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Abstract
Let D be the infinitesimal generator of a strongly continuous periodic one-parameter
group of linear operators in a Banach space. Main results: An analog of the resolvent
operator (= quasi-resolvent operator of D) is defined for points of the spectrum of D
and its evident form is given. The theorem on integral for the operator D, theorems on
the existence of periodic solutions of a linear differential equation of the nth order
with constant coefficients and systems of linear differential equations with constant
coefficients in Banach spaces are obtained. In the case of the existence of periodic
solutions, evident forms of all periodic solutions of a linear differential equation of the
nth order with constant coefficients and systems of linear differential equations with
constant coefficients in Banach spaces are given in terms of resolvent and
quasi-resolvent operators of D.
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1 Introduction
One-parameter groups of linear operators and periodic one-parameter groups of linear
operators in topological vector spaces were investigated by Stone [], Dunford [], Gelfand
[] and others (see [–]).
Let T be the one-dimensional torus {eit : –π ≤ t < π}. Further we considerT as the addi-

tive groupQ/πZ � {t : –π ≤ t < π}with its Euclidean topology, whereQ is the field of real
numbers. Let α(t) (t ∈ T ) be a strongly continuous one-parameter group of bounded linear
operators in a Banach space H , and let D be an infinitesimal generator of the group α(t).
The evident form of the resolvent operator R(μ,D) of D is known (see [], Lemma .)

R(μ,D) =
(
 – e–μt)– ∫ π


e–μtα(t)xdt,

where μ is an element of the resolvent set of D. For the element μ of the resolvent set of
D and arbitrary element a ∈ H , the element R(μ,D)a is the evident form of the unique
solution of the equation Dx –μx = a.
In the present paper, we obtain conditions of the existence of a solution of the equation

Dx – μx = a for points of the spectrum of D. We define an analog of the resolvent oper-
ator (= quasi-resolvent operator) for points of the spectrum of D and, in the case of the
existence of a solution, we give the evident form of all solutions by using a quasi-resolvent
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operator of D. We apply resolvent and quasi-resolvent operators to a solution of a linear
differential equation P(D)x = a of the nth order with constant coefficients and to a sys-
tem of linear differential equations of the first order with constant coefficients in a Banach
space H .
Contents of the present paper is the following. In Section  we give generalizations of

Fejer’s theorem and Riemann-Lebesque’s lemma for a strongly continuous linear repre-
sentation of T in a Banach space. These results are used in the next sections.
In Section we give a definition of the infinitesimal generatorD of a strongly continuous

linear representation ofT in a Banach spaceH and the domainH(D) of the definition ofD.
For D and any λ ∈ C, we introduce the operator Rλ :H → H by formula () below for the
point λ of the resolvent set of D and by () for the point of the spectrum of D. We show
that the linear operator Rλ is bounded and has properties () and () below.
In Section we prove thatH(D) = Rλ(H) for all λ ∈ C, the spectrum σ (D) of the operator

D is a point spectrum and σ (D) = {im ∈ Spec(H)}, where Spec(H) is the spectrum of the
linear representation α. It is proved that Rλ is equal to the resolvent operator of D for all
points λ of the resolvent set of D. We obtain the theorem on an integral for D.
In Section  we give conditions of the existence of a periodic solution of a linear differ-

ential equation of the nth order with constant coefficients. In the case of existence, the
evident form of all periodic solutions is given.
In Section we give conditions of the existence of a periodic solution of a systemof linear

differential equations of the first order with constant coefficients. In the case of existence,
the evident form of all periodic solutions is given.
For simplicity, we prove our main results for an isometric strongly continuous linear

representation. But they are true for any strongly continuous linear representation.

2 Fejer’s theorem and Riemann-Lebesque’s lemma for a strongly continuous
linear representation of T in a Banach space

Denote the group of all invertible bounded linear operators A :H → H of a complex Ba-
nach space H by GL(H). The following Definitions - are known [].

Definition  A homomorphism α : T → GL(H) is called a linear representation of T on
a Banach space H .

Definition  Linear representations α : T →GL(H) and β : T →GL(V ) are called equiv-
alent if there exists a bounded invertible linear operator B :H → V such that Bα(t) = β(t)B
for all t ∈ T .

Definition  A linear representation α of T on a Banach space H is called isometric if
‖α(t)x‖ = ‖x‖ for all t ∈ T and x ∈H .

Definition  A linear representation α of T on a Banach space H is called strongly con-
tinuous if limt→ α(t)x = x for all x ∈H .

It is known that every strongly continuous linear representation of T on a Banach space
is equivalent to a strongly continuous isometric linear representation of T on a Banach
space [].

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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Let α be a strongly continuous linear representation of T on a Banach space H , and let
Z be the ring of all integers and n ∈ Z. Put

Hn :=
{
x ∈ H : α(t)x = eintx ∀t ∈ T

}
.

Let x ∈H and n ∈ Z. By the theorem in ([], p.), Riemann’s integral

Fn(x) :=

π

∫ π

–π

e–intα(t)xdt

exists and Fn(x) ∈Hn.

Proposition  Let α be a strongly continuous isometric linear representation of T on a
Banach space H . Then
. α(t)Fn(x) = Fn(α(t)x) = eintFn(x) for all n ∈ Z, x ∈H and t ∈ T ;
. Fn · Fm =  and F

n = Fn for all m,n ∈ Z,m �= n;
. ‖Fn(x)‖ ≤ ‖x‖ for all n ∈ Z and x ∈H .

