
Latif et al. Fixed Point Theory and Applications 2012, 2012:186
http://www.fixedpointtheoryandapplications.com/content/2012/1/186

RESEARCH Open Access

Multi-step hybrid viscosity method for
systems of variational inequalities defined
over sets of solutions of an equilibrium
problem and fixed point problems
Abdul Latif1*, Lu-Chuan Ceng2 and Qamrul Hasan Ansari3

*Correspondence: alatif@kau.edu.sa
1Department of Mathematics, King
Abdulaziz University, Jeddah, 21589,
Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider a system of variational inequalities defined over the
intersection of the set of solutions of an equilibrium problem, the set of common
fixed points of a finite family of nonexpansive mappings, and the solution set of a
nonexpansive mapping. We also consider a triple hierarchical variational inequality
problem, that is, a variational inequality problem defined over a set of solutions of
another variational inequality problem which is defined over the intersection of the
set of solutions of an equilibrium problem, the set of common fixed points of a finite
family of nonexpansive mappings, and the solution set of a nonexpansive mapping.
These two problems are very general and include, as special cases, several problems
studied in the literature. We propose a multi-step hybrid viscosity method to
compute the approximate solutions of our system of variational inequalities and a
triple hierarchical variational inequality problem. The convergence analysis of the
sequences generated by the proposed method is also studied. In addition, the
nontrivial examples of two systems are presented and our results are applied to these
examples.
MSC: 49J40; 47H05; 47H19

Keywords: multi-step hybrid viscosity method; systems of variational inequalities;
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1 Introduction and formulations
LetH be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let C be a nonempty, closed and convex subset of H and A : C → H be a
nonlinear mapping. The variational inequality problem (VIP) associated with the set C
and the mapping A is stated as follows:

find x* ∈ C such that
〈
Ax*,x – x*

〉≥ , ∀x ∈ C. (.)

In particular, ifC is the set of fixed points of a nonexpansivemappingT , denoted by Fix(T),
and if S is another nonexpansivemapping (not necessarily with fixed points), thenVIP (.)
becomes the following problem:

find x* ∈ Fix(T) such that
〈
(I – S)x*,x – x*

〉≥ , ∀x ∈ Fix(T). (.)
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It is called a hierarchical variational inequality problem, also known as a hierarchical fixed
point problem, and it is studied in [, ]. Observe that if S has fixed points, then they
are the solutions of VIP (.). It is worth mentioning that many practical problems can
be written in the form of a hierarchical variational inequality problem; see for example
[–] and the references therein. Such a problem is also a bilevel problem, in which we
find a solution of the first problem subject to the condition that its solution is also a fixed
point of a mapping. For further details on hierarchical fixed point problems and their
applications, we refer to [–, –] and the references therein. The solution methods
presented in [, ] may not be unique. Therefore, it would be reasonable to identify the
unique minimizer of an appropriate objective function over the hierarchical fixed point
constraint.
Mainge and Moudafi [] introduced a hierarchical fixed point approach to finding a

solution of VIP (.). Subsequently, Moudafi and Mainge [] studied the explicit scheme
for computing a solution of VIP (.) by introducing the following iterative algorithm:

xn+ = λnf (xn) + ( – λn)
(
αnSxn + ( – αn)Txn

)
, (.)

where f : C → C and {αn}, {λn} ⊂ (, ). They also proved the strong convergence of the
sequence {xn} generalized by (.) to a solution of VIP (.).
Yao et al. [] introduced and analyzed the following two-step iterative algorithm that

generates a sequence {xn} by the following explicit scheme:

⎧⎨
⎩yn = βnSxn + ( – βn)xn,

xn+ = αnf (xn) + ( – αn)Tyn, n≥ .
(.)

It is easy to see that if C = Fix(T) and Θ(x, y) = 〈(I – S)x, y– x〉, VIP (.) can be reformu-
lated as follows:

find x* ∈ C such that Θ
(
x*, y

)≥ , ∀y ∈ C. (.)

It is known as an equilibrium problem. In [, ], it is shown that the formulation (.)
covers monotone inclusion problems, saddle point problems, variational inequality prob-
lems, minimization problems, Nash equilibria in noncooperative games, vector equilib-
rium problems and certain fixed point problems.
Recently, many authors have generalized the classical equilibrium problem introduced

in [] by introducing ‘perturbation’ to the functionΘ . For example, Moudafi [] studied
the following equilibrium problem:

find x* ∈ C such that Θ
(
x*, y

)
+
〈
Ax*, y – x*

〉≥ , ∀y ∈ C,

where A is an α-inverse strongly monotone operator. In [–], the following mixed
equilibrium problem is studied:

find x* ∈ C such that Θ
(
x*, y

)
+ ϕ

(
x*
)
– ϕ(y) ≥ , ∀y ∈ C,

http://www.fixedpointtheoryandapplications.com/content/2012/1/186
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where ϕ : C →R is a functional on C. Very recently, Marino et al. [] studied the follow-
ing equilibrium problem:

find x* ∈ C such that Θ
(
x*, y

)
+ h

(
x*, y

)≥ , ∀y ∈ C. (.)

It includes all previous equilibrium problems as special cases. The set of solutions of (.)
is denoted by EP(Θ ,h).

Lemma . ([, Lemma .]) Let C be a nonempty, closed and convex subset of a Hilbert
space H . Let Θ : C ×C →R be a bifunction such that

(Θ) Θ(x,x) = , ∀x ∈ C;
(Θ) Θ is monotone (that is, Θ(x, y) +Θ(y,x) ≤ , ∀(x, y) ∈ C ×C) and upper hemicontin-

uous in the first variable (that is, lim supt→ Θ(tz + ( – t)x, y) ≤ Θ(x, y), ∀x, y, z ∈ C);
(Θ) Θ is lower semicontinuous and convex in the second variable.

Let h : C ×C →R be a bifunction such that

(h) h(x,x) = , ∀x ∈ C;
(h) h is monotone and weakly upper semicontinuous in the first variable;
(h) h is convex in the second variable.

Moreover, suppose that

(H) for fixed r >  and x ∈ C, there exists a bounded K ⊂ C and a ∈ K such that for all
z ∈ C \K , –Θ(a, z) + h(z,a) + 

r 〈a – z, z – x〉 < .

For r >  and x ∈ H , let Tr :H → C be a mapping defined by

Trx =
{
z ∈ C :Θ(z, y) + h(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

(is called the resolvent of Θ and h). Then
(i) Trx �= ∅;
(ii) Trx is a singleton;
(iii) Tr is firmly nonexpansive;
(iv) EP(Θ ,h) = Fix(Tr) and it is closed and convex;
(v) (see [])

‖Try – Trx‖ ≤ ‖y – x‖ +
∣∣∣∣ r – r

r

∣∣∣∣‖Try – y‖, ∀x, y ∈H ,∀r, r > . (.)

Marino et al. [] introduced amulti-step iterativemethod that generalizes the two-step
method studied in [] from twononexpansivemappings to a finite family of nonexpansive
mappings, and proved that the sequence generated by this method converges strongly to a
common fixed point of the mappings which is also a solution of the equilibrium problem
(.). The multi-step iterative method in [] involves the Ishikawa-type iterative method
and the viscosity approximation method.
On the other hand, by combining the regularization method, the hybrid steepest-

descent method, and the projection method, Ceng et al. [] proposed an iterative al-
gorithm that generates a sequence via the explicit scheme and proved that this sequence
converges strongly to a unique solution of the following problem.
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Latif et al. Fixed Point Theory and Applications 2012, 2012:186 Page 4 of 26
http://www.fixedpointtheoryandapplications.com/content/2012/1/186

Problem. Let F : C →H be κ-Lipschitzian and η-stronglymonotone on the nonempty,
closed and convex subset C of H , where κ and η are positive constants, that is,

‖Fx – Fy‖ ≤ κ‖x – y‖ and 〈Fx – Fy,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C. (.)

