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Abstract

Background: Statins are widely prescribed for lowering LDL-cholesterol (LDLC) levels and risk of cardiovascular
disease. There is, however, substantial inter-individual variation in the magnitude of statin-induced LDLC reduction.
To date, analysis of individual DNA sequence variants has explained only a small proportion of this variability. The
present study was aimed at assessing whether transcriptomic analyses could be used to identify additional genetic
contributions to inter-individual differences in statin efficacy.

Results: Using expression array data from immortalized lymphoblastoid cell lines derived from 372 participants of
the Cholesterol and Pharmacogenetics clinical trial, we identify 100 signature genes differentiating high versus low
statin responders. A radial-basis support vector machine prediction model of these signature genes explains 12.3%
of the variance in statin-mediated LDLC change. Addition of SNPs either associated with expression levels of the
signature genes (eQTLs) or previously reported to be associated with statin response in genome-wide association
studies results in a combined model that predicts 15.0% of the variance. Notably, a model of the signature gene
associated eQTLs alone explains up to 17.2% of the variance in the tails of a separate subset of the Cholesterol and
Pharmacogenetics population. Furthermore, using a support vector machine classification model, we classify the
most extreme 15% of high and low responders with high accuracy.

Conclusions: These results demonstrate that transcriptomic information can explain a substantial proportion of the
variance in LDLC response to statin treatment, and suggest that this may provide a framework for identifying novel

pathways that influence cholesterol metabolism.

Background

Statins reduce low density lipoprotein cholesterol
(LDLC) levels by inhibiting 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGCR), the enzyme that cata-
lyzes the rate-limiting step of cholesterol biosynthesis.
Although numerous clinical trials have demonstrated
statin efficacy for reducing cardiovascular disease risk,
and have shown that this is proportional to LDLC lower-
ing [1], there is substantial variation among individuals
in the magnitude of this response [2,3].

Variation in the LDLC response to statin treatment
has been attributed to both phenotypic and genetic
factors. Phenotypic predictors include age, ancestry and
smoking status [2]. Genetic association studies have also
identified some single nucleotide polymorphisms (SNPs)
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and haplotypes associated with statin response [4-8]. For
example, candidate gene analyses have found variants in
known regulators of cholesterol metabolism such as
HMGCR, APOE, PCSK9, ACE, and LDLR to be associ-
ated with statin response [5-7]. In addition, genome-
wide association studies (GWAS) have identified several
SNPs in the LPA and APOE/TOMM40 loci that achieved
genome-wide significance for association with the mag-
nitude of LDLC reduction [9]. However, taken together,
these genotypes account for only a small proportion
of the variation (approximately 4%) in statin-mediated
LDLC reduction [9]. On the other hand, alternative
splicing of HMGCR in lymphoblastoid cell lines (LCLs)
was found to explain >6% of the variance in LDLC re-
sponse in individuals from whom the LCLs were derived
[10]. Notably, rs3846662, a SNP that directly regulates
HMGCR alternative splicing, in itself was not a significant
determinant of statin response, demonstrating that inves-
tigation of variation at the level of the transcriptome may
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be more powerful for detecting novel markers of statin
efficacy compared to traditional SNP association studies.

Gene expression profiling of patient-derived cell lines
has been used to identify a panel of genes, or signature
genes, associated with response to various drugs [11]. In
the present study we sought to identify a transcriptomic
profile associated with variation in LDLC response to
statin treatment using non-negative matrix factorization
(NMF) and radial-basis support vector machines (SVMs)
prediction models to define a panel of signature genes
whose expression levels differed between extremes of
the LDLC response distribution. We then further refined
our prediction model by incorporating SNPs either
associated with expression levels of the signature genes
(eQTLs) or previously associated with statin response by
GWAS. Our present study represents the first attempt
to predict inter-individual variation in LDLC response to
statin treatment using both transcriptomic and genomic
information.

