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Abstract

The complete convergence theorems for weighted sums of arrays of rowwise
negatively dependent random variables were obtained by Wu (Wu, Q: Complete
convergence for weighted sums of sequences of negatively dependent random
variables. J. Probab. Stat. 2011, Article ID 202015, 16 pages) and Wu (Wu, Q: A
complete convergence theorem for weighted sums of arrays of rowwise negatively
dependent random variables. J. Inequal. Appl. 2012, 50). In this paper, we
complement the results of Wu.
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1 Introduction
The concept of complete convergence of a sequence of random variables was introduced
by Hsu and Robbins [1]. A sequence {X,,, # > 1} of random variables converges completely

to the constant 0 if

o0
ZP(lX,,—9| >€)<oo foralle>0.

n=1

By the Borel-Cantelli lemma, this implies that X,, — 0 almost surely (a.s.). The converse is
true if {X,;, n > 1} are independent random variables. Therefore, the complete convergence
isavery important tool in establishing almost sure convergence. There are many complete
convergence theorems for sums and weighted sums of independent random variables.

Volodin et al. [2] and Chen et al. [3] (8 > —1 and B = -1, respectively) proved the follow-
ing complete convergence for weighted sums of arrays of rowwise independent random
elements in a real separable Banach space.

We recall that the array {X,,;,i > 1,n > 1} of random variables is said to be stochastically

dominated by a random variable X if
P(|Xm'| > x) < CP(|X| > x) forallx>0andforalli>1andn>1,

where C is a positive constant.

© 2012 Sung; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2012/1/158
mailto:sungsh@pcu.ac.kr
http://creativecommons.org/licenses/by/2.0

Sung Journal of Inequalities and Applications 2012, 2012:158 Page 2 of 10
http://www.journalofinequalitiesandapplications.com/content/2012/1/158

Theorem 1.1 ([2, 3]) Suppose that B > —1. Let {X,;,i > 1,n > 1} be an array of rowwise
independent random elements in a real separable Banach space which are stochastically
dominated by a random variable X. Let {a,;,i > 1,n > 1} be an array of constants satisfying

sup |a;| = O(n_y) forsomey >0 (1.1)
i>1

and
o0
> lawl’ = 0(n*) 1.2)
i=1

for some 0 <0 <2 and p such that 0 + puly <2and1+p+p>0. 1fE|X|0+(1+M+,3)/y < 00
and Y5 a,i Xy — 0 in probability, then

00
E ﬂniXm’

n=1 i=1

inﬁp<

> e) <o0o foralle>O0. (1.3)

If B < -1, then (1.3) is immediate. Hence Theorem 1.1 is of interest only for g > -1.

Recently, Wu [4] extended Theorem 1.1 to negatively dependent random variables when
B > —1. Wu [4] also considered the case of 1 + u + 8 = 0 (8 > —1). But, the proof of Wu [4]
does not work for the case of 8 = —1.

The concept of negatively dependent random variables was given by Lehmann [5]. A fi-
nite family of random variables {Xj,...,X,} is said to be negatively dependent (or nega-
tively orthant dependent) if for each #n > 2, the following two inequalities hold:

n
PG <31, Xy < 20) < [ [POXG < 10)
i=1

and

n
P(X1>x1,...,X,>%,) < HP(Xi > X;)
i=1

for all real numbers xi,...,x,. An infinite family of random variables is negatively depen-
dent if every finite subfamily is negatively dependent.

Theorem 1.2 (Wu [4]) Suppose that B > -1. Let {X,;,i > 1,n > 1} be an array of negatively
dependent random variables which are stochastically dominated by a random variable X.
Let {a,;,i > 1,n > 1} be an array of constants satisfying (1.1) for some y > 0 and (1.2) for
some 0 and w such that p <2y and 0 < 6 <min{2,2 — u/y}. Furthermore, assume that
EX,=0foralli>landn>1if0+(1+p+pB)y>1L

(i) If1+ p+ B >0 and E|X|P*1+#+B)Y < oo, then

0
E am'Xm'

i=1

inﬂP(

n=1

> e) <oo foralle>0. (1.4)

(i) If1+ u+ B =0 and E|X|°log|X| < 0o, then (1.4) holds.
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Using the moment inequality of negatively dependent random variables, Wu [6] ob-
tained a complete convergence result for weighted sums of identically distributed nega-
tively dependent random variables.