Let f : C → H be a ρ-contraction with a coefficient ρ ∈ [, ), and S,T : C → C be two
nonexpansive mappings with Fix(T) �= ∅. Let  < μ < η/κ and  < γ ≤ τ , where τ =  –√
 –μ(η –μκ). Then the objective is to find x* ∈ Ξ such that

〈
(μF – γ f )x*,x – x*

〉≥ , ∀x ∈ Ξ , (.)

whereΞ denotes the solution set of the following hierarchical variational inequality prob-
lem (HVIP): find z* ∈ Fix(T) such that

〈
(μF – γ S)z*, z – z*

〉≥ , ∀z ∈ Fix(T). (.)

Since Problem . has a triple hierarchical structure in contrast with bilevel program-
ming problems (see [, ]), that is, a variational inequality problem with a variational
inequality constraint over the fixed point set Fix(T), we also call it a triple hierarchical
variational inequality problem, which is a generalization of the triple hierarchical con-
strained optimization problem (THCOP) considered by Iiduka [, ].
In this paper, we consider the following system of variational inequalities defined over

the set consisting of the set of solutions of an equilibrium problem, the set of common
fixed points of nonexpansive mappings, and the set of fixed points of a mapping.

Problem. Let F : C →H be κ-Lipschitzian and η-stronglymonotone on the nonempty,
closed and convex subset C of H , f : C → H be a ρ-contraction with a coefficient
ρ ∈ [, ) and Si,S,T : C → C be nonexpansive mappings for all i ∈ {, . . . ,N}. Assume
that Θ ,h : C × C → R are two bifunctions. Let  < μ < η/κ and  < γ ≤ τ , where
τ =  –

√
 –μ(η –μκ). Then the objective is to find x* ∈ Ω such that

⎧⎨
⎩〈(μF – γ f )x*,x – x*〉 ≥ , ∀x ∈ Ω ,

〈(μF – γ S)x*, y – x*〉 ≥ , ∀y ∈ Ω ,
(.)

where Ω = Fix(T)∩ (
⋂

i Fix(Si))∩ EP(Θ ,h) �= ∅.

We propose the following multi-step hybrid viscosity method for solving Problem ..

Algorithm . Let F : C → H be κ-Lipschitzian and η-strongly monotone on the
nonempty, closed and convex subset C of H , f : C → H be a ρ-contraction with a co-
efficient ρ ∈ [, ) and Si,S,T : C → C be nonexpansive mappings for all i ∈ {, . . . ,N}. As-
sume that Θ ,h : C × C → R are two bifunctions satisfying the hypotheses of Lemma ..
Let {λn}, {αn}, {βn,i}, i = , . . . ,N be sequences in (, ) and {rn} be a sequence in (,∞)
with lim infn→∞ rn > . Let  < μ < η/κ and  < γ ≤ τ , where τ =  –

√
 –μ(η –μκ).

Then the sequence {xn} is generated from an arbitrary initial point x ∈ C by the following

http://www.fixedpointtheoryandapplications.com/content/2012/1/186
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iterative scheme:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn, = βn,Sun + ( – βn,)un,

yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . ,N ,

xn+ = PC[λnγ (αnf (xn) + ( – αn)Sxn) + (I – λnμF)Tyn,N ], n≥ .

(.)

In particular, if f ≡ , then (.) reduces to the following iterative scheme:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn, = βn,Sun + ( – βn,)un,

yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . ,N ,

xn+ = PC[λn( – αn)γ Sxn + (I – λnμF)Tyn,N ], n≥ .

(.)

We prove that, under appropriate conditions, the sequence {xn} generated by Algo-
rithm . converges strongly to a unique solution of Problem .. In addition, we also con-
sider and study the application of Algorithm . to solve the following triple hierarchical
variational inequality problem (THVIP):

Problem. Let F : C →H be κ-Lipschitzian and η-stronglymonotone on the nonempty,
closed and convex subset C of H , f : C → H be a ρ-contraction with a coefficient
ρ ∈ [, ) and Si,S,T : C → C be nonexpansive mappings for all i ∈ {, . . . ,N}. Assume
that Θ ,h : C × C → R are two bifunctions. Let  < μ < η/κ and  < γ ≤ τ , where
τ =  –

√
 –μ(η –μκ). Then the objective is to find x* ∈ Ξ such that

〈
(μF – γ f )x*,x – x*

〉≥ , ∀x ∈ Ξ , (.)

whereΞ denotes the solution set of the following hierarchical variational inequality prob-
lem (HVIP) of finding z* ∈ Ω such that

〈
(μF – γ S)z*, z – z*

〉≥ , ∀z ∈ Ω , (.)

where Ω = Fix(T)∩ (
⋂

i Fix(Si))∩ EP(Θ ,h) �= ∅.

Moreover, we prove that, under very mild conditions, the sequence {xn} generated by
Algorithm . converges strongly to a unique solution of Problem .. It is worth pointing
out that Problem . is a special case of Problem . whenever Θ ≡ h≡  and Si ≡ I for all
i ∈ {, . . . ,N}.

2 Some basic results
We present here some basic facts and results that are needed in the sequel.

Lemma . ([, Lemma .]) Let {sn} be a sequence of nonnegative numbers satisfying
the condition

sn+ ≤ ( – γn)sn + γnδn, n≥ ,

where {γn}, {δn} are the sequences of real numbers such that

http://www.fixedpointtheoryandapplications.com/content/2012/1/186


Latif et al. Fixed Point Theory and Applications 2012, 2012:186 Page 6 of 26
http://www.fixedpointtheoryandapplications.com/content/2012/1/186

(i) {γn} ⊂ [, ] and
∑∞

n= γn = ∞, or equivalently,

∞∏
n=

( – γn) := lim
n→∞

n∏
k=

( – γk) = ;

(ii) lim supn→∞ δn ≤ , or
(ii)′

∑∞
n= γnδn is convergent.

Then limn→∞ sn = .

Lemma . ([, Lemma .]) Let λ be a number in (, ], and let μ > . Let F : C →H be
an operator on C such that for some constants κ ,η > , F is κ-Lipschitzian and η-strongly
monotone. Associating with a nonexpansive mapping T : C → C, we define the mapping
Tλ : C →H by

Tλx := Tx – λμF(Tx), ∀x ∈ C.

Then Tλ is a contraction provided μ < η/κ, that is,

∥∥Tλx – Tλy
∥∥≤ ( – λτ )‖x – y‖, ∀x, y ∈ C,

where τ =  –
√
 –μ(η –μκ) ∈ (, ].

In the sequel, given a sequence {zn}, we will denote with ωw(zn) the set of cluster points
of {zn} with respect to the weak topology, that is,

ωw(zn) = {z ∈H : there exists nk → ∞ for which znk ⇀ z}.

Analogously, we denote by ωs(zn) the set of cluster points of {zn} with respect to the norm
topology, that is,

ωs(zn) = {z ∈ H : there exists nk → ∞ for which znk → z}.

Lemma . ([, Lemma .]) Suppose that the hypotheses of Lemma . are satisfied.
Let {rn} be a sequence in (,∞) with lim infn→∞ rn > . Suppose that {xn} is a bounded
sequence. Then the following equivalent statements hold:
(a) If ‖xn – Trnxn‖ → , as n→ ∞, every weak cluster point of {xn} solves the problem

Θ(x, y) + h(x, y)≥ , ∀y ∈ C,

that is, ωw(xn) ⊆ EP(Θ ,h).
(b) (Demiclosedness principle) If xn ⇀ x* and ‖xn – Trnxn‖ → , as n→ ∞, then

(I – Trk )x
* =  for all k ≥ .

Lemma . ([]) Let {αn} be a sequence of nonnegative real numbers with
lim supn→∞ αn < ∞ and {βn} be a sequence of real numbers with lim supn→∞ βn ≤ . Then
lim supn→∞ αnβn ≤ .

http://www.fixedpointtheoryandapplications.com/content/2012/1/186
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3 Main results
Now we present the convergence analysis of Algorithm . for solving Problem ..