Results

Identification of signature genes characterizing high and
low statin responders

NMEF is a useful feature extraction tool for multivariate
data. It attempts to decompose the input data into a
product of two non-negative matrices (that is, non-
negative basis vectors and coefficients) to represent the
data in a low dimensional feature space [12,13]. NMF
has been successfully used to distinguish cancer subtypes
based on large-scale and genome-wide gene expression
data [14-16].

Using transcriptomic data of LCLs derived from 372
Caucasian non-smoking participants of the Cholesterol
and Pharmacogenetics (CAP) simvastatin clinical trial
(ClinicalTrials.gov ID: NCT00451828, Table 1) [17], we
performed NMF clustering to determine the optimal
number of individuals defined as either ‘high’ or low’ re-
sponders in the age-adjusted LDLC response distribution
curve (Additional file 1: Figure S1).

Table 1 Baseline clinical characteristics of participants in
our study

CAP372 CAP212 P value

N 372 212 -

Men 54% 52% 0.62
Smoker (%) 0% 36% 22 x10°
Age (years) 549 £ 126 537 +£126 0.29

BMI (kg/mz) 277 £53 277 £53 0.89
LDLC level (mg/dl) 132+ 28 134 + 37 0.38
LDLC level change after -56.7 £ 19.8 -55.7 + 238 061

statin treatment (mg/dl)

Data are presented as numbers, percentages or means + SDs.
BMI: Body mass index.
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We evaluated sample numbers ranging from 20 to 80
(with samples evenly divided between the extremes of
the high and low response tails), by progressively includ-
ing samples from less extreme ranges of the response
distribution. A similar analysis of two randomly selected
groups was also performed for comparison of separation
to the true high versus low response groups. To maximize
the purity difference between the true high versus low re-
sponder groups and the randomly selected group, as well
as maximize the purity while maintaining a reasonable
sample size for subsequent analyses, we selected 52 sam-
ples, 26 from each responder group (Figure 1a; Additional
file 1: Figure S2). We found that expression data from
these samples had the most robust clustering when di-
vided into two groups (or ranks), compared to three, four,
or five groups (Figure 1b and c). Stable clustering into two
groups indicates that the tails of the LDLC change
distribution are discrete sets, and that individuals could be
categorized into high and low response groups by gene
expression measures alone.

Next, we designed an algorithm to identify differen-
tially expressed genes between the selected high and low
responders. Specifically, we adapted a version of em-
pirical Bayes moderated ¢-statistics to test differential
expression. A ¢-statistic for each gene i is the ratio of
the average gene expression difference of the high
and low responders and the sample standard error.
To obtain reliable estimates of sample standard errors
and reliable ¢-tests, empirical Bayes methods have
been popularly used to shrink the gene-wise sample
variances towards a common value. Following a similar
idea, Tusher et al. [18] introduced a constant s, (that is
related to a prior expected value of standard error s(i)
and proposed to use s(i) +sp as an estimate of the
gene-wise sample standard error, resulting in a mod-
erated statistic d(i). However, we found that this d(i)
was still sensitive to the expression level of each gene
and presented increasing variability when s(i) decreases
(Figure 2a and b). To further stabilize the variance of d(i),
we introduced varying s, values to the standard error esti-
mates, with results shown in Figure 2c and d. Genes were
then ranked based on the statistical significance of the
corresponding test statistics (details are in Materials and
methods), and the top 100 most significant genes were
selected based on their prediction performance compared
to other gene sets with smaller or larger numbers of genes
(Additional file 1: Figure S3). For ease of notation,
these 100 genes were denoted as SG, and another set
of genes obtained in the absence of s, was denoted as
SGno. Of the 100 genes in SG, 67 were expressed to
a greater extent in high responders than low respon-
ders while the other 33 genes were more highly
expressed in low responders (Figure 3; Additional file 1:
Table S1).
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(See figure on previous page.)