Theorem 1.3 (Wu [6]) Suppose that r > 1. Let {X,X,,,n > 1} be a sequence of identically
distributed negatively dependent random variables. Let {a,;,1 <i < n,n > 1} be an array
of constants satisfying

N(n,m+1):= j:I{l <i<n:|ay =@m+ 1)_1/2} ~m forallnm=>1 1.5)

and

> lauY = 0q). (L.6)

i=1

Furthermore, assume that EX = 0 if 2(r — 1) > 1. Then, forr > 2,
E|X)*"Vlog|X| < o0 1.7)

if and only if

00 k

E 2P| max E aniX;
1<k<n|%

n=1 i=1

> enl/z) <00 foralle>DO. (1.8)

For1l<r<2,(17)implies (1.8).

In (1.5), a & b means that a = O(b) and b = O(a). Theorem 1.3 extends the result of Liang
and Su [7] for negatively associated random variables to negatively dependent case. The
proof of the sufficiency part of Liang and Su [7] is mistakenly based on the fact that (1.8)
implies that

Z aniXi

>n1/2>—>0 as 1 — oQ.

The proof of the sufficiency is correct when r > 2. However, condition (1.5) does not hold,
since the left-hand side of (1.5) goes to the limit {1 <i <n:a, # 0} as m — 0o, but the
right-hand side diverges. Hence, there are no arrays satisfying (1.5).

In this paper, we obtain complete convergence results for weighted sums of arrays of
rowwise negatively dependent random variables. Our results complement the results of
Wu [4, 6].

Throughout this paper, the symbol C denotes a positive constant which is not necessarily
the same one in each appearance. It proves convenient to define logx = max{1, Inx}, where
Inx denotes the natural logarithm.

2 Preliminary lemmas
In this section, we present some lemmas which will be used to prove our main results.
The following two lemmas are well known and their proofs are standard.
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Lemma 2.1 Let {X,,n > 1} be a sequence of random variables which are stochastically
dominated by a random variable X. For any o > 0 and b > 0, the following statements
hold:

(i) EIXul*I(1Xu| = b) = C{EIX|I(IX] = b) + b*P(|X]| > b)}.

(it) EIXu|*I(1X4| > b) < CEIX|*I(IX]| > D).

The following Lemma 2.2(i)-(iii) can be found in Sung [8].

Lemma 2.2 Let X be a random variable with E|X|" < oo for some r > 0. For any t > 0, the
y
following statements hold:
(i) S0 nPEIX|I(1X| < n') < CE|X|" for any § > 0.
(i) > 0, nHBEIX | I(|X| > n') < CE|X|" for any § > O such that r - § > 0.
(iii) Y o2, n T P(1X| > nt) < CE|X]".
(iv) Y2, nE|X|"I(1X| > n') < CE|X| log |X]|.

The Marcinkiewicz-Zygmund and Rosenthal type inequalities play an important role in
establishing complete convergence. Asadian et al. [9] proved the Marcinkiewicz-Zygmund
and Rosenthal inequalities for negatively dependent random variables.

Lemma 2.3 (Asadian et al. [9]) Let {X,,, n > 1} be a sequence of negatively dependent ran-
dom variables with EX,, = 0 and E| X, |’ < oo for some p > 1 and all n > 1. Then there exist

constants C, > 0 and D, > 0 depending only on p such that

3 n
E <G Y EIXilP forl<p<2,

i=1

P n n pl2
§DpiZE|X,»|”+ (ZEX?) } forp>2.
i=1 i=1

>x

i=1

n
>
i=1

E

The last lemma is a complete convergence theorem for an array of rowwise negatively
dependent mean zero random variables.