Theorem . Assume that Problem . has a solution. Let {λn}, {αn}, {βn,i}, i = , . . . ,N be
sequences in (, ) such that βn,i → βi ∈ (, ) as n → ∞ for all i ∈ {, . . . ,N}. Suppose that
the following conditions hold:
(C)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(C) limn→∞ λn =  and

∑∞
n= λn = ∞;

(C)
∑∞

n= |αnλn – αn–λn–| < ∞ or limn→∞ |αnλn–αn–λn–|
λn

= ;
(C)

∑∞
n= |λn – λn–| < ∞ or limn→∞ |λn–λn–|

λn
= ;

(C)
∑∞

n= |βn,i – βn–,i| <∞ or limn→∞
|βn,i–βn–,i|

λn
=  for all i ∈ {, . . . ,N};

(C)
∑∞

n= |rn – rn–| <∞ or limn→∞ |rn–rn–|
λn

= .
Then the following assertions hold.
(a) Let {xn} be a sequence generated by the scheme (.), then {xn} converges strongly to

a unique solution x* ∈ Ω of Problem ..
(b) Let {xn} be a sequence generated by the scheme (.), then {xn} converges strongly to

a unique solution x* ∈ Ω of the following system of variational inequalities:

⎧⎨
⎩〈Fx*,x – x*〉 ≥ , ∀x ∈ Ω ,

〈(μF – γ S)x*, y – x*〉 ≥ , ∀y ∈ Ω .

Proof We prove only part (a) since part (b) is a straightforward consequence of part (a).
Let {xn} be a sequence generated by the scheme (.). First of all, note that  < γ ≤ τ and

μη ≥ τ ⇔ μη ≥  –
√
 –μ

(
η –μκ

)
⇔

√
 –μ

(
η –μκ

)≥  –μη

⇔  – μη +μκ ≥  – μη +μη

⇔ κ ≥ η

⇔ κ ≥ η.

Then it follows from the ρ-contractiveness of f that

〈
(μF – γ f )x – (μF – γ f )y,x – y

〉≥ (μη – γρ)‖x – y‖, ∀x, y ∈ C.

Hence, from γρ < γ ≤ τ ≤ μη we deduce that μF – γ f is (μη – γρ)-strongly monotone.
Since it is clear that μF – γ f is Lipschitz continuous, there exists a unique solution of the
following VIP:

find x* ∈ Ω such that
〈
(μF – γ f )x*,x – x*

〉≥ , ∀x ∈ Ω .

Also, since Problem . has a solution, it is easy to see that Problem . has a unique so-
lution. In addition, taking into account condition (C), without loss of generality, we may
assume that {αn} ⊂ [a,b] for some a,b ∈ (, ).

http://www.fixedpointtheoryandapplications.com/content/2012/1/186
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The rest of the proof is divided into several steps.
Step . The sequences {xn}, {yn,i} for all i, {un} are bounded.
Indeed, take a point v ∈ Ω arbitrarily. Then by Lemma ., we have from (.)

‖yn, – v‖ ≤ ‖un – v‖ = ‖Trnxn – Trnv‖ ≤ ‖xn – v‖.

For all from i =  to i =N , by induction, one proves that

‖yn,i – v‖ ≤ βn,i‖un – v‖ + ( – βn,i)‖yn,i– – v‖ ≤ ‖un – v‖ ≤ ‖xn – v‖.

Hence, we obtain that for all i ∈ {, . . . ,N}

‖yn,i – v‖ ≤ ‖un – v‖ ≤ ‖xn – v‖. (.)

Also, utilizing Lemma . and (.), we have

‖xn+ – v‖
=
∥∥PC

[
λnγ

(
αnf (xn) + ( – αn)Sxn

)
+ (I – λnμF)Tyn,N

]
– PCv

∥∥
≤ ∥∥λnγ

(
αnf (xn) + ( – αn)Sxn

)
+ (I – λnμF)Tyn,N – v

∥∥
=
∥∥λnγ

(
αnf (xn) + ( – αn)Sxn

)
– λnμFTv

+ (I – λnμF)Tyn,N – (I – λnμF)Tv
∥∥

≤ ∥∥λnγ
(
αnf (xn) + ( – αn)Sxn

)
– λnμFTv

∥∥
+
∥∥(I – λnμF)Tyn,N – (I – λnμF)Tv

∥∥
= λn

∥∥αn
(
γ f (xn) –μFv

)
+ ( – αn)(γ Sxn –μFv)

∥∥
+
∥∥(I – λnμF)Tyn,N – (I – λnμF)Tv

∥∥
≤ λn

[
αn
∥∥γ f (xn) –μFv

∥∥ + ( – αn)‖γ Sxn –μFv‖]
+ ( – λnτ )‖yn,N – v‖

≤ λn
[
αn
(∥∥γ f (xn) – γ f (v)

∥∥ + ∥∥γ f (v) –μFv
∥∥)

+ ( – αn)
(‖γ Sxn – γ Sv‖ + ‖γ Sv –μFv‖)]

+ ( – λnτ )‖yn,N – v‖
≤ λn

[
αnγρ‖xn – v‖ + αn

∥∥γ f (v) –μFv
∥∥ + ( – αn)γ ‖xn – v‖

+ ( – αn)‖γ Sv –μFv‖] + ( – λnτ )‖xn – v‖
≤ λn

[
γ
(
 – αn( – ρ)

)‖xn – v‖ +max
{∥∥γ f (v) –μFv

∥∥,‖γ Sv –μFv‖}]
+ ( – λnτ )‖xn – v‖

≤ (
 – λnγαn( – ρ)

)‖xn – v‖ + λnmax
{∥∥γ f (v) –μFv

∥∥,‖γ Sv –μFv‖}
≤ (

 – λnγ a( – ρ)
)‖xn – v‖ + λnmax

{∥∥γ f (v) –μFv
∥∥,‖γ Sv –μFv‖},

http://www.fixedpointtheoryandapplications.com/content/2012/1/186
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due to  < γ ≤ τ . So, calling

M =max

{
‖x – v‖, ‖γ f (v) –μFv‖

γ a( – ρ)
,
‖γ Sv –μFv‖

γ a( – ρ)

}
,

by induction we derive ‖xn – v‖ ≤ M for all n≥ . We obtain the claim.
Step . limn→∞ ‖xn+ – xn‖ = , that is, {xn} is asymptotically regular.
Indeed, for each n≥ , we set

zn = λnγ
(
αnf (xn) + ( – αn)Sxn

)
+ (I – λnμF)Tyn,N .

Then we observe that

zn – zn– = αnλnγ
[
f (xn) – f (xn–)

]
+ λn( – αn)γ (Sxn – Sxn–)

+
[
(I – λnμF)Tyn,N – (I – λnμF)Tyn–,N

]
+ (αnλn – αn–λn–)γ

[
f (xn–) – Sxn–

]
+ (λn – λn–)(γ Sxn– –μFTyn–,N ). (.)

LetM >  be a constant such that

sup
n≥

{
γ
∥∥f (xn) – Sxn

∥∥ + ‖γ Sxn –μFTyn,N‖}≤ M.

It follows from (.) and (.) that

‖xn+ – xn‖
= ‖PCzn – PCzn–‖
≤ ‖zn – zn–‖
≤ αnλnγ

∥∥f (xn) – f (xn–)
∥∥ + λn( – αn)γ ‖Sxn – Sxn–‖

+
∥∥(I – λnμF)Tyn,N – (I – λnμF)Tyn–,N

∥∥
+ |αnλn – αn–λn–|γ

∥∥f (xn–) – Sxn–
∥∥

+ |λn – λn–|‖γ Sxn– –μFTyn–,N‖
≤ αnλnγρ‖xn – xn–‖ + λn( – αn)γ ‖xn – xn–‖

+ ( – λnτ )‖yn,N – yn–,N‖
+ |αnλn – αn–λn–|M + |λn – λn–|M

= λn
(
 – αn( – ρ)

)
γ ‖xn – xn–‖ + ( – λnτ )‖yn,N – yn–,N‖

+
[|αnλn – αn–λn–| + |λn – λn–|

]
M

≤ λnγ
(
 – a( – ρ)

)‖xn – xn–‖ + ( – λnτ )‖yn,N – yn–,N‖
+
[|αnλn – αn–λn–| + |λn – λn–|

]
M. (.)
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By the definition of yn,i, we obtain that for all i =N , . . . , 

‖yn,i – yn–,i‖ ≤ βn,i‖un – un–‖ + ‖Siun– – yn–,i–‖|βn,i – βn–,i|
+ ( – βn,i)‖yn,i– – yn–,i–‖. (.)