Figure 1 Summary of the NMF clustering results. (a) Purity curves measuring the performance of NMF in clustering. The red line was
calculated from the N/2 highest and N/2 lowest samples (N = 20, ..., 80) and the blue line was obtained from the N randomly selected samples
from the entire set of samples. Purity cutoff, 0.9, is denoted with a grey dotted line. (b) Consensus matrices for the 26 highest and 26 lowest
responder samples, averaging 500 connectivity matrices computed at k = 2, 3, 4, 5. Comparison of the visualized consensus matrices across
different ranks is a graphical way of deciding the best rank since clear block patterns along the diagonal of the consensus matrices indicate

associated with each rank k.

robustness of clustering in the corresponding ranks. (c) Cophenetic correlation and dispersion measures assessing the stability of clustering

Two of the 100 SG genes identified, cytochrome
P450, family 51, subfamily A, polypeptide 1 (CYP51A1I)
and nuclear transcription factor Y, gamma (NFYC), have
known roles in cholesterol metabolism [19,20]. In addi-
tion, 48 of the 100 genes were significantly enriched
among 3,170 HMGCR correlated genes (FDR adjusted
P <0.05), and this degree of enrichment was substan-
tially greater than expected by chance (P <1.3 x 10°™%).
HMGCR encodes the rate-limiting step of the cholesterol
biosynthesis pathway, and expression levels of this gene
can be used as a quantitative marker of cellular cholesterol
content [21]. Furthermore, using the enrichment analysis

tool Enrichr [22], we found that miR-200B and miR-429
predicted binding sites were over-represented in the SG
list (FDR adjusted P = 4.5 x 107). These micro-RNAs
have been previously described to target both SREBP-Ic
and HMGCR [23]. Thus these results are consistent with
the possibility that other genes identified within the SG list
may impact cholesterol metabolism.

Prediction using SG-based models

SVMs and related kernel methods are extremely good at
solving prediction problems in computational biology
such as prediction of a gene’s function, its interactions,
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Figure 3 Heatmap comparing expression levels of the 100 genes in SG between high vs. low responders. Each column corresponds to a
gene, and each row corresponds to a sample: H1 to H26 are high responders and L1 to L26 are low responders. Expression levels for each gene
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and its role in disease. This is due to the ability of these
methods to deal with high-dimensional datasets, their
flexibility in modelling diverse sources of data, and, most
importantly, their ability to capture any complex rela-
tionships that may exist between different measurements
[24,25]. Using radial-basis SVMs, we constructed and
compared several different predictive models, each based
on transcriptomic features, genotypic features, or a com-
bination of these, for the purpose of classification and
regression. In the classification model, we trained and
predicted the tails from the LDLC change distribution as
binary values (‘high’ or ‘low’ responders). To evaluate
classification performance, we conducted receiver oper-
ating characteristic (ROC) analysis and reported the
area under the curve (AUC) (Figure 4; Additional file 1:
Figure S4). In the regression model, we trained and
predicted statin-mediated LDLC change as a continuous
variable from the full study population to estimate the
explained variance of statin-mediated LDLC change.

First we built a classification model based on the expres-
sion levels of SG. Prediction performance was evaluated
by cross-validation as described in ‘Materials and methods;
starting from a sample size of 10% of the population (5%
each of the highest and lowest responders), and iteratively
increasing the sample number by 5%. The AUC of the
model reached a maximum of 0.98 with 15% of the tails
and then gradually decreased to 0.54 with the complete
dataset (Figure 4a). This result demonstrates that SG has
more power to predict the extreme responders and less

power to predict statin response across the entire study
population. We also compared the prediction performance
of SGxo with SG (Figure 4a), and found that the SG-based
model had improved power across all sample sizes.

Using the regression model, the SG-based model
explained 12.3% of the variance in statin-induced change
in LDLC (Table 2). We further tested the variance ex-
plained by the SG-based model for other plasma lipid
phenotypes including baseline LDLC and statin-induced
changes in triglyceride, apolipoprotein B (APOB), and
high-density lipoprotein cholesterol (HDLC). The ex-
plained variance in these phenotypes was negligible,
indicating that SG is specifically related to LDLC change.