Proof It is easy, so it is omitted. �

A series in the form
∑∞

k=–∞ xk , xk ∈Hk , is called the Fourier series of an element x ∈H ,
if xk = Fk(x) for all k ∈ Z. It is written in the form

x ∼
∞∑

k=–∞
xk or x∼

k=∞∑
k=–∞

Fk(x).

For x ∈H and for an integer number n≥ , let us put

sn(x) :=
k=–n∑
k=n

Fk(x), ψn(x) :=
s(x) + s(x) + · · · + sn(x)

n + 
,

Kn(t) =


n + 

(
sin (n+)

 t
sin t



)

, Spec(x) :=
{
in : n ∈ Z,Fn(x) �= 

}
for x ∈H ,

Spec(H) :=
⋃

x �=θ ,x∈H
Spec(x), Hf :=

{
x ∈ H : Spec(x) is finite

}
.

Hf is a subspace of H .
In the present paper, we assume that Spec(H) is infinite. The case of the finite Spec(H)

is investigated easy and it is omitted.

Theorem Letα be a strongly continuous isometric linear representation of T onaBanach
space H . Then limn→∞ ψn(x) = x for every x ∈H and Hf =H .

Proof In a standard manner, we obtain the equality

ψn(x) =

π

∫ π

–π

Kn(t)α(t)xdt.

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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Since limt→ α(t)x = x, for every ε > , there exists δ >  such that  < δ < π
 and ‖α(t)x –

x‖ < ε
 for all t ∈ (–δ, δ). We have

Kn(t) =


n + 

(
sin (n+)

 t
sin t



)

≤ 
(n + ) sin δ



for all t ∈ [δ,π ]. Since α is a strongly continuous isometric linear representation, Kn(t) =
Kn(–t) for all t ∈ [–π ,π ], 

π
∫ π

–π
Kn(t)dt =  and sin δ

 ≤ sin t
 for all t ∈ [δ,π ), it follows

that

∥∥ψn(x) – x
∥∥ =

∥∥∥∥ 
π

∫ π

–π

Kn(t)α(t)xdt –

π

∫ π

–π

Kn(t)xdt
∥∥∥∥

≤ 
π

∫ –δ

–π

∥∥Kn(t)
(
α(t)x – x

)∥∥dt + 
π

∫ δ

–δ

∥∥Kn(t)
(
α(t)x – x

)∥∥dt
+


π

∫ π

δ

∥∥Kn(t)
(
α(t)x – x

)∥∥dt
≤ 

π

∫ π

δ

∥∥Kn(t)
∥∥∥∥α(t)x – x

∥∥dt + 
π

∫ δ

–δ

∥∥Kn(t)
∥∥∥∥α(t)x – x

∥∥dt
≤ 

π (n + ) sin δ


∫ π

δ

∥∥α(t)x – x
∥∥dt + 

π

∫ δ

–δ

Kn(t)ε dt

≤ ‖x‖
(n + ) sin δ


+

ε

π
.

Hence limn→∞ ψn(x) = x. This, in view of ψn(x) ∈Hf for all n, implies that Hf =H . �

Remark  Theorem  is known for the homogeneous Banach spaces on T ([], p.; [],
pp.-). For a strongly continuous linear representation of T in a locally convex space,
it is obtained in [].

Corollary  Let α be a strongly continuous isometric linear representation of T on a Ba-
nach space H and x, y ∈H . If Fn(x) = Fn(y) for each n ∈ Z, then x = y.

Proof Since Fn(x) = Fn(y) for each n ∈ Z, it follows thatψn(x) = ψn(y) for each n ∈ Z. Hence
Theorem  gives x = y. �

Theorem  Let α be a strongly continuous isometric linear representation of T on a Ba-
nach space H . Then limn→∞ Fn(x) =  for each x ∈H .

Proof Let ε >  be given. Since limt→ α(t)x = x, there exists a natural number N(ε) such
that ‖α(–π

n )x – x‖ < ε for all natural numbers n≥ N(ε). Since

Fn(x) =

π

∫ π+ π
n

–π+ π
n

e–intα(t)xdt = –

π

∫ π

–π

e–intα
(
t +

π

n

)
xdt,

we have

Fn(x) =

π

∫ π

–π

e–intα
(
t +

π

n

)(
α

(
–

π

n

)
x – x

)
dt.

So, ‖Fn(x)‖ ≤ ‖α(–π
n )(x) – x‖ < ε for all n≥ N(ε). �
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Remark  This theorem is a generalization of Riemann-Lebesque’s lemma ([], p.).

3 The operator Rλ

Let α be a strongly continuous isometric linear representation of T on a Banach space H .

Definition  ([], p.) A point x ∈H is called a differentiable point of α if there exists

Dx := lim
t→

α(t)x – x
t

in H .

Denote the set of all differentiable points of α by H(D). The set Spec(H) is called the
spectrum of D. The set C \ Spec(H) is called the resolvent set of D.