In the case i = , we have

‖yn, – yn–,‖ ≤ βn,‖un – un–‖
+ ‖Sun– – un–‖|βn, – βn–,| + ( – βn,)‖un – un–‖

= ‖un – un–‖ + ‖Sun– – un–‖|βn, – βn–,|. (.)

Substituting (.) in all (.)-type inequalities, we obtain that for i = , . . . ,N

‖yn,i – yn–,i‖ ≤ ‖un – un–‖ +
i∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,|.

So, we conclude that

‖xn+ – xn‖
≤ λnγ

(
 – a( – ρ)

)‖xn – xn–‖ + ( – λnτ )‖yn,N – yn–,N‖
+
[|αnλn – αn–λn–| + |λn – λn–|

]
M

≤ λnγ
(
 – a( – ρ)

)‖xn – xn–‖ +
[|αnλn – αn–λn–| + |λn – λn–|

]
M

+ ( – λnτ )‖un – un–‖ +
N∑
k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,|.

By Lemma .(v), we know that

‖un – un–‖ ≤ ‖xn – xn–‖ + L
∣∣∣∣ – rn–

rn

∣∣∣∣, (.)

where L = supn≥ ‖un – xn‖. So, substituting (.) in the last inequality, we obtain

‖xn+ – xn‖
≤ λnγ

(
 – a( – ρ)

)‖xn – xn–‖ +
[|αnλn – αn–λn–| + |λn – λn–|

]
M

+ ( – λnτ )‖xn – xn–‖ + L
∣∣∣∣ rn – rn–

rn

∣∣∣∣ +
N∑
k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,|.

If we call

M :=max
{
M,L, sup

n≥,i=,...,N
‖Siun– – yn–,i–‖, sup

n≥
‖Sun– – un–‖

}
,
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and c >  a minorant for {rn}, we have

‖xn+ – xn‖ ≤ (
 – λnγ a( – ρ)

)‖xn – xn–‖

+M

[
|αnλn – αn–λn–| + |λn – λn–|

+
|rn – rn–|

c
+

N∑
k=

|βn,k – βn–,k|
]
, (.)

due to  < γ ≤ τ . By conditions (C)-(C) and Lemma ., we obtain the claim.
Step . ‖xn – un‖ = ‖xn – Trnxn‖ →  as n→ ∞.
Indeed, by the firm nonexpansivity of Trn , a standard calculation (see []) shows that

for all p ∈ EP(Θ ,h)

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖.

So, take a point v ∈ � arbitrarily; then utilizing Lemma . and (.), we have

‖xn+ – v‖

≤ ∥∥λnγ
(
αnf (xn) + ( – αn)Sxn

)
+ (I – λnμF)Tyn,N – v

∥∥
=
∥∥λnγ

(
αnf (xn) + ( – αn)Sxn

)
– λnμFTv

+ (I – λnμF)Tyn,N – (I – λnμF)Tv
∥∥

≤ {∥∥λnγ
(
αnf (xn) + ( – αn)Sxn

)
– λnμFTv

∥∥
+
∥∥(I – λnμF)Tyn,N – (I – λnμF)Tv

∥∥}
≤ {

λn
∥∥αn

(
γ f (xn) –μFv

)
+ ( – αn)(γ Sxn –μFv)

∥∥
+ ( – λnτ )‖yn,N – v‖}

≤ λn

τ

[
αn
∥∥γ f (xn) –μFv

∥∥ + ( – αn)‖γ Sxn –μFv‖]
+ ( – λnτ )‖yn,N – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ( – λnτ )‖un – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )‖xn – v‖ – ( – λnτ )‖xn – un‖.

This implies that

( – λnτ )‖xn – un‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ( – λnτ )‖xn – v‖ – ‖xn+ – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ‖xn – v‖ – ‖xn+ – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ‖xn+ – xn‖

(‖xn – v‖ + ‖xn+ – v‖).
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Since ‖xn+ – xn‖ →  and λn →  as n → ∞, by the boundedness of {xn} we conclude
that limn→∞ ‖xn – un‖ = .
Step . For all i ∈ {, . . . ,N}, ‖Siun – un‖ →  as n→ ∞.
Indeed, let us show that for every i ∈ {, . . . ,N} one has ‖Siun – yn,i–‖ →  as n → ∞.

Take a point v ∈ � arbitrarily. When i = N , utilizing Lemmas . and ., and (.), we
have

‖xn+ – v‖

≤ ∥∥λnγ
(
αnf (xn) + ( – αn)Sxn

)
+ (I – λnμF)Tyn,N – v

∥∥
=
∥∥λnγ

(
αnf (xn) + ( – αn)Sxn

)
– λnμFTv

+ (I – λnμF)Tyn,N – (I – λnμF)Tv
∥∥

≤ {∥∥λnγ
(
αnf (xn) + ( – αn)Sxn

)
– λnμFTv

∥∥
+
∥∥(I – λnμF)Tyn,N – (I – λnμF)Tv

∥∥}
≤ {

λn
∥∥αn

(
γ f (xn) –μFv

)
+ ( – αn)(γ Sxn –μFv)

∥∥
+ ( – λnτ )‖yn,N – v‖}

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )‖yn,N – v‖

= λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )βn,N‖SNun – v‖

+ ( – λnτ )( – βn,N )‖yn,N– – v‖

– ( – λnτ )( – βn,N )βn,N‖SNun – yn,N–‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )‖un – v‖

– ( – λnτ )βn,N ( – βn,N )‖SNun – yn,N–‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ‖xn – v‖

– ( – λnτ )βn,N ( – βn,N )‖SNun – yn,N–‖.

So, we have

( – λnτ )βn,N ( – βn,N )‖SNun – yn,N–‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ‖xn – v‖ – ‖xn+ – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ‖xn+ – xn‖

(‖xn – v‖ + ‖xn+ – v‖).
Since βn,N → βN ∈ (, ), ‖xn+ – xn‖ →  and λn →  as n → ∞, by the boundedness of
{xn} we conclude that limn→∞ ‖SNun – yn,N–‖ = .
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Take i ∈ {, . . . ,N – } arbitrarily. Then, we have

‖xn+ – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ( – λnτ )‖yn,N – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )
[
βn,N‖SNun – v‖ + ( – βn,N )‖yn,N– – v‖]

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )βn,N‖xn – v‖ + ( – λnτ )( – βn,N )‖yn,N– – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ( – λnτ )βn,N‖xn – v‖

+ ( – λnτ )( – βn,N )
[
βn,N–‖SN–un – v‖ + ( – βn,N–)‖yn,N– – v‖]

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )
(
βn,N + ( – βn,N )βn,N–

)‖xn – v‖

+ ( – λnτ )
N∏

k=N–

( – βn,k)‖yn,N– – v‖

and so, after (N – i + )-iterations,

‖xn+ – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )

(
βn,N +

N∑
j=i+

( N∏
p=j

( – βn,p)

)
βn,j–

)

× ‖xn – v‖ + ( – λnτ )
N∏

k=i+

( – βn,k)‖yn,i – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖]

+ ( – λnτ )

(
βn,N +

N∑
j=i+

( N∏
p=j

( – βn,p)

)
βn,j–

)

× ‖xn – v‖ + ( – λnτ )
N∏

k=i+

( – βn,k)

× [
βn,i‖Siun – v‖ + ( – βn,i)‖yn,i– – v‖

– βn,i( – βn,i)‖Siun – yn,i–‖
]

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ( – λnτ )‖xn – v‖

– βn,i( – λnτ )
N∏
k=i

( – βn,k)‖Siun – yn,i–‖.
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Again, we obtain

( – λnτ )βn,i

N∏
k=i

( – βn,k)‖Siun – yn,i–‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ‖xn – v‖ – ‖xn+ – v‖

≤ λn

τ

[∥∥γ f (xn) –μFv
∥∥ + ‖γ Sxn –μFv‖] + ‖xn+ – xn‖

(‖xn – v‖ + ‖xn+ – v‖).
Since for all k ∈ {, . . . ,N}, βn,k → βk ∈ (, ), ‖xn+ – xn‖ →  and λn →  as n → ∞, by
the boundedness of {xn} we conclude that

lim
n→∞‖Siun – yn,i–‖ = . (.)