Prediction and validation using eQTL SNPs

To determine if incorporation of other genetic features
might improve our model, we used five publicly available
datasets (Additional file 1: Table S2) to identify SNPs as-
sociated with expression levels (eQTLs) of the SG genes
at P <5 x 10, From a total of 3,317 eQTLs associated
with expression levels of 36 SG genes, we selected the
most strongly associated SNP for each gene (Additional
file 1: Table S3).

The AUC plot from a model that only included the 36
eQTL genotypes had a shape similar to that obtained
using the SG-based model, although not unexpectedly,
overall prediction performance was decreased (Figure 4b).
Similar to the SG-based model, the 36 eQTL based model
also exhibited higher prediction power for the extreme
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Figure 4 Prediction performance of classification models incorporating SG expression levels and additional genetic features. AUC plots,
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Table 2 Explained variance in plasma lipids of the entire
CAP372 by signature gene expression levels of SG

Explained variance (%)

Change in LDLC 12.3
Baseline LDLC 0.8
Change in triglyceride 19
Change in APOB 03
Change in HDLC 0.2

responders, with the AUC of 0.86 for the 10% tails and
0.75 for the 30% tails. When we included the 36 eQTLs in
the SG-based model, such that 36 genes were represented
by both their expression levels and their best eQTL geno-
types, while the remaining 64 genes were represented by
their expression level measurements alone, the overall
prediction performance improved slightly and the AUC
for the very extreme responders (10% tails) increased from
0.96 to 0.99. The combined model with SG and 36 eQTLs
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explained 13.5% of variance in change of LDLC, which
was 1.2% higher than the variance explained by the SG
based model.

Since the improvement caused by the incorporation of
eQTLs into the SG-based model was modest, we hy-
pothesized that the eQTLs were highly redundant with
the expression levels of the SG. Confirming our hypoth-
esis, when the 36 signature genes’ expression levels were
replaced by the 36 eQTLs in the SG model (64 signature
genes’ expression levels +36 eQTLs), the prediction
curve did not change significantly (data not shown),
with 12.2% of the variance explained vs. 12.3% for the
SG-based model. However, the sum of the variance
explained by the 64 signature genes alone (9.5%) and the
36 eQTLs alone (1.3%) was less than that for the com-
bined model (10.8% vs. 12.2%) suggesting a synergistic
interaction between these two feature sets.

Notably, we found that the ability of eQTLs to substi-
tute for signature genes was highly dependent on the
significance of eQTL P values. For example, when 56
eQTLs less strongly correlated with expression levels of
the SG genes (P <10) replaced the corresponding 56
genes in the SG-based model, the model explained 1.5%
less variance in LDLC change compared to the SG-based
model.

Although the CAP trial included 584 self-identified
Caucasians with genome-wide genotype data, only 372
subjects were used in the initial analysis due to either
smoking status (N = 64) or lack of gene expression data
(N = 148). The remaining subgroup of 212 individuals,
designated CAP212, was very similar to our initial study
population (CAP372) in demographic and clinical char-
acteristics with the exception of smoking status (Table 1).
In addition, although we previously reported that smok-
ing status is associated with variation in statin-induced
LDLC change [2], we did not observe this relationship in
the self-reported Caucasian subgroup, indicating that
CAP212 may be an appropriate population to investigate
the utility of the 36 SG eQTLs as genetic markers for
discriminating high and low statin responders. As shown
in Table 3, using samples comprising the 15%, 20%, and
25% tails of the LDLC response distribution, the variance
explained by the 36 SG eQTLs-based model for CAP212
was 17.2%, 14.6%, and 6.4% while the respective values

Table 3 Explained variance (%) in statin-mediated LDLC
reduction calculated by 36 eQTLs based prediction model

Sample size (%)

15 20 25
CAP212 17.2 14.6 6.4
CAP372 8.2 85 134
CAP584 6.7 7.0 6.1
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were 8.2%, 8.5%, and 13.4% for CAP372 and 6.7%, 7.0%,
and 6.1% for the full CAP population (CAP584).