Proposition  Let α be a strongly continuous isometric linear representation of T on a
Banach space H . Then

(i) H(D) is a linear subspace of H , Hf ⊂H(D) and H(D) =H ;
(ii) H(D) is α(T)-invariant and α(t)Dx =Dα(t)x for all t ∈ T , x ∈H(D);
(iii) DFn(x) = Fn(Dx) = inFn(x) for all n ∈ Z and x ∈H(D).

Proof (i) It is obvious that H(D) is a linear subspace of H . Let x ∈ Hf . Then x can be ex-
pressed in the form

∑m
�=–m F�(x) for somem. Since F�(x) ∈H�, we get

lim
t→

α(t)x – x
t

= lim
t→

m∑
�=–m

(
ei�t – 

t

)
F�(x) =

m∑
�=–m

i�F�(x).

Hence x ∈ H(D) and Dx =
∑m

�=–m i�F�(x). Therefore Hf ⊂ H(D). By Theorem  Hf =
H(D) =H .
(ii) Let x ∈ H(D). Since α(t) is strongly continuous, we have

α(t)Dx = α(t) lim
s→

α(s)x – x
s

= lim
s→

α(s)α(t)x – α(t)x
s

=Dα(t)x.

Hence α(t)x ∈ H(D) and α(t)Dx =Dα(t)x.
(iii) Let n ∈ Z and x ∈H(D). Using the continuity of Fn and Proposition , we get

DFn(x) = Fn(Dx) = lim
t→

eintFn(x) – Fn(x)
t

= inFn(x). �

Remark  It is easily seen that H =H(D) if and only if Spec(H) is finite.

Definition  The operatorD is called an infinitesimal generator of a linear representation
α (see [], p.).

Proposition  Let x ∈ H(D). Then the function Gx(t) := α(t)x is differentiable on T and
G′

x(t) = α(t)G′
x() = α(t)Dx.

Proof Since α is strongly continuous, we have

G′
x(t) = lim

s→

α(t + s)x – α(t)x
s

= α(t) lim
s→

α(s)x – x
s

= α(t)Dx. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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Let α be a strongly continuous isometric linear representation ofT on a Banach spaceH .
For any x ∈H and λ ∈ C, there exists the following vector-valued Riemann’s integral:

∫ π


eλt

(∫ t


e–λsα(s)xds

)
dt.

We consider linear operators Rλ on H defined by

Rλ(x) =
λ

 – eπλ

∫ π


eλt

(∫ t


e–λsα(s)xds

)
dt +


π ( – eπλ)

∫ π


α(t)xdt ()

for all λ ∈ C such that λ �= im,m ∈ Z and

Rim(x) =
 + π

π

∫ π


e–imtα(t)xdt –


π

∫ π



(∫ t


e–imsα(s)xds

)
dt ()

for all m ∈ Z. In Theorem (iv) below, we prove that Rλ is equal to the resolvent oper-
ator of D for every point λ of the resolvent set of D. The operator Rim(x) is called the
quasi-resolvent operator of D for the point im of the spectrum of D. The operator Rλ was
introduced in [, ].

Theorem  Let α be a strongly continuous isometric linear representation of T on a Ba-
nach space H . Then

(i) the operator Rλ, defined by () and (), is bounded for all λ ∈ C;
(ii)

Rλ

(
Fn(x)

)
= Fn

(
Rλ(x)

)
=


in – λ

Fn(x) ()

for all λ �= in, λ ∈ C, n ∈ Z;
(iii)

Rin
(
Fn(x)

)
= Fn

(
Rin(x)

)
= Fn(x) ()

for all n ∈ Z and x ∈H ;
(iv) RλRμ(x) = RμRλ(x) for all x ∈H .

Proof (i) Let L :=
∫ π
 ‖eλt‖(∫ t

 ‖e–λs‖ds)dt. Then it is obvious that

∥∥Rλ(x)
∥∥ ≤

⎧⎨
⎩

(‖λ‖L+)
‖–eπλ‖‖x‖ if λ ∈ C and λ �= im,m ∈ Z,

( + π )‖x‖ if λ = im,m ∈ Z.

Therefore Rλ is bounded in H for all λ ∈ C.
(ii) Let x ∈ Hf , λ ∈ C and λ �= im for all m ∈ Z. Then x =

∑k
�=–k F�(x) for some k. Since

F�(x) ∈H�, using Proposition , we get

Rλ(x) =
λ

 – eπλ

∫ π


eλt

(∫ t


e–λs

( k∑
�=–k

α(s)F�(x)

)
ds

)
dt

+


π ( – eπλ)

∫ π



( k∑
�=–k

α(t)F�(x)

)
dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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=
λ

 – eπλ

∫ π


eλt

( k∑
�=–k

∫ t


e(i�–λ)sF�(x)ds

)
dt

+


π ( – eπλ)

∫ π



k∑
�=–k

ei�tF�(x)dt

=
λ

 – eπλ

k∑
�=–k

∫ π



ei�t

i� – λ
F�(x)dt –

λ

 – eπλ

k∑
�=–k

∫ π



eλt

i� – λ
F�(x)dt

+


π ( – eπλ)

k∑
�=–k

∫ π


ei�tF�(x)dt

=


eπλ – 
F(x) +

k∑
�=–k


i� – λ

F�(x) –


eπλ – 
F(x) =

k∑
�=–k


i� – λ

F�(x).