Obviously, for i =  we have limn→∞ ‖Sun – un‖ = . To conclude, we have that

‖Sun – un‖ ≤ ‖Sun – yn,‖ + ‖yn, – un‖ = ‖Sun – yn,‖ + βn,‖Sun – un‖,

which hence implies that limn→∞ ‖Sun – un‖ = . Consequently, by induction, we get
limn→∞ ‖Siun – un‖ =  for all i = , . . . ,N since it is enough to observe that

‖Siun – un‖ ≤ ‖Siun – yn,i–‖ + ‖yn,i– – Si–un‖ + ‖Si–un – un‖
≤ ‖Siun – yn,i–‖ + ( – βn,i–)‖Si–un – yn,i–‖ + ‖Si–un – un‖.

Step . limn→∞ ‖yn,N – xn‖ = limn→∞ ‖xn – Txn‖ =  and ωw(xn) ⊂ Ω .
Indeed, since ‖xn – un‖ →  as n→ ∞, we have ωw(xn) = ωw(un) and ωs(xn) = ωs(un).
Now, we observe that

‖xn – yn,‖ ≤ ‖xn – un‖ + ‖yn, – un‖ = ‖xn – un‖ + βn,‖Sun – un‖.

By Step , ‖Sun – un‖ →  as n → ∞. Hence, we get

lim
n→∞‖xn – yn,‖ = . (.)

This implies that ωw(xn) = ωw(yn,) and ωs(xn) = ωs(yn,).
Take a point q ∈ ωw(xn) arbitrarily. Since q ∈ ωw(un), by Step  and the demiclosedness

principle, we have q ∈ Fix(Si) for all i ∈ {, . . . ,N}, that is, q ∈ ⋂
i Fix(Si). Moreover, note

that

‖yn,N – xn‖ ≤
N∑
k=

‖yn,k – yn,k–‖ + ‖yn, – xn‖ =
N∑
k=

βn,k‖Skun – yn,k–‖ + ‖yn, – xn‖,

and hence,

‖xn – Txn‖
≤ ‖xn – xn+‖ + ‖xn+ – Tyn,N‖ + ‖Tyn,N – Txn‖
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≤ ‖xn – xn+‖ +
∥∥λnγ

(
αnf (xn) + ( – αn)Sxn

)
+ (I – λnμF)Tyn,N – Tyn,N

∥∥
+ ‖yn,N – xn‖

= ‖xn – xn+‖ + λn
∥∥αn

(
γ f (xn) –μFTyn,N

)
+ ( – αn)(γ Sxn –μFTyn,N )

∥∥
+ ‖yn,N – xn‖

≤ ‖xn – xn+‖ + λn
[∥∥γ f (xn) –μFTyn,N

∥∥ + ‖γ Sxn –μFTyn,N‖] + ‖yn,N – xn‖
≤ ‖xn – xn+‖ + λn

[∥∥γ f (xn) –μFTyn,N
∥∥ + ‖γ Sxn –μFTyn,N‖]

+
N∑
k=

βn,k‖Skun – yn,k–‖ + ‖yn, – xn‖.

So, it is easy to see that limn→∞ ‖yn,N – xn‖ =  and limn→∞ ‖xn – Txn‖ =  since ‖xn+ –
xn‖ → , λn → , ‖yn, – xn‖ → , βn,k → βk and ‖Skun – yn,k–‖ →  for all k ∈ {, . . . ,N}.
Thus, by the demiclosedness principle, we have q ∈ Fix(T). Since {xn} is bounded and
limn→∞ ‖xn–Trnxn‖ =  (due to Step ), by Lemma ., we derive q ∈ EP(Θ ,h). This shows
that q ∈ Ω . Therefore, we obtain the claim.
Step . {xn} converges strongly to a unique solution x* of Problem ..
Indeed, according to ‖xn+ – xn‖ → , we can take a subsequence {xnj} of {xn} satisfying

lim sup
n→∞

〈
(γ f –μF)x*,xn+ – x*

〉
= lim sup

n→∞

〈
(γ f –μF)x*,xn – x*

〉
= lim

j→∞
〈
(γ f –μF)x*,xnj – x*

〉
.

Without loss of generality, we may further assume that xnj ⇀ x̃; then x̃ ∈ Ω as we just
proved. Since x* is a solution of Problem ., we get

lim sup
n→∞

〈
(γ f –μF)x*,xn+ – x*

〉
=
〈
(γ f –μF)x*, x̃ – x*

〉≤ . (.)

Repeating the same argument as that of (.), we have

lim sup
n→∞

〈
(γ S –μF)x*,xn+ – x*

〉≤ . (.)

From (.) and (.), it follows that (noticing that xn+ = PCzn and  < γ ≤ τ )

‖xn+ – x*‖

=
〈
zn – x*,xn+ – x*

〉
+
〈
PCzn – zn,PCzn – x*

〉
≤ 〈

zn – x*,xn+ – x*
〉

=
〈
(I – λnμF)Tyn,N – (I – λnμF)x*,xn+ – x*

〉
+ αnλnγ

〈
f (xn) – f

(
x*
)
,xn+ – x*

〉
+ λn( – αn)γ

〈
Sxn – Sx*,xn+ – x*

〉
+ αnλn

〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉
≤ [

 – λnτ + αnλnγρ + λn( – αn)γ
]∥∥xn – x*

∥∥∥∥xn+ – x*
∥∥

+ αnλn
〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉
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≤ [
 – αnλnγ ( – ρ)

]∥∥xn – x*
∥∥∥∥xn+ – x*

∥∥
+ αnλn

〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉
≤ [

 – αnλnγ ( – ρ)
] 

(∥∥xn – x*

∥∥ + ∥∥xn+ – x*
∥∥)

+ αnλn
〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉
.

It turns out that

∥∥xn+ – x*
∥∥

≤  – αnλnγ ( – ρ)
 + αnλnγ ( – ρ)

∥∥xn – x*
∥∥ + 

 + αnλnγ ( – ρ)
[
αnλn

〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉]
≤ [

 – αnλnγ ( – ρ)
]∥∥xn – x*

∥∥
+


 + αnλnγ ( – ρ)

[
αnλn

〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉]
=
[
 – αnλnγ ( – ρ)

]∥∥xn – x*
∥∥ + αnλnγ ( – ρ)

{


γ ( – ρ)[ + αnλnγ ( – ρ)]

× 〈
(γ f –μF)x*,xn+ – x*

〉
+

( – αn)
αnγ ( – ρ)[ + αnλnγ ( – ρ)]

〈
(γ S –μF)x*,xn+ – x*

〉}
. (.)

Put sn = ‖xn – x*‖, γn = αnλnγ ( – ρ) and

δn =


γ ( – ρ)[ + αnλnγ ( – ρ)]
〈
(γ f –μF)x*,xn+ – x*

〉

+
( – αn)

αnγ ( – ρ)[ + αnλnγ ( – ρ)]
〈
(γ S –μF)x*,xn+ – x*

〉
.

Then (.) can be rewritten as

sn+ ≤ ( – γn)sn + γnδn.

From conditions (C) and (C), we conclude from  <  – ρ ≤  that

{γn} ⊂ [, ] and
∞∑
n=

γn = ∞.

Note that


γ ( – ρ)[ + αnλnγ ( – ρ)]

≤ 
γ ( – ρ)

and

( – αn)
αnγ ( – ρ)[ + αnλnγ ( – ρ)]

≤ 
aγ ( – ρ)

.
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Consequently, utilizing Lemma ., we obtain that

lim sup
n→∞

δn ≤ lim sup
n→∞


γ ( – ρ)[ + αnλnγ ( – ρ)]

〈
(γ f –μF)x*,xn+ – x*

〉

+ lim sup
n→∞

( – αn)
αnγ ( – ρ)[ + αnλnγ ( – ρ)]

〈
(γ S –μF)x*,xn+ – x*

〉
≤ .

So, this together with Lemma . leads to limn→∞ ‖xn – x*‖ = . The proof is complete.
�

We now derive the following strong convergence result for a sequence generated by
Algorithm . to a unique solution of Problem ..