Prediction using additional genetic features

We next tested the extent to which individuals in the
extreme tails of the LDLC response distributions could
be discriminated by a model including SNPs previously
reported in GWAS studies to be associated with the
magnitude of LDLC reduction at a genome-wide level of
significance [9,26]. Seven SNPs were identified that were
previously annotated as representing the APOE, ABCG?2,
and LPA genes (Additional file 1: Table S4). As shown in
Figure 4c, the AUC plot for the model based on the
seven GWAS SNPs did not exhibit substantial prediction
power for the extreme responders. This suggests that
genetic markers strongly related to statin response in the
entire population are not necessarily informative for
discriminating the very high and low responders [27].
When the GWAS SNPs were added to the SG-based
model, prediction performance was unchanged for the
extreme responders but slightly increased when the mid-
dle responders were considered as well. This combined
model explained 13.8% of the variance in statin-induced
change in LDLC, which was comparable to the amount
of variance explained by the SG with the 36 eQTLs-based
model (13.5%).

To determine if addition of SNPs with sub-genome-
wide associations (P <107 further improved our model,
we incorporated 15 such SNPs (for a total of 22 SNPs)
[9,26]. Although the 22 SNPs-based model slightly im-
proved the prediction for the extreme responders, the
overall prediction performance was decreased (Additional
file 1: Figure S5), suggesting that only SNPs that achieve
genome-wide significance are capable of improving pre-
dictive power.

Finally we combined all the features into one model
including SG, eQTLs, and GWAS SNPs (Figure 4d).
Compared to the SG-based model, the prediction perfor-
mance increased substantially across all sample sizes and
explained 15.0% of the variance in LDLC change, 2.7%
more than the SG-based model alone. Although no prom-
inent synergistic interaction was observed among different
features, inclusion of these additional genetic features
substantially increased the explained variance in statin
efficacy compared to gene expression levels alone.

Discussion

Obtaining a comprehensive understanding of genetic fac-
tors contributing to variation in drug response is critical
for understanding the molecular pathways underlying
these differences and providing tools for optimizing treat-
ment for individual patients. For statins, candidate gene
and genome-wide SNP association studies have identified
only a few loci associated with variation in statin response
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as assessed by reduction in LDLC, and together, account
for only a small portion of variance in LDLC response. To
find additional genetic predictors of statin efficacy, we first
tried to identify signature genes using an empirical Bayes
moderated ¢-statistic that searches for differentially
expressed genes between high and low responders by
properly shrinking the gene-wise sample variances. Using
prediction models based on radial-basis SVMs, we dem-
onstrated that the variation from the signature genes was
able to differentiate ‘high’ versus ‘low’ statin responders.
We then refined our prediction model by including SNPs
either associated with expression levels of the identified
signature genes (eQTLs) or directly associated with statin
response in previously published GWAS analyses. Overall
our approach accounted for 15.0% of the variance of
LDLC response to simvastatin. To our knowledge this is
the largest proportion of variance in statin efficacy ex-
plained by molecular biomarkers to date.