Hence, using Fm ◦Fl =  for l �=m (Proposition ), we get Fn(Rλ(x)) = 
in–λ

Fn(x) = Rλ(Fn(x)).
Let x be an arbitrary element of H . By Theorem , limp→∞ ψp(x) = x. Since ψp(x) ∈

Hf , we have Fn(Rλ(ψp(x))) = 
in–λ

Fn(ψp(x)) for all n ∈ Z and p ∈ N . On the other hand,
from limp→∞ ψp(x) = x, using the continuity of operators Fn and Rλ, we get Fn(Rλ(x)) =


in–λ
Fn(x) = Rλ(Fn(x)).

Now we prove equality () for λ = im, m ∈ Z, n �= m. Let x ∈ Hf and Fm(x) = . Then
x =

∑k
� �=m,�=–k F�(x) for some k ∈N and α(t)x =

∑k
� �=m,�=–k ei�tF�(x). Hence

Rim(x) =
 + π

π

k∑
� �=m,�=–k

∫ π


ei(�–m)tF�(x)dt –


π

∫ π



( k∑
� �=m,�=–k

∫ t


ei(�–m)sF�(x)

)
ds

=
k∑

� �=m,�=


i� – im

F�(x).

It implies that

Rim
(
Fn(x)

)
= Fn

(
Rim(x)

)
=

k∑
� �=m,�=–k


i� – im

Fn
(
F�(x)

)

=

⎧⎨
⎩


in–imFn(x), n �=m,‖n‖ ≤ k,

, n =m or n > k.
()

Let Fm(x) �= . Then x = Fm(x) +
∑k

� �=m,�=–k F�(x) for some k ∈N . Since Fm(x– Fm(x)) = ,
using equalities () and (), we have

k∑
� �=m,�=–k


i� – im

F�

(
x – Fm(x)

)
= Rim

(
x – Fm(x)

)
,

k∑
� �=m,�=–k


i� – im

F�(x)

=
 + π

π

∫ π


e–imtα(t)

(
x – Fm(t)

)
dt –


π

∫ π



(∫ t


e–imsα(s)

(
x – Fm(x)

)
ds

)
dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/172


Çavuş et al. Journal of Inequalities and Applications 2013, 2013:172 Page 8 of 17
http://www.journalofinequalitiesandapplications.com/content/2013/1/172

=
 + π

π

∫ π


e–imtα(t)xdt –

 + π

π

∫ π


e–imtα(t)Fm(x)dt

+

π

∫ π



(∫ t


e–imsα(s)Fm(x)ds

)
dt –


π

∫ π



(∫ t


e–imsα(s)xds

)
dt

= ( + π )Fm(x) – ( + π )Fm(x) +

π

∫ π


tFm(x)dt –


π

∫ π



(∫ t


e–imsα(s)xds

)
dt

= πFm(x) –

π

∫ π



(∫ t


e–imsα(s)xds

)
dt.

Hence

k∑
� �=m,�=–k


i� – im

F�(x) + Fm(x) = ( + π )Fm(x) –

π

∫ π



(∫ t


e–imsα(s)(x)ds

)
dt

= Rim(x).

This equality implies that

Rim
(
Fn(x)

)
= Fn

(
Rim(x)

)
=


in – im

Fn(x) ()

for all n,m ∈ Z, n �=m, and Rim(Fm(x)) = Fm(Rim(x)) = Fm(x) for allm ∈ Z, x ∈Hf .
Let x be an arbitrary element ofH . By Theorem ,ψp(x) ∈Hf and equality (), we obtain

Rim
(
Fn(x)

)
= Fn

(
Rim(x)

)
= lim

p→∞Fn
(
Rim

(
ψp(x)

))
= lim

p→∞


in – im
Fn

(
ψp(x)

)
=


in – im

Fn(x)

for all n,m ∈ Z, n �=m, x ∈H .
(iii) The proof of equality () is similar to the proof of equality ().
(iv) Using () and (), we obtain FnRλRμ(x) = FnRμRλ(x) for x ∈ H , n ∈ Z, λ ∈ C, μ ∈ C.

Hence, by Corollary , we have RλRμ(x) = RμRλ(x) for all x ∈H , λ ∈ C, μ ∈ C. �

Corollary  Let a ∈H , im ∈ Spec(H) and λ ∈ C.Then FmRλ(a) =  if and only if Fm(a) = .

Proof It follows easily from Theorem . �

Proposition  Let α be a strongly continuous isometric linear representation of T on a
Banach space H . Then

(i) Rλ – R = λ(Rλ ◦ R) – 
λ
F for all λ ∈ C, λ �= im,m ∈ Z;

(ii) Rim – R = im(Rim ◦ R) – 
imF –


imFm for all m ∈ Z,m �= .

Proof (i) Let x ∈ H , λ ∈ C and λ �= im, m ∈ Z. For n �= , using Theorem  and FnF = ,
we obtain

Fn
(

λRλ ◦ R(x) –

λ
F(x)

)
= Fn

(
λRλ ◦ R(x)

)
–

λ
Fn

(
F(x)

)
=

λ

in(in – λ)
Fn(x)

=


in – λ
Fn(x) –


in
Fn(x) = Fn

(
Rλ(x) – R(x)

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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Similarly,

F
(
Rλ(x) – R(x)

)
= –


λ
F(x) – F

(
R(x)

)
= –


λ
F

(
F(x)

)
– F

(
R(x)

)
= –


λ
F

(
F(x)

)
+ F

(
λRλ ◦ R(x)

)
= F

(
λRλ ◦ R(x) –


λ
F(x)

)
.