Theorem . Let {λn}, {αn}, {βn,i}, i = , . . . ,N be sequences in (, ) such that βn,i → βi ∈
(, ) as n → ∞ for all i ∈ {, . . . ,N}. Assume that the solution set Ξ of HVIP (.) is
nonempty and that the following conditions hold:
(C)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(C) limn→∞ λn =  and

∑∞
n= λn = ∞;

(C)
∑∞

n= |αnλn – αn–λn–| < ∞ or limn→∞ |αnλn–αn–λn–|
λn

= ;
(C)

∑∞
n= |λn – λn–| < ∞ or limn→∞ |λn–λn–|

λn
= ;

(C)
∑∞

n= |βn,i – βn–,i| <∞ or limn→∞
|βn,i–βn–,i|

λn
=  for all i ∈ {, . . . ,N};

(C)
∑∞

n= |rn – rn–| <∞ or limn→∞ |rn–rn–|
λn

= ;
(C) there are constants k̄, θ >  satisfying ‖x – Tx‖ ≥ k̄[d(x,Ω)]θ for all x ∈ C.

Then the following assertions hold.
(a) Let {xn} be a sequence generated by the scheme (.), then {xn} converges strongly to

a unique solution x* ∈ Ω of Problem . provided ωw(xn) ⊂ Ξ .
(b) Let {xn} be a sequence generated by the scheme (.), then {xn} converges strongly to

a unique solution x* of the following VIP provided ωw(xn) ⊂ Ξ :

find x* ∈ Ξ such that
〈
Fx*,x – x*

〉≥ , ∀x ∈ Ξ .

Proof For part (a), suppose that the sequence {xn} is generated by the scheme (.). First
of all, from the condition Ξ �= ∅ it follows that Ω = Fix(T) ∩ (

⋂
i Fix(Si)) ∩ EP(Θ ,h) �= ∅.

Note that  < γ ≤ τ and κ ≥ η ⇔ μη ≥ τ . Hence, it follows from the ρ-contractiveness
of f and γρ < γ ≤ τ ≤ μη that μF – γ f is (μη – γρ)-strongly monotone and Lipschitz
continuous. So, there exists a unique solution x* of the following VIP:

find x* ∈ Ξ such that
〈
(μF – γ f )x*,x – x*

〉≥ , ∀x ∈ Ξ .

Consequently, it is easy to see that Problem . has a unique solution x* ∈ Ξ . In addition,
taking into account condition (C), without loss of generality, we may assume that {αn} ⊂
[a,b] for some a,b ∈ (, ).
The rest of the proof is divided into several steps.
Step . The sequences {xn}, {yn,i} for all i, {un} are bounded.
Indeed, repeating the same argument as in Step  of the proof of Theorem ., we can

derive the claim.

http://www.fixedpointtheoryandapplications.com/content/2012/1/186


Latif et al. Fixed Point Theory and Applications 2012, 2012:186 Page 18 of 26
http://www.fixedpointtheoryandapplications.com/content/2012/1/186

Step . limn→∞ ‖xn+ – xn‖ = , that is, {xn} is asymptotically regular.
Indeed, repeating the same argument as in Step  of the proof of Theorem ., we can

derive the claim.
Step . ‖xn – un‖ = ‖xn – Trnxn‖ →  as n→ ∞.
Indeed, repeating the same argument as in Step  of the proof of Theorem ., we can

derive the claim.
Step . For all i ∈ {, . . . ,N}, ‖Siun – un‖ →  as n→ ∞.
Indeed, repeating the same argument as in Step  of the proof of Theorem ., we can

derive the claim.
Step . limn→∞ ‖yn,N – xn‖ = limn→∞ ‖xn – Txn‖ =  and ωw(xn) ⊂ Ω .
Indeed, repeating the same argument as in Step  of the proof of Theorem ., we can

derive the claim.
Step . {xn} converges strongly to a unique solution x* of Problem ..
Indeed, we now take a subsequence {xnj} of {xn} satisfying

lim sup
n→∞

〈
(μF – γ f )x*,xn – x*

〉
= lim

j→∞
〈
(μF – γ f )x*,xnj – x*

〉
.

Without loss of generality, we may further assume that xnj ⇀ x̃; then x̃ ∈ Ξ according to
the assumption ωw(xn) ⊂ Ξ . Since x* is a solution of THVIP (.), we get

lim sup
n→∞

〈
(μF – γ f )x*,xn – x*

〉
=
〈
(μF – γ f )x*, x̃ – x*

〉≥ . (.)

From (.) and (.), it follows that (noticing that xn+ = PCzn and  < γ ≤ τ )

∥∥xn+ – x*
∥∥

=
〈
zn – x*,xn+ – x*

〉
+
〈
PCzn – zn,PCzn – x*

〉
≤ 〈

zn – x*,xn+ – x*
〉

=
〈
(I – λnμF)Tyn,N – (I – λnμF)x*,xn+ – x*

〉
+ αnλnγ

〈
f (xn) – f

(
x*
)
,xn+ – x*

〉
+ λn( – αn)γ

〈
Sxn – Sx*,xn+ – x*

〉
+ αnλn

〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉
≤ [

 – λnτ + αnλnγρ + λn( – αn)γ
]∥∥xn – x*

∥∥∥∥xn+ – x*
∥∥

+ αnλn
〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉
≤ [

 – αnλnγ ( – ρ)
]∥∥xn – x*

∥∥∥∥xn+ – x*
∥∥

+ αnλn
〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉
≤ [

 – αnλnγ ( – ρ)
] 

(∥∥xn – x*

∥∥ + ∥∥xn+ – x*
∥∥)

+ αnλn
〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉
.

It turns out that

∥∥xn+ – x*
∥∥

≤  – αnλnγ ( – ρ)
 + αnλnγ ( – ρ)

∥∥xn – x*
∥∥ + 

 + αnλnγ ( – ρ)
[
αnλn

〈
(γ f –μF)x*,xn+ – x*

〉
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+ λn( – αn)
〈
(γ S –μF)x*,xn+ – x*

〉]
≤ [

 – αnλnγ ( – ρ)
]∥∥xn – x*

∥∥ + 
 + αnλnγ ( – ρ)

[
αnλn

〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉]
. (.)

However, from x* ∈ Ξ and condition (C), we obtain

〈
(γ S –μF)x*,xn+ – x*

〉
=
〈
(γ S –μF)x*,xn+ – PΩxn+

〉
+
〈
(γ S –μF)x*,PΩxn+ – x*

〉
≤ 〈

(γ S –μF)x*,xn+ – PΩxn+
〉

≤ ∥∥(γ S –μF)x*
∥∥d(xn+,Ω)

≤ ∥∥(γ S –μF)x*
∥∥( 

k̄
‖xn+ – Txn+‖

)/θ

. (.)

On the other hand, we also have

‖xn+ – Txn+‖
≤ ‖xn+ – Txn‖ + ‖Txn – Txn+‖
≤ ‖xn – xn+‖ +

∥∥λnγ
(
αnf (xn) + ( – αn)Sxn

)
+ (I – λnμF)Tyn,N – Txn

∥∥
≤ ‖xn – xn+‖ + ‖Tyn,N – Txn‖ + λn

∥∥γ (αnf (xn) + ( – αn)Sxn
)
–μFTyn,N

∥∥
= ‖xn – xn+‖ + ‖Tyn,N – Txn‖ + λn

∥∥γαn
(
f (xn) – Sxn

)
+ γ Sxn –μFTyn,N

∥∥
≤ ‖xn – xn+‖ + ‖yn,N – xn‖ + λnM. (.)

Hence, for a big enough constant k̄ > , we have

〈
(γ S –μF)x*,xn+ – x*

〉≤ k̄
(‖xn – xn+‖ + ‖yn,N – xn‖ + λnM

)/θ . (.)