Lemma 2.4 ([10, 11]) Let {X,;,i > 1,n > 1} be an array of rowwise negatively dependent
random variables with EX,; = 0 and EXﬁi <ooforalli>1andn>1 Let {b,,n>1} bea
sequence of nonnegative constants. Suppose that the following conditions hold.

(i) 302 by Y o P(1Xu] > €) < 00 forall € > 0.

(ii) There exists ] > 1 such that

o0 oo ]
> b, <ZEX,§I.) < 00.
n=1 i=1

Then Y o2 buP(| Y 7 Xuil > €) < 00 forall € > 0.

3 Main results
In this section, we obtain two complete convergence results for weighted sums of arrays
of rowwise negatively dependent random variables.

Theorem 3.1 Suppose that p > -1. Let {X,;,i > 1,n > 1} be an array of rowwise negatively
dependent mean zero random variables which are stochastically dominated by a random
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variable X satisfying E|X|P < oo for somep > 1. Let {a,;,i > 1,n > 1} be an array of constants
satisfying (1.1) for some y > 0 and

o0
Z |a@ni|? = O(n‘l_ﬁ+y(p_q)) for some q < p. (3.1)
i=1
Furthermore, assume that
oo
Zaii =0(n™®) forsomea >0 (3.2)
i=1
ifp>2. Then

inﬂp(

n=1

00
E am'Xni

i=1

>e> <oo foralle>0.

. e
Proof Since a,; =a;, —a

ni’

we may assume that a,; > 0. For i > 1 and #n > 1, define
X=Xl (1Xil <0”) + 0" I(Xi > 0") =0’ [(Xyi < -1"), X = Xpi — X1

Then {X),,i > 1,n > 1} and {X),,,i > 1,n > 1} are still arrays of rowwise negatively de-
pendent random variables, |X},| = | X,;|[(|X,u| < n?) + n"I(|X,y| > n¥), and |X];| = (X,;; —
ny)I(Xm' > ny) - (Xrli + ny)I(Xni < _n}/) = |Xm|1(|Xm| > nl/)‘ Since an > 0, {ﬂm‘X;ﬂ,i >1,

n > 1} and {a,;X],,i > 1,n > 1} are also arrays of rowwise negatively dependent random
variables. In view of EX,,; = 0 for all i > 1 and n > 1, it suffices to show that

o o0
I = Znﬁp< > (X, - EX,)| > e) <00 (3.3)
n=1 i=1
and
oo oo
L= Znﬂp< Zam(XZi —-EX))| > e) < 0. (3.4)
n=1 i=1

We will prove (3.3) and (3.4) with three cases.
Casel (p=1).
For I, we get by Markov’s inequality, Lemmas 2.1-2.3, (1.1), and (3.1) that

0 2
L < €2 ZnﬁE
n=1

o0
> (X, - EX},)
i=1

o0 o0
< CZ n? Z |ani|2E|X;u-|2 (by Lemma 2.3)
n=l =1

oo oo
<CY P> lau{EIXIPI(1X| <n”) + n? P(IX| > ")} (by Lemma 2.1)
n=1 i=1

o0 o0
<cy o sup il >0y " lanil{EIXPPI(1X| < n7) + n* P(1X| > n”)}

n=1 = i=1
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oo
<CY nPnrC Oy P EXPI(1X| < n7) + n P(IX| > n”) )

n=1

< CE|X < o0.

The sixth inequality follows from Lemma 2.2.
For I, we first prove that

o0
L= |au|E|X);| > 0. (3.5)
i=1

By Lemma 2.1, (1.1), and (3.1), I3 is dominated by

o0

D il ENXol[(1X0] > n”)

i=1

o0
<CY laulEIXII(1X] > )
i=1

[ee]
< Csuplawl™ Y |au"E|X|I(1X]| > ")
i>1

i=1

<Cn"PEIXII(1X| > n”).