Hence Fn(Rλ(x) –R(x)) = Fn(λRλ ◦R(x) – 
λ
F(x)) for every n ∈ Z. By Corollary  we have

Rλ(x) – R(x) = λRλ ◦ R(x) – 
λ
F(x) for all x ∈H , λ ∈ C and λ �= im,m ∈ Z.

A proof of (ii) is similar. �

4 The theorem on resolvent and quasi-resolvent operators
Theorem  Let α be a strongly continuous isometric linear representation of T on a Ba-
nach space H . Then

(i) H(D) = Rλ(H) for all λ ∈ C;
(ii) Rim(D – im)x = x and (D – im)Rim(y) = y for all im ∈ Spec(H) and x ∈H(D), y ∈H

such that Fm(x) = Fm(y) = ;
(iii) Rλ(D – λ)x = x and (D – λ)Rλ(y) = y for all λ ∈ C \ Spec(H) and x ∈H(D), y ∈H ;
(iv) Rλ(x) = ( – e–πλ)–

∫ π
 e–λsα(s)xds for all λ ∈ C \ Spec(H);

(v) the spectrum σ (D) of D is a point spectrum and σ (D) = Spec(H).

Proof (i) We need the following two lemmas.

Lemma  DR(x) = x – F(x) for all x ∈Hf .

Proof An element x ∈ Hf has the form x =
∑k

�=–k F�(x) for some k. Using Theorem 
and Proposition , we obtain Fn(DR(x)) = Fn(x) for all n �=  and F(DR(x)) = . Hence
DR(x) = x – F(x) for any x ∈ Hf . Lemma is proved. �

Lemma  Let x ∈H such that F(x) = . Then

α(t)R(x) =
∫ t


α(s)xds + R(x). ()

Proof Let us define the functions fn, f : [, π ) → H by fn(t) := α(t)R(ψn(x)) and f (t) :=
α(t)R(x). Since α is a strongly continuous isometric linear representation, we have

∥∥α(t)x – α(t)ψn(x)
∥∥ =

∥∥x –ψn(x)
∥∥ ()

and

∥∥f (t) – fn(t)
∥∥ =

∥∥R(x) – R
(
ψn(x)

)∥∥. ()

Equality () implies that

∥∥∥∥
∫ t


α(s)xds –

∫ t


α(s)ψn(x)ds

∥∥∥∥ ≤ π
∥∥x –ψn(x)

∥∥. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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Using F(x) = , Proposition , Theorem , R(ψn(x)) ∈ Hf , F(ψn(x)) = F(x) and
Lemma , we get

f ′
n(t) = (α(t)R

(
ψn(x)

)′ = α(t)DR
(
ψn(x)

)
= α(t)

(
ψn(x) – F(x)

)
= α(t)ψn(x).

Hence

fn(t) =
∫ t


α(s)ψn(x)ds +C,

where Cn ∈H . Putting t = , we obtain Cn = fn() = α()R(ψn(x)) = R(ψn(x)) and

fn(t) =
∫ t


α(s)ψn(x)ds + R

(
ψn(x)

)
. ()

Using equalities (), (), () and inequality (), we obtain

∥∥∥∥f (t) –
(∫ t


α(s)xds + R(x)

)∥∥∥∥ =
∥∥∥∥f (t) – fn(t) +

(
fn(t) –

∫ t


α(s)xds – R(x)

)∥∥∥∥
≤ ∥∥f (t) – fn(t)

∥∥ +
∥∥∥∥
∫ t


α(s)

(
ψn(x) – x

)
ds

∥∥∥∥
+

∥∥R
(
ψn(x) – x

)∥∥ ≤ 
(
π + ‖R‖

)∥∥ψn(x) – x
∥∥

for all t ∈ T . Since limn→∞ ψn(x) = x, it follows that

f (t) =
∫ t


α(s)xds + R(x)

and Lemma  is proved. �

We continue the proof of the theorem.
(i) From equality () we obtain that the function f (t) is differentiable and f ′(t) = α(t)x.

Using Proposition , we have

α(t)x = f ′(t) = α(t)f ′() = α(t) lim
s→

α(s)R(x) – R(x)
s

= α(t)D
(
R(x)

)
.

Hence R(x) ∈ H(D) for all x ∈ H such that F(x) = . Now let x ∈ H be an arbitrary ele-
ment. Since F(x – F(x)) = , we have R(x – F(x)) ∈ H(D). On the other hand, by The-
orem  and Proposition , RF(x) = F(x) ∈ H ⊂ H(D). Since x = (x – F(x)) + F(x) and
H(D) is a linear subspace of H , we get R(x) ∈H(D). Hence R(H) ⊂H(D).
Conversely, let x ∈ H(D). By Proposition  and Theorem , Dx ∼ ∑∞

n=–∞ inFn(x) and
R(Dx) ∼ ∑∞

n�=,n=–∞ Fn(x). Hence R(Dx) + F(x) ∼ ∑∞
n=–∞ Fn(x). Using Corollary  and

equality (), we get R(Dx) + F(x) = x, R(F(x)) = F(x) and R(Dx+ F(x)) = x. Let us put
a := Dx + F(x). Then R(a) = x. This means that x ∈ R(H), that is, H(D) ⊂ R(H); and
consequently H(D) = R(H).
Now we prove that R(H) = Rim(H) for all m ∈ Z. By claim (ii) of Proposition  and