Combining (.)-(.), we get

∥∥xn+ – x*
∥∥

≤ [
 – αnλnγ ( – ρ)

]∥∥xn – x*
∥∥ + 

 + αnλnγ ( – ρ)
[
αnλn

〈
(γ f –μF)x*,xn+ – x*

〉
+ λn( – αn)

〈
(γ S –μF)x*,xn+ – x*

〉]
=
[
 – αnλnγ ( – ρ)

]∥∥xn – x*
∥∥

+ αnλnγ ( – ρ)
[


γ ( – ρ)[ + αnλnγ ( – ρ)]

〈
(γ f –μF)x*,xn+ – x*

〉

+
( – αn)

αnγ ( – ρ)[ + αnλnγ ( – ρ)]
〈
(γ S –μF)x*,xn+ – x*

〉]

≤ [
 – αnλnγ ( – ρ)

]∥∥xn – x*
∥∥

+ αnλnγ ( – ρ)
[


γ ( – ρ)[ + αnλnγ ( – ρ)]

〈
(γ f –μF)x*,xn+ – x*

〉
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+
( – αn)

αnγ ( – ρ)[ + αnλnγ ( – ρ)]
k̄
(‖xn – xn+‖ + ‖yn,N – xn‖ + λnM

)/θ]

= ( – γn)
∥∥xn – x*

∥∥ + γnδn, (.)

where γn = αnλnγ ( – ρ) and

δn =


γ ( – ρ)[ + αnλnγ ( – ρ)]
〈
(γ f –μF)x*,xn+ – x*

〉

+
( – αn)

αnγ ( – ρ)[ + αnλnγ ( – ρ)]
k̄
(‖xn – xn+‖ + ‖yn,N – xn‖ + λnM

)/θ .
Now, conditions (C) and (C) imply that

∑∞
n= γn = ∞. Moreover, since ‖xn+ – xn‖ → 

(due to Step ), ‖yn,N – xn‖ →  (due to Step ) and λn → , we obtain from (.) that

δn =


γ ( – ρ)[ + αnλnγ ( – ρ)]
[〈
(γ f –μF)x*,xn+ – xn

〉
+
〈
(γ f –μF)x*,xn – x*

〉]

+
( – αn)

αnγ ( – ρ)[ + αnλnγ ( – ρ)]
k̄
(‖xn – xn+‖ + ‖yn,N – xn‖ + λnM

)/θ
≤ 

γ ( – ρ)[ + αnλnγ ( – ρ)]
[∥∥(γ f –μF)x*

∥∥‖xn+ – xn‖ +
〈
(γ f –μF)x*,xn – x*

〉]

+
( – a)

aγ ( – ρ)[ + αnλnγ ( – ρ)]
k̄
(‖xn – xn+‖ + ‖yn,N – xn‖ + λnM

)/θ ,
which together with Lemma . leads to

lim sup
n→∞

δn ≤ .

Therefore, we can apply Lemma . to (.) to conclude that xn → x*. The proof of part
(a) is complete. It is easy to see that part (b) now becomes a straightforward consequence
of part (a) since, if f = , THVIP (.) reduces to the VIP in part (b). This completes the
proof. �

Utilizing Theorem ., we immediately derive the following result.

Corollary . Let F : C → H be a κ-Lipschitzian and η-strongly monotone operator with
constants κ ,η > , respectively, f : C → H be a ρ-contraction with a coefficient ρ ∈ [, )
and S,T : C → C be nonexpansive mappings with Fix(T) �= ∅. Let  < μ < η/κ and  <
γ ≤ τ , where τ =  –

√
 –μ(η –μκ). Assume that the solution set Ξ of HVIP (.) is

nonempty and the following conditions hold for two sequences {λn}, {αn} ⊂ (, ):
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ λn =  and

∑∞
n= λn = ∞;

(iii)
∑∞

n= |αnλn – αn–λn–| <∞ or limn→∞ |αnλn–αn–λn–|
λn

= ;
(iv)

∑∞
n= |λn – λn–| <∞ or limn→∞ |λn–λn–|

λn
= ;

(v) there are constants k̄, θ >  satisfying ‖x – Tx‖ ≥ k̄[d(x,Ω)]θ for all x ∈ C.
Then the following assertions hold.
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(a) Let {xn} be a sequence generated from an arbitrary initial x ∈ C by the iterative
scheme

xn+ = PC
[
λnγ

(
αnf (xn) + ( – αn)Sxn

)
+ (I – λnμF)Txn

]
, n≥ , (.)

such that ωw(xn)⊂ Ξ , then {xn} converges in norm to the point x* ∈ Fix(T) which is a
unique solution of Problem ..

(b) Let {xn} be a sequence generated from an arbitrary initial x ∈ C by the iterative
scheme

xn+ = PC
[
λn( – αn)γ Sxn + (I – λnμF)Txn

]
, n ≥ ,

such that ωw(xn) ⊂ Ξ , then {xn} converges in norm to a unique solution x* of the VIP
of finding x* ∈ Ξ such that

〈
Fx*,x – x*

〉≥ , ∀x ∈ Ξ .

Proof In Theorem ., putting Θ = h = , Si = I , i = , . . . ,N , from (.) we obtain that
xn = un = yn,i, i = , . . . ,N . In this case, Ω = Fix(T) and (.) reduces to (.). Moreover,
it is easy to see that Problem . reduces to Problem .. Thus, by Theorem . we obtain
the desired results. �

Remark . Corollary . improves and extends [, Theorem .] in the following as-
pects:
(a) The restriction limn→ αn =  in [, Theorem .] is replaced by

 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < ;

(b) The condition limn→ λ/θ
n /αn =  is not assumed in Corollary .;

(c) The boundedness of the sequence {xn} is not assumed in Corollary ..

Very recently, Yao et al. [] considered the following HVIP of finding x* ∈ Fix(T) such
that

〈
(I – S)x*,x – x*

〉≥ , ∀x ∈ Fix(T), (.)

where T ,S : C → C are two nonexpansive mappings and Fix(T) is the fixed point set of T .
Let Ω denote the solution set of HVIP (.) and assume that Ω is nonempty; conse-
quently, the metric projection PΩ is well defined. It is interesting to find the minimum-
norm solution x* of HVIP (.) which exists uniquely and is exactly the nearest point
projection of the origin to Ω , that is, x* = PΩ (). Alternatively, x* is the unique solution of
the quadratic minimization problem:

∥∥x*∥∥ =min
{‖x‖ : x ∈ Ω

}
. (.)

They used the contractions to regularize the nonexpansive mapping S to introduce an
explicit scheme that generates a sequence {xn} via an iterative algorithm and proved that
this sequence converges strongly to the minimum-norm solution x* of HVIP (.).
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In Corollary ., if we put μ = , F = 
 I and γ = τ = , then HVIP (.) reduces to

HVIP (.) and Ξ = Ω . In this case, THVIP (.) reduces to the quadratic minimization
problem (.). In terms ofCorollary .(a), {xn} converges in norm to the point x* ∈ Fix(T)
which is a unique solution of VIP (.); see (.). Also, by Corollary .(b), {xn} converges
in norm to the minimum-norm solution of HVIP (.). Therefore, we get the following
conclusions.

Corollary . Let f : C →H be a ρ-contraction with a coefficient ρ ∈ [, ) and S,T : C →
C be two nonexpansive mappings with Fix(T) �= ∅. Assume that the solution set Ω of HVIP
(.) is nonempty and that the following conditions hold for two sequences {λn}, {αn} ⊂
(, ):

(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ λn =  and

∑∞
n= λn = ∞;

(iii)
∑∞

n= |αnλn – αn–λn–| <∞ or limn→∞ |αnλn–αn–λn–|
λn

= ;
(iv)

∑∞
n= |λn – λn–| <∞ or limn→∞ |λn–λn–|

λn
= ;

(v) there are constants k̄, θ >  satisfying ‖x – Tx‖ ≥ k̄[d(x,Ω)]θ for all x ∈ C.
Then the following assertions hold.
(a) Let {xn} be a sequence generated from an arbitrary initial x ∈ C by the iterative

scheme

xn+ = PC
[
λn
(
αnf (xn) + ( – αn)Sxn

)
+ ( – λn)Txn

]
, n≥ ,

such that ωw(xn) ⊂ Ω , then {xn} converges in norm to the point x* ∈ Fix(T) which is a
unique solution of the VIP of finding x* ∈ Ω such that

〈
(I – f )x*,x – x*

〉≥ , ∀x ∈ Ω . (.)

(b) Let {xn} be a sequence generated from an arbitrary initial x ∈ C by the iterative
scheme

xn+ = PC
[
λn( – αn)Sxn + ( – λn)Txn

]
, n≥ ,

such that ωw(xn) ⊂ Ω , then {xn} converges in norm to a minimum-norm solution of
HVIP (.).