Since B > -1 and E|X|I(|X| > n”) — 0 as n — 00, (3.5) holds.
Hence, to prove (3.4), it suffices to show that

[o¢]
I := Znﬂp(
n=1

S

"
E aniX,;
i=1

> e) < 00. (3.6)
Take 8 > 0 such that p — § > max{0,4}. Since 0 < p — § =1 - § < 1, we get by Markov’s
inequality, Lemmas 2.1-2.2, (1.1), and (3.1) that

) p-8
I < A E nPE
n=1

00

7
§ aniX,;
i=1

00 )
<Py nt 3 lant E[X T (since 0<p—5<1)
n=1 i=1

o0 o0
<CY n* Y laulPEIXPI(1X| > n”)  (by Lemma 2.1)
n=1 i=1

o0 o0
<CY nPsuplal’™ 1Y " |aul"E\X1PI(1X| > n”)

n=1 21 i1

oo
< CZnﬂn—V(P—5—q)n—l—ﬂ+V(P—q)E|X|P—3](|X| S nV)

n=1

< CE|XF < o0.

Case2 (1<p<2).
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Asin Case 1, we have that I; < CE|X|? < 0.
For I, we take § > 0 such that p — § > max{1, g}. Then we have by Markov’s inequality,
Lemmas 2.1-2.3, (1.1), and (3.1) that

p—6
L <P Z nPE

Z am X// )

< CZn Zm JPPE|X P (by Lemma 2.3)

<CY 1’ laulPEIXPI(1X| > n”)  (by Lemma 2.1)

n=1 i=1

< Cznﬂ sup ||~ qZ|am|qE|X|P 1(1X| > n¥)

n=1 izl i=1
o0
< CY M EXPPI(1X| > 1Y)
n=1
< CEIXP < 0.
Case 3 (p > 2).

In this case, we will prove (3.3) and (3.4) by using Lemma 2.4. To prove (3.3), we take
8 > 0. Then we obtain by Markov’s inequality, Lemmas 2.1-2.2, (1.1), and (3.1) that

o0 o0
Znﬂ ZP (|ani (X,; - EX,,;)| > €)
n=1 i=1
o0 o0
fe_p_‘sznﬁZﬂam - EX, )|p+(S
n=1 i=1
< Cznﬁ Z |l E|x, [P

<CY 1> lawl P {EIXPRI(IX] < n7) + 0 OOP(IX] > ) |

n=1 i=1

< CZn sup [, |7+~ qumw [EIX1PI(1X] < n”) + n?PP(1X] > n?)}

n=1 izl i=1

o0
<CY n ' HEXPPI(X| < n”) + nPPP(1X| > )}
n=1

< CE|XJ? < o0.

We also obtain that for / > 1 such that o/ — 8 > 1,
00 %) J
Snf (Z El|a,i(X,; - EX.,) |2>
n=1 i=1
%) 00 ]
<> u (Z uiifyx;i\2>
n=1 i=1

Page 7 of 10
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M

00 J
n’ (Z afﬁCE|X|2> (since E1X|* < 00)

1 i=1

N
Il

n? (CnEIXP?) < 0.

ot

i
I

Hence (3.3) holds by Lemma 2.4.
To prove (3.4), we take § > 0 such that p — § > max{1, q}. The proof of the rest is similar
to that of (3.3) and is omitted. O

Remark 3.1 When 0 < p <1, Theorem 3.1 holds without the condition of negative de-
pendence (see Theorem 2(i) in Sung [8]). Theorem 3.1 extends the result of Sung [8] for

independent random variables to negatively dependent case.

Remark 3.2 Theorem 1.2(i) follows from Theorem 3.1 by taking p =6 + (1 +  + 8)/y and
q =0, since

oo o0
Zaii S Sup |dni|2—(9 Z |am|9 _ O(n—(y(2—9)—ﬂ))'
i=1 21 i-1

But, Theorem 1.2(i) does not deal with the case of 8 = —1.

Note that conditions (1.1) and (3.1) together imply
o0
> lawl? = O(m™F). 3.7)
i=1

The following theorem shows that if the moment condition of Theorem 3.1 is replaced by
a stronger condition E|X|? log | X| < 0o, then condition (3.1) can be replaced by the weaker
condition (3.7).