claim (iv) of Theorem , Rim(x) = R(x)+ imRRim(x)– 
imF(x)–


imFm(x). Since F(x) ∈H,

Fm(x) ∈ Hm and Hf ⊂ H(D) = R(H), we get Rim(H) ⊂ R(H). By Theorem , Rim(Hf ) =

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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Hf ⊂ Rim(H). Claim (ii) of Proposition  implies that R(x) = Rim(x) – imRimR(x) +

imF(x) +


imFm(x). Hence R(H) ⊂ Rim(H) and H(D) = Rim(H). Similarly, using claims

(i) and (ii) of Proposition , we obtain H(D) = Rλ(H) for all λ ∈ C, λ �= im, m ∈ Z. Thus
H(D) = Rλ(H) for all λ ∈ C.
(ii) Let x ∈ H(D), Fm(x) = . By Proposition , Dx ∼ ∑∞

k=–∞ ikFk(x). Hence Dx –
imx ∼ ∑∞

k=–∞(ik – im)Fk(x). Using Fm(x) =  and Theorem , we get Rim(D – im)x ∼∑∞
k �=m,k=–∞ Fk(x). By Corollary , Rim(D – im)x = x. Thus Rim(D – im)x = x for all x ∈H(D)

such that Fm(x) = .
Let x ∈H , Fm(x) = . Since x ∼ ∑∞

k �=m,k=–∞ Fk(x), we have Rim(x)∼ ∑∞
k �=m,k=–∞


ik–imFk(x).

According to the statement (i) of this theorem, Rim(x) ∈H(D). Using Proposition , we get
(D – im)Rim(x) ∼ ∑∞

k �=m,k=–∞ Fk(x), and hence (D – im)Rim(x) = x. Thus (D – im)Rim(x) = x
for all x ∈H such that Fm(x) = .
(iii) The proof of claim (iii) is similar to the one of (ii).
(iv) Equalities (iii) mean that Rλ is the resolvent operator for all λ ∈ C \ Spec(H). Hence

equality (iv) follows from the form of the resolvent operator in ([], Lemma .).
(v) follows from (ii) and (iii). The proof of the theorem is completed. �

Remark  Equality (iv) means that for points λ of the resolvent set of D, Rλ is the other
form of the resolvent operator of D.

Theorem  Let α be a strongly continuous isometric linear representation of T on a Ba-
nach space H , a ∈ H and m ∈ Z. Then the equation Dx– imx = a has a solution if and only
if Fm(a) = . In the case Fm(a) = , a general solution of the equation Dx – imx = a has the
form x = Rim(a) + c, where c is an arbitrary element of Hm.

Proof Suppose that the equation Dx – imx = a has a solution x. By Proposition  we
have Dx ∼ ∑∞

k=–∞ ikFk(x) and Dx – imx ∼ ∑∞
k=–∞(ik – im)Fk(x). Hence Fm(a) = Fm(Dx –

imx) = .
For the converse, we assume that Fm(a) = . By Theorem  we have (D – im)Rim(a) = a.

Therefore x = Rim(a) is a solution of the equation Dx – imx = a. Let y ∈ H be a solution
of the equation Dy – imy = . Then Dy – imy ∼ ∑∞

k=–∞(ik – im)Fk(y) =
∑∞

k �=m,k=–∞(ik –
im)Fk(y) = . Hence Fk(y) =  for all k �= m, that is, y = Fm(y) ∈ Hm. On the other hand,
Dy – imy =  for all y ∈ Hm. Thus a general solution of the equation Dx – imx = a has the
form x = Rim(a) + c, where c is an arbitrary element of Hm. �

Remark  This theorem is the theorem on integral for periodic one-parameter groups of
operators.

The following theorem is known (see [], Theorem .)

Theorem  Let α be a strongly continuous isometric linear representation of T on a Ba-
nach space H and a ∈ H(D). Then the Fourier series of the element a is convergent to a
in H .

Proof In a standard manner, we have the equality

sn(a) =

π

∫ π

–π

Dn(t)α(t)adt, where Dn(t) :=
sin(n + 

 )t
sin 

 t
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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Using 
π

∫ π

–π
Dn(t)dt = , we obtain sn(a) – a = 

π
∫ π

–π
Dn(t)(α(t)a – a)dt. Let us consider

the function

g(t) :=


tg t

–

t
.

Since limt→ g(t) = , defining g() = , we obtain that g(t) is a continuous function on
[–π ,π ]. Using the equality

Dn(t) =
sinnt
t

+ g(t) sinnt +


cosnt,

we get

sn(a) – a =

π

∫ π

–π

ψ(t) sinnt dt +

π

∫ π

–π

g(t) sinnt
(
α(t)a – a

)
dt

+

π

∫ π

–π

cosnt
(
α(t)a – a

)
dt, ()

whereψ(t) := α(t)a–a
t for t �=  andψ() :=D(a). Functionsψ(t), α(t)a–a and g(t)(α(t)a–a)

are continuous vector-valued functions on T . So, using Theorem  and equality (), we
obtain limn→∞ sn = a. �

Remark  Our proof of this theorem differs from that in ([], Theorem .).