Two of 100 signature genes, CYP51A1 and NFYC, have
been previously implicated in cholesterol metabolism.
The enzyme encoded by CYP5I1AI, lanosterol 14-alpha-
demethylase, catalyzes the conversion of lanosterol to
24,25-dihydrolanosterol in one of the later steps of the
cholesterol biosynthesis pathway. Interestingly, we found
that ‘high’ statin responders had greater levels of endogen-
ous CYPS51AI gene expression compared to low” respon-
ders, consistent with the possibility that endogenously
high levels of cholesterol synthesis may result in greater
LDLC lowering with statin treatment. Of our signature
gene list that differentiates ‘high’ versus ‘low’ responders,
NFYC is the most highly expressed gene in the ‘low’
responder group (Additional file 1: Table S1). NFYC
encodes one subunit of the NFY trimeric complex
comprised of NFYA, NFYB, and NFYC, which functions
as a transcription factor [19,28]. NFY has been shown to
interact with sterol regulatory element binding transcrip-
tion factor 2 (SREBF2, aka SREBP2), the major transcrip-
tion factor known to modulate both the cholesterol
synthesis and uptake pathways to maintain intracellular
cholesterol homeostasis [29]. Interestingly, NFYC was very
recently identified to be a target of mir-33* [19], the
passenger strand micro-RNA generated during the
expression of mir-33, a well-established regulator of lipid
homeostasis [28].

Since HMGCR encodes the rate-limiting enzyme in
the cholesterol biosynthesis pathway, and its transcript
levels are very precisely regulated [30], variation in
HMGCR expression can be considered to be a marker of
intracellular cholesterol homeostasis. Our findings that
expression levels of almost half of the SG genes were
correlated with expression of HMGCR, and that the SG
genes have an over-representation in miR-200B and
miR-429 predicted binding sites, are consistent with the
likelihood that these genes are regulated by changes in
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intracellular cholesterol levels and thus may impact
cholesterol metabolism. Since the majority of the SG
genes have not been previously implicated in cholesterol
metabolism, functional studies will be necessary to
determine if these genes are not only markers, but also
determinants of cellular cholesterol metabolism.

Substituting gene expression levels with eQTLs is a
new and promising approach for the development of
diagnostic tools, as novel eQTLs are rapidly discovered
from various tissues [31]. We found that when the eQTLs
were very strongly correlated with gene expression vari-
ation (P <5 x 107®), replacement of the gene expression
measurements with the SNP genotypes had little detri-
mental effect on the predictive ability of our model. These
results suggest that genotype information of robustly asso-
ciated eQTLs can largely substitute for gene expression
data, and hence that analyses of transcript expression
levels can serve as a proxy for underlying genetic variation.
Not unexpectedly, we found that as the association be-
tween gene expression levels and SNP genotype lessened,
the ability of eQTLs to substitute for gene expression was
diminished.

While replication in an independent population is
typically the gold standard used for validating genetic
associations, our particular population is unique in
that we have measures of in vivo statin response from
participants of a clinical trial paired with measures of
cellular gene expression from LCLs established from
those participants. Since we had not utilized data
from the entire CAP population and to our knowledge
there is no other similar dataset or cell repository, given
the ability of the eQTLs to replace gene expression mea-
surements, we attempted to ‘replicate’ our results by test-
ing only the effect of the eQTLs model to predict statin
response in the CAP212 population. Unexpectedly, we
found that the model appeared to have even better pre-
dictive power in defining the extreme (<20%) tails than
the CAP372 subset of the population that was used to
originally define the model, consistent with the likelihood
that the SG are related to variation in statin response.
Notably, the CAP212 subset has a greater representation
of extreme low responders compared to the CAP372
subset (Additional file 1: Figure S6). Thus, the increased
predictive power of the eQTL model in the CAP212
subset is consistent with our observations that the models
have greater power at the tails of the distribution. How-
ever, replication should be tested in additional relevant
populations as they become available.

When we assessed the power of SNPs identified by
GWAS to predict statin response, unlike the SG genes
or eQTLs, we found that they were less informative for
predicting the extreme responders. This performance
discrepancy may be due to the fact that eQTLs in our
study were derived from genes that reflect only variation
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between the extreme responders of the population
while GWAS SNPs were discovered from more general
populations.

Conclusions

We propose novel integrated prediction models to inves-
tigate inter-individual variation in statin efficacy using a
comprehensive method that combines transcriptomic
and genetic information. With this approach, we explain
a substantial percentage of variation in LDLC response
to simvastatin treatment. As genotypic, eQTLs and phe-
notypic datasets grow, our approach can provide a prom-
ising framework for identifying novel genes, SNPs, and
pathways involved in drug response.