Theorem 3.2 Suppose that 8 > —1. Let {X,;,i > 1,n > 1} be an array of rowwise negatively
dependent mean zero random variables which are stochastically dominated by a random
variable X satisfying E|X|Plog |X| < oo for some p > 1. Let {a,;,i > 1,n > 1} be an array of
constants satisfying (1.1) and (3.7). Furthermore, assume that (3.2) holds for some o > 0 if
p>2. Then

0o
E anani

i=1

inﬂp<

n=1

>e) <oo foralle>0.

Proof As in the proof of Theorem 3.1, it suffices to prove (3.3) and (3.4). The proof of (3.3)
is same as that of Theorem 3.1 except that g is replaced by p.

We now prove (3.4). When 1 < p < 2, we have by Markov’s inequality, Lemmas 2.1-2.3,
and (3.7) that

o0 p
I, <e? ZnﬁE
n=1

o0
Z a,i( Xy = EX))
i1
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<C Z n Z |a\PE| X)) — EX] |

i=1

o0 o0
<CY Y lanPEIXIPI(1X| > )

n=1 i=1

< CY nEIXPI(X|>n")

n=1

< CE|X|?log | X| < co.

When p > 2, we will prove (3.4) by using Lemma 2.4. We have by Markov’s inequality,
Lemmas 2.1-2.2, and (3.7) that

inﬁ iP (Jani (X)) = EX));)| > €)

n=1 i=1

(o] [e¢]
<e?> n’ Y Elan(X); - EX)[”
n=1 i=1

< CZn Z | PEIXIPI(1X] > n?)

i=1
o0
<CY w'EIXPI(X|>n”)

n=1

< CE|X|?log |X]| < oo.

We also have that for / > 1 such that o/ - 8 > 1,

[e¢]

> n

n=1

%) ]
> Elau(X]; - EX]}) |2>

i=1

(Zamax" )

M8 ..Mg —

IA

o ]
(Z azfu.CE|X|2> (since EJX|* < 00)

i=1

N
l‘

n? (CnE|X|?) < o0

E%g

X
I
—_

Hence (3.4) holds by Lemma 2.4. |

Remark 3.3 If1+ u + 8 =0, then i = -1 — 8. Hence Theorem 1.2(ii) follows from Theo-
rem 3.2 by taking p = 6. But, Theorem 1.2(ii) does not deal with the case of § = -1.

As mentioned in the Introduction, (1.5) does not hold. Hence it is of interest to find a
complete convergence result similar to Theorem 1.3 without condition (1.5). The following

corollary does not assume condition (1.5).

Corollary 3.1 Suppose that r > 3/2. Let {X,X,,n > 1} be a sequence of identically dis-
tributed negatively dependent mean zero random variables. Let {a,;,1 <i <n,n>1} bean
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array of constants satisfying (1.6) and |a,;| = OQ). If (1.7) holds, then
oo n
Z WP Zam«Xi >en'? | <oo foralle>O0. (3.8)
n=1 i=1

Proof Let c,; = a,;/n"? for 1 <i < nand c,; = 0 for i > n. We will apply Theorem 3.2 with
p=2(r-1), B=r-2,X, =X, and a,, replaced by c,;. Then

sup |¢,;| = O(n™'7?),

i>1

o n

Z |Cwil? = n~Y Z @200 = O(nlfr) _ O(n—lfﬁ).
=1 i=1

Furthermore, if p = 2(r — 1) > 2, then

1/(r-1)

o0 n n
Zcfli -t Z“fu’ < nl Z |ﬂm|2(r_1) nl—l/(r—l) _ O(n—l/(r—l))'
i=1 i=1 i=1

Hence the result follows from Theorem 3.2. O

Remark 3.4 When 1 < r < 3/2, Corollary 3.1 holds without the condition of negative de-
pendence. Although (3.8) is weaker than (1.8), (3.8) can be strengthened to (1.8) if the
negative dependence is replaced by the stronger condition of negative association.
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