Corollary  Let α be a strongly continuous isometric linear representation of T on a
Banach space H , x be an arbitrary element of H and x ∼ ∑∞

k=–∞ xk . Then the series∑∞
k=–∞


ik–λ

xk is convergent to Rλ(x) in Hfor all λ ∈ C \ Spec(H) and the series xm +∑∞
k �=m,k=–∞


ik–mxk is convergent to Rim(x) in H for all im ∈ Spec(H).

Proof Let λ ∈ C \Spec(H). According to Theorem , we have Rλ(x) ∈H(D). By Theorem 
and Rλ(x) ∼ ∑∞

k=–∞


ik–λ
xk , the series

∑∞
k=–∞


ik–λ

xk is convergent to Rλ(x) inH . The proof
of the second statement is similar. �

Corollary  Let α be a strongly continuous isometric linear representation of T in a Ba-
nach space H and x ∈H .

(i) Let λ ∈ C \ Spec(H). Then x ∈H(D) if and only if there exists y ∈H such that
x =

∑∞
k=–∞


ik–λ

Fk(y);
(ii) Let λ ∈ Spec(H). Then x ∈H(D) if and only if there exists y ∈H such that

x = ym +
∑∞

k �=m,k=–∞


ik–imFk(y).

The proof follows from Theorem , Corollary  and Proposition . �

5 Periodic solutions of the linear differential equation P(D)x = a of the nth
order with constant coefficients

Let α(t) be a strongly continuous linear representation of T in a Banach spaceH and D be
the infinitesimal generator of α. For a ∈H , we consider a solution of the linear differential
equation

P(D)x = a ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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in H , where

P(D) = cI + cD + · · · + cn–Dn– +Dn, ()

ci ∈ C, i = , . . . ,n – , I is the unit operator in H .

Theorem  Let P(D) be a linear differential operator (), a ∈H , let λ, . . . ,λk be the roots
of the polynomial P(z), and let mi be the multiplicity of λi,m + · · · +mk = n. Then

(i) In the case λ, . . . ,λn /∈ Spec(H), for any a ∈H , there exists the unique solution of
equation () in H, and it is x = Rm

λ
· · ·Rmk

λn (a).
(ii) In the case λ, . . . ,λr ∈ Spec(H) (r > ) and λr+, . . . ,λk /∈ Spec(H), a solution of

equation () exists if and only if

Fiλ (a) = · · · = Fiλr (a) = . ()

For a ∈H , satisfying condition (), a general solution of equation () has the form

x = Rm
λ

· · ·Rmr
λr R

mr+
λr+

· · ·Rmk
λn + b + · · · + br , ()

where bi is an arbitrary element of Hiλi , i = , . . . , r.

Proof (i) P(D) may be written in the form P(D) = (D – λI) · · · (D – λnI).
Then equation () has the form

(D – λI) · · · (D – λnI)x = a. ()

By Theorem (iii),

Rλ(D – λI)x = x ()

for all x ∈ H(D) and λ /∈ Spec(H). Using equality () to equation (), we obtain x =
Rλ · · ·Rλna.
(ii) Let λ, . . . ,λr ∈ Spec(H) (r > ) and λr+, . . . ,λn /∈ Spec(H). Using Rλr+ , . . . ,Rλn to (),

we obtain

(D – λI) · · · (D – λrI)x = Rλr+ · · ·Rλna. ()

This equation we can be written in the form

(D – λI)m · · · (D – λkI)mkx = Rλr+ · · ·Rλna, ()

where λi �= λj for i �= j.

Lemma  Let a ∈ H , λ ∈ Spec(H) and m > . Then the equation

(D – λI)mx = a ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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has a solution if and only if Fiλ(a) = . In the case Fiλ(a) = , a general solution of this
equation is x = Rm

λ (a) + b, where b is an arbitrary element of Hiλ.

Proof Put y = (D – λI)m–x. Then equation () has the form (D – λI)y = a. By Theorem 
this equation has a solution if and only if Fiλ(a) = . In the case Fiλ(a) = , a general solution
is y = Rλ(a) + b, where b is an arbitrary element ofHiλ. Let Fiλ(a) = . Then equation ()
reduces to the equation

(D – λI)m–x = Rλ(a) + b. ()

Put z = (D – λI)m–x. Then this equation has the form

(D – λI)z = Rλ(a) + b. ()

By Theorem , this equation is solvable if and only if Fiλ(Rλ(a) +b) = Fiλ(Rλ(a)) +Fiλ(b) =
Fiλ(a) + Fiλ(b) = Fiλ(b) = . Therefore a general solution of equation () has the form
z = R

λ(a) + b, where b is an arbitrary element of Hiλ. By induction, we obtain that a
general solution of equation () has the form x = Rm

λ (a)+b, where b is an arbitrary element
of Hiλ. The lemma is proved. �

By this lemma, a solution of equation () reduces to a solution of the equation

(D – λI)m · · · (D – λkI)mkx = Rm
λ
Rλr+ · · ·Rλna + b, ()

where b is an arbitrary element of Hiλ . Using Lemma , by induction we obtain that a
general solution of equation () has the form (). �

6 Periodic solutions of the system of linear differential equations with
constant coefficients

Let (a, . . . ,an) be a vector-line, where ai ∈ H , i = , . . . ,n. Denote by � the operator of
transposition of a matrix. The (a, . . . ,an)� denotes a vector-column of ai ∈H , i = , . . . ,n.
Denote by H�n the set of all vectors (a, . . . ,an)�, where ai ∈ H , i = , . . . ,n. For a =
(a, . . . ,an)� ∈H�n put Da = (Da, . . . ,Dan)�.
We consider the following system of linear differential equations:

Dx = Ax + a, ()

where a ∈H�n, x = (x, . . . ,xn)� and A is a complex n× nmatrix.

