k+β

k
) anzn.

Theorem . If f ∈ MT
r
s[a′

i,aj,b′
i,bj,
,� ,α], then the series τ

β

k (z, f ) ∈ MT
r
s[a′

i,aj,b′
i,bj,


,� ,α].

Proof Since,

(k–n+β

k–n
)

(k+β

k
) =

k!(k – n + β)
(k – n)!(k + β)!

≤ 
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and by considering the sufficient condition for f to be in the classMT
r
s[a′

i,aj,b′
i,bj,
,� ,α]

we get

∞∑
n=

λn – ( – α)μn

α

(k–n+β

k–n
)

(k+β

k
) |ϒn||an| ≤ . �

Conclusion
We have studied a class of analytic functions defined by means of the familiar quasi hy-
pergemetric functions. The necessary and sufficient conditions for a function to be in the
class are obtained. Several properties for functions belonging to this class are derived. Ce-
saro results are also being considered. Few other results related to Cesaro means can be
seen in [–].
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