4 Applications
Let C be a nonempty, closed and convex subset of a real Hilbert space H . Recall that a
point u ∈ C is a solution to VIP (.) if and only if

u = PC(I – λA)u, λ > . (.)

Definition . An operator A : C → H is said to be an α-inverse strongly monotone op-
erator if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.
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As an example, we recall that the α-inverse stronglymonotone operators are firmly non-
expansive mappings if α ≥  and that every α-inverse strongly monotone operator is also

α
-Lipschitz continuous (see []).
Let us observe also that, if A is α-inverse strongly monotone, the mappings PC(I – λA)

are nonexpansive for all λ ∈ (, α] since they are compositions of nonexpansivemappings
(see [, pp.]).
Let us consider S̃, . . . , S̃M to be a finite number of nonexpansive self-mappings on C and

A, . . . ,AN to be a finite number of α-inverse strongly monotone operators. Let T be a
nonexpansive self-mapping on C. Very recently, Marino, Muglia and Yao [] considered
an application of Theorem . of [], to solve the following mixed problem.
To find x* ∈ Fix(T)∩ EP(Θ ,h) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(I – S̃)x*, y – x*〉 ≥ , ∀y ∈ Fix(T)∩ EP(Θ ,h),

〈(I – S̃)x*, y – x*〉 ≥ , ∀y ∈ Fix(T)∩ EP(Θ ,h),

· · ·
〈(I – S̃M)x*, y – x*〉 ≥ , ∀y ∈ Fix(T)∩ EP(Θ ,h),

〈Ax*, y – x*〉 ≥ , ∀y ∈ C,

〈Ax*, y – x*〉 ≥ , ∀y ∈ C,

· · ·
〈ANx*, y – x*〉 ≥ , ∀y ∈ C.

(.)

Let us call (SVIP) the set of solutions of the (N +M)-system. This problem is equivalent
to finding a common fixed point of T , {PFix(T)∩EP(Θ ,h)S̃i}Mi=, {PC(I – λAi)}Ni=.
Based on the above mixed problem, in this section we first consider the following more

general mixed problem.

Problem . Let F : C →H be κ-Lipschitzian and η-strongly monotone on C, f : C →H
be a ρ-contraction with a coefficient ρ ∈ [, ) and S, T be nonexpansive self-mappings
on C. Let  < μ < η/κ and  < γ ≤ τ , where τ =  –

√
 –μ(η –μκ). Assume that

Θ ,h : C ×C →R are two bifunctions. Then the objective is to find x* ∈ Ω such that

⎧⎨
⎩〈(μF – γ f )x*,x – x*〉 ≥ , ∀x ∈ Ω ,

〈(μF – γ S)x*, y – x*〉 ≥ , ∀y ∈ Ω ,
(.)

where Ω = Fix(T)∩ (SVIP)∩ EP(Θ ,h) �= ∅.

Utilizing Theorem . we obtain the following result.

Theorem. Assume that Problem . has a solution. Let  < λ ≤ α. Let {λn}, {αn}, {βn,i},
i = , . . . , (N + M) be sequences in (, ) such that βn,i → βi ∈ (, ) as n → ∞ for all i ∈
{, . . . , (N +M)}. Suppose that the conditions (C)-(C) in Theorem . hold and that the
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sequence {xn} is defined explicitly by the following iterative scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn, = βn,PFix(T)∩EP(Θ ,h)S̃un + ( – βn,)un,

yn,i = βn,iPFix(T)∩EP(Θ ,h)S̃iun + ( – βn,i)yn,i–, i = , . . . ,M,

ȳn,j = β̄n,jPC(I – λAj)un + ( – β̄n,j)ȳn,j–, j = , . . . ,N ,

xn+ = PC[λnγ (αnf (xn) + ( – αn)Sxn) + (I – λnμF)Tȳn,N ], n≥ ,

(.)

where ȳn, = yn,M and β̄n,j = βn,M+j, j = , . . . ,N . In particular, if f ≡ , then (.) reduces to
the following iterative scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn, = βn,PFix(T)∩EP(Θ ,h)S̃un + ( – βn,)un,

yn,i = βn,iPFix(T)∩EP(Θ ,h)S̃iun + ( – βn,i)yn,i–, i = , . . . ,M,

ȳn,j = β̄n,jPC(I – λAj)un + ( – β̄n,j)ȳn,j–, j = , . . . ,N ,

xn+ = PC[λn( – αn)γ Sxn + (I – λnμF)Tȳn,N ], n≥ .

(.)

Then the following assertions hold.
(a) Let {xn} be a sequence generated by the scheme (.), then {xn} converges strongly to

the point x* ∈ Ω which is a unique solution of Problem ..
(b) Let {xn} be a sequence generated by the scheme (.), then {xn} converges strongly to a

unique solution x* ∈ Ω of the following system of variational inequalities:

⎧⎨
⎩〈Fx*,x – x*〉 ≥ , ∀x ∈ Ω ,

〈(μF – γ S)x*, y – x*〉 ≥ , ∀y ∈ Ω .
(.)

Now, we consider another more general mixed problem.

Problem . Let F : C →H be κ-Lipschitzian and η-strongly monotone on C, f : C →H
be a ρ-contraction with a coefficient ρ ∈ [, ) and S, T be nonexpansive self-mappings
on C. Let  < μ < η/κ and  < γ ≤ τ , where τ =  –

√
 –μ(η –μκ). Assume that

Θ ,h : C ×C → R are two bifunctions. Then the objective is to find x* ∈ Ξ such that

〈
(μF – γ f )x*,x – x*

〉≥ , ∀x ∈ Ξ , (.)

whereΞ denotes the solution set of the following hierarchical variational inequality prob-
lem (HVIP) of finding z* ∈ Ω such that

〈
(μF – γ S)z*, z – z*

〉≥ , ∀z ∈ Ω , (.)

with Ω = Fix(T)∩ (SVIP)∩ EP(Θ ,h) �= ∅.

Utilizing Theorem ., we get the following result.
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Theorem . Let  < λ ≤ α. Let {λn}, {αn}, {βn,i}, i = , . . . , (N +M) be sequences in (, )
such that βn,i → βi ∈ (, ) as n → ∞ for all i ∈ {, . . . , (N +M)}. Assume that the solution
set Ξ of HVIP (.) is nonempty and that the conditions (C)-(C) in Theorem . hold.
Then the following assertions hold.
(a) Let {xn} be a sequence generated by the scheme (.) such that ωw(xn) ⊂ Ξ , then {xn}

converges strongly to the point x* ∈ Ω which is a unique solution of Problem ..
(b) Let {xn} be a sequence generated by the scheme (.) such that ωw(xn)⊂ Ξ , then {xn}

converges strongly to a unique solution x* of the following VIP:

find x* ∈ Ξ such that
〈
Fx*,x – x*

〉≥ , ∀x ∈ Ξ . (.)

5 Concluding remarks
We considered a system of variational inequalities defined over the intersection of the set
of solutions of an equilibrium problem, the set of common fixed points of a finite family of
nonexpansive mappings, and the solution set of a nonexpansive mapping (Problem .).
We also considered a triple hierarchical variational inequality problem, that is, a varia-
tional inequality problem defined over a set of solutions of another variational inequality
problem which is defined over the intersection of the set of solutions of an equilibrium
problem, the set of common fixed points of a finite family of nonexpansive mappings,
and the solution set of a nonexpansive mapping (Problem .). The nontrivial examples
of Problems . and . are also given in Section . We combined the one-step iterative
method proposed in [] and the multi-step iterative method given in [] to propose
a multi-step hybrid viscosity method that generates a sequence via an explicit iterative
algorithm. It is worth pointing out that the one-step iterative method given in [] com-
bines the regularization method, the hybrid steepest-descent method and the projection
method, and that the multi-step iterative method given in [] involves the Ishikawa-type
iterative method and the viscosity approximationmethod. Moreover, it is also proven that
under two different pools of suitable conditions such a sequence converges strongly to a
unique solution of Problem . and to a unique solution of Problem ., respectively.
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