Definition SystemsDx = Ax+a andDy = By+b, whereA,B are complex n×n-matrices,
a,b ∈ H�n are called equivalent, if there exists a complex n×n-matrix K such that detK �=
, A = K–BK and a = K–b.

In this case y = Kx.

Proposition  Every system () is equivalent to the system of the form Dy = By+ b, where
the matrix B has the Jordan form.

http://www.journalofinequalitiesandapplications.com/content/2013/1/172
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Proof For A there exists a complex n × n-matrix K such that A = K–BK , where B is the
Jordan normal form of A. From Dx = Ax + a, we obtain Dy = By + b, where y = Kx and
b = Ka. �

By this proposition, a solution of system () reduces to a solution of the system of the
form (), where B has the Jordan normal form. Let B have the form

⎛
⎜⎜⎜⎜⎜⎝

B  . . . 
 B . . . 
...

...
...

...

 
... Bm

⎞
⎟⎟⎟⎟⎟⎠ , ()

where Bj is a Jordan block of the njth order, n + · · · + nm = n. Then a solution of system
(), where B has the form (), reduces to a solution of the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Du = Bu + b;

Du = Bu + b;
...

Dum = Bmum + bm,

()

where Bj is a Jordan block of the njth order, bj ∈ H�nj , uj ∈ H�nj and x = (u,u, . . . ,um)�.
Therefore a solution of system () reduces to a solution of the equation of the form

Dx =Gx + b, ()

where B is a Jordan block of the qth order with eigenvalue λ: gii = λ, i = , . . . ,q; gii+ = ,
i = , . . . ,q – ; gij = , j – i <  and j – i > .

Theorem  Let Dx =Gx + b be a system of the form (), where G is a Jordan block of the
qth order with eigenvalue λ and b = (b, . . . ,bq)� ∈H�q. Then

(i) for the case λ ∈ C \ Spec(H), the system has the unique solution
x = (x, . . . ,xq)� ∈H�q, where:

x = Rλb + R
λb + · · · + Rq

λbq;

x = Rλb + R
λb + · · · + Rq–

λ bq;

...

xq = Rλbq,

(ii) for the case λ ∈ Spec(H), λ = ip, p ∈ Z, the system has a solution if and only if
Fpbq = ,
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(iii) for the case λ ∈ Spec(H), λ = ip, p ∈ Z and Fpbq = , a general solution
x = (x, . . . ,xq)� ∈H�q of the system has the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x =
∑q–

k= R
k
ip(bk – Fpbk) + Rq

ip(bq) + c;

xq–r =
∑r

k= R
k
ip(bq–r–+k – Fpbq–r–+k) + Rr+

ip (bq – Fpbq–r–),

r = , . . . ,q – ;

xq = Ripbq – Fpbq–,

()

where c is an arbitrary element of Hp.

Proof System () has the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dx – λx = x + b;

Dx – λx = x + b;
...

Dxq– – λxq– = xq + bq–;

Dxq – λxq = bq.

()

Let λ ∈ C \ Spec(H). From (), using the operator Rλ, we obtain

xq = Rλbq, xq– = Rλbq– + R
λbq, . . . , x =

q∑
k=

Rk
λbk .

Let λ ∈ Spec(H). Then λ = ip for some p ∈ Z. By Theorem , the equation

Dxq – ipxq = bq, ()

is solvable if and only if Fpbq = .
Let Fpbq = . By Theorem , a general solution of () has the form xq = Ripbq + cq, where

cq is an arbitrary element of Hip. In this case, the equation Dxq– – ipxq– = xq + bq– has
the form

Dxq– – ipxq– = Ripbq + cq + bq–. ()

By Theorem , this equation has a solution if and only if

Fip(Ripbq + cq + bq–) = . ()

By Fip(bq) =  and Theorem (ii), (iii), we have FipRipbq = RipFipbq = . Hence () is equiv-
alent to Fip(cq +bq–) = . Then Fipcq = –Fipbq– . By cq ∈Hip, we obtain cq = Fipcq = –Fipbq–.
Thus equation () is solvable if and only if cq = –Fipbq–. Then equation () has the form
Dxq– – ipxq– = (bq– – Fipbq–) + Ripbq. By Theorem , a general solution of this equation
is xq– = Rip(bq– –Fipbq–)+R

ipbq+ cq–, where cq– is an arbitrary element ofHip. Then the
equationDxq– – ipxq– = xq– +bq– has the formDxq– – ipxq– = (bq– + cq–) +Rip(bq– –
Fipbq–) + R

ipbq. As above, this equation is solvable if and only if cq– = –Fipbq–. Similarly,
by induction, we obtain a solution of system () in the form (). �
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