Materials and methods

CAP study participants

The Cholesterol and Pharmacogenetics (CAP) trial involved
944 healthy volunteers (609 self-identified Caucasians)
selected on the basis of plasma cholesterol levels between
160 and 400 mg/dL who were treated with 40 mg/day sim-
vastatin for 6 weeks. The CAP clinical trial (NCT00451828)
was approved by IRBs at the San Francisco General
Hospital (H11082-19536), UCLA School of Medicine
(01-11-089), where recruitment was performed, as well
as the Children’s Hospital Oakland Research Institute
(2002-032), where the study was coordinated. All partic-
ipants provided informed consent before enrollment,
and research was carried out in accordance with the
Helsinki declaration. Fasting plasma was collected at
two pre-treatment time points (screening visit and en-
rollment visit) and at two post-treatment time points
(4 and 6 weeks of treatment). Because LDLC levels were
not significantly different between screening and enroll-
ment, the average of these two measurements was used as
the pre-treatment LDLC value to minimize technical vari-
ation. For the same reason, the average of 4- and 6-week
measurements was used as the post-treatment LDLC
value. Since the absolute change in LDLC is very highly
correlated with the baseline values in the LDLC, we
performed analyses on the relative change in LDLC, log
(LDLC-change), which was defined as log(post-treatment
LDLC value) - log(pre-treatment LDLC value) (Additional
file 1: Figure S7). To adjust for the clinical covariate
effects, three candidate covariates (sex, age, and BMI)
were tested with linear regression but only the age covari-
ate significantly related to change in LDLC (P <6.6 x 107
was adjusted. The distribution of the adjusted change
measure, log(LDLC-change), is shown in Additional file 1:
Figure S1.

Gene expression measurements
Gene expression levels were measured using the Illumina
Human-Ref8v3 beadarray in 480 LCLs derived from
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Caucasian American participants in the CAP study,
after 24 h incubation under standardized conditions as
previously described [17]. We excluded smokers (64 sam-
ples) as well as 44 samples for which, after using a Bayesian
method of predicting SNP genotypes from expression data
of the LCLs, the predicted genotypes did not accurately
match directly measured genotypes from the plasma of
the LCL donor [32]. The baseline characteristics of the
remaining 372 CAP participants (CAP372) are presented
in Table 1. Each array was quantile transformed to the
overall average empirical distribution across all arrays.
Expression levels of each gene were then quantile normal-
ized, adjusted for known covariates (date, RNA labeling
batch, beadarray hybridization batch, and gender) and
quantile normalized again.

Genotype data

Genotyping was performed on the HumanHap300
(N = 304) or HumanHap610-Quad (N = 280) BeadChips
(Ilumina, San Diego, CA, USA) as previously described
[4]. These genotypes were imputed to over 2 million SNPs
using BIMBAM [33,34] and HapMap CEU as a reference
as previously described [4].

Selecting subsets of the high and low responders using
NMF analysis

NMF aims to extract a small number of features (k),
each defined as a positive linear combination of # genes,
and express gene expression level as a positive linear
combination of these pre-defined features. Given a non-
negative data matrix A,,,,, (n: number of gene, m: number
of samples), NMF factorizes A into two matrices W,
and Hy,,,,. Each of the m columns in H matrix represents
the predicted class expression pattern of the correspond-
ing sample, which is used to assign m samples into k
predicted classes. The stochastic nature of the seeding
method used to generate the initial W and H matri-
ces requires multiple NMF runs to achieve stability
and the lowest approximation error. For this purpose,
we used the NMF R package [35] and all the results
from NMF analysis reported in this work were based
on the best fit after performing 500 runs for each dataset.
To meet the non-negative requirement of the data matrix,
each entry in the normalized gene expression data matrix
was replaced with the value of its P value subtracted from
one, where the P values were calculated under the
assumption of normality.

In order to select subsets that reflect the biological
distinctions between high and low responder groups,
NMF clustering was used with the following strategy
fixing the number of features or ranks to two so as to
represent the two extreme responder groups: (1) choose
N/2 (10 to 40) each of the highest and lowest responder
samples, N in total; (2) select 2,000 genes that have the
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greatest mean difference between the two groups. Two
thousand was the maximum number of genes that pro-
vided separation between two groups in our study; (3)
Perform NMF analysis and evaluate cluster quality using
the purity and entropy measures; (4) repeat (1) to (3) for
another randomly selected 500 sets of N samples and
calculate the average purity and entropy values for com-
parison. To evaluate the cluster quality of NMF analysis,
purity and entropy measures were used [15]. Purity is a
measure of cluster coherence while entropy measures
how the various classes of samples are distributed in a
cluster. Given [ true class labels, suppose NMF generates

Lo . k j
k clusters. Purity is defined as % g o1 MAX (nl] ), where
=l1gj<

n is the total number of samples and n{ is the number of
samples in the cluster i that belong to original class j.

. k I . m
Entropy is given by _ﬁgzl E 1:121:1"1; log, j, where #;

l
is the size of cluster i Purity values close to 1, and

entropy values close to 0 represent perfect clustering.

Identifying signature genes

To identify signature genes from the subsets selected,
we first defined a score relative difference (in the same
form as a t-statistic), d(i), for each gene on the basis of
change in gene expression relative to the gene specific
scatter, s(i), which is the standard deviation of repeated
measurements. In particular, the relative difference and
the gene specific scatter are defined as

-

(i) = \/ m (Sl ()-5n O + 77w ()-7.(0)))
(2)

where % (i) and x; (i) are defined as the average levels
of expression for gene i in the high (H) and low (L)
responder groups, respectively, and N is the sample
size of the high (or low) responder group. Based on
an empirical Bayes approach, in order to stabilize the
variance of d(i) irrespective of the gene expression level,
sp was introduced in the denominator of Equation (1) as
described in Tusher et al. [18]. However, using a constant
So value as in Tusher et al, the variance of d(i) was not
fully stabilized in our data, causing difficulty in detecting
significantly differentially expressed genes in our appli-
cation. To better reflect the characteristics of our dataset,
we developed the following procedure: (1) calculate the
relative difference, d(i), as in Equation (1) with varying s
values. Specifically, sy starts with a small constant value
and decreases toward 0 as s(i) increases (see Additional
file 1 for details); (2) for each of 1,000 permutations of the
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samples within each gene, calculate relative difference d,
(i) to get the null distribution of the test statistic d(i);
(3) to find significant changes in gene expression, get
the corresponding P value of each observed relative
difference d(i) based on the null distribution calcu-
lated in (2).

Prediction using SVM

Radial-basis SVMs were used for training and predicting
in the SVM classification and regression models. The
performance of the models was evaluated as follows: the
data were randomly split into 10 sets, with nine assigned
as training set and the tenth as testing set. The model
was then trained using the training set and applied to
the testing set for prediction. This process was repeated
1,000 times and the prediction power of the model was
estimated based on the 1,000 testing sets. The SVM
function in the R package (kernlab) was used to imple-
ment the models with default parameter settings [36].
For the SVM the radial basis kernel was chosen due to
its superior performance in the cross-validation results
to other kernel functions such as linear, polynomial, or
hyperbolic tangent kernel (Additional file 1: Figure S8).
The classification performance was evaluated by ROC
curve analysis and quantitated by AUC using the ROCR
package in R [37].

Data access

The gene expression data have been deposited in the Gene
Expression Omnibus (GEO) under accession number
GSE36868 and in Synapse [38] under accession number
syn299510. The genotype data have been deposited in
the database for genotypes and phenotypes (dbGaP, [39])
under accession number phs000481.

Additional file

[ Additional file 1: Supplementary Figures S1 to S8 and Table S1 to S4. }
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