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Abstract

A pervasive method for reconstructing microstructures from two-dimensional
microstructures imaged on orthogonal planes is presented. The algorithm reconstructs
3D images through matching of 3D slices at different voxels to the representative 2D
micrographs and an optimization procedure that ensures patches from the 2D
micrographs meshed together seamlessly in the 3D image. We show that the method
effectively models the three-dimensional features in the microstructure using three
cases (i) disperse spheres, (ii) anisotropic lamellar microstructure, and (iii) a
polycrystalline microstructure. The method is validated by comparing the point
probability functions of the reconstructed images to the original 2D image, as well as
by comparing the elastic properties of reconstructed image to the experimental data.
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Background
Three-dimensional microstructural information is essential for understanding the
relationships between the material structure and its properties. Three-dimensional
microstructures experimentally characterized by serial sectioning or X-ray computed
tomography are expensive for routine applications due to the time and effort involved.
The direct problem of measuring 2D surface images using optical or micro-diffraction
methods is relatively easier. Using these 2D images, inverse models could be developed
that would allow the generation of full 3D microstructural maps and speeding-up the
development of microstructure databases for the purposes of microstructure selection
and design.
An inverse problem of specific interest in this paper is the reconstruction of 3D

microstructures from three orthogonal 2D sectional images taken along the x-, y-, and
z-planes. The information contained in these three 2D micrographs is in the form of pix-
els containing colors corresponding to different constituent phases. The outcome of the
inverse problem is a 3D microstructure containing voxels colored consistently such that
any arbitrary x-, y-, or z-slice ‘looks’ similar to the corresponding input micrographs. This
reconstruction problem leads to anisotropicmicrostructures, which is in contrast to other
such works in literature that use a single reference (2D) image and make assumptions of
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microstructural isotropy, i.e., slices in every direction look similar to a single input image
[1]. The most popular among these methods involves matching statistical features like
two-point correlation functions of a single planar image to a random 3D image using
optimization procedures like simulated annealing [2,3]. Extension of these methods to
achieve anisotropic microstructures has been proposed in the past using directionally
dependent statistical features [4]. However, these methods are restricted to simple two-
phase microstructures and are not applicable to more complex microstructures such as
metallic polycrystals.
The approach proposed here involves maximizing the similarity between the solid

microstructure and the 2D sectional microstructures by minimizing a neighborhood cost
function. This cost function ensures that the local neighborhood on 2D slices taken along
the x-, y-, or z-directions through the 3Dmicrostructure is similar to some neighborhood
in the 2Dmicrograph imaged along that plane. The approach is similar to those proposed
in the computer graphics community [5] based onMarkov random field assumption. This
assumption simply states that microstructures have a stationary probability distribution
or, in other words, different windows taken from a large microstructure ‘look alike’. To
synthesize a voxel in the 3D image, the window in the 2D micrograph that best matches
the unknown voxel’s neighborhood is chosen. The color of the voxel is decided based on
the color indicated by the matching window in the 2D input image. The result is a simple
method for generating 3D microstructures from 2D micrographs that generates visually
striking 3D reconstructions of anisotropic microstructures, is computationally efficient,
and is applicable to diverse microstructures.

Methods
Mathematical modeling of microstructures as Markov random fields

Some of the early attempts at microstructure modeling were based on Ising models [6].
In the Ising model, a N × N lattice (L) is constructed with values Xi assigned for each
particle i on the lattice, i ∈[ 1, ..,N2]. In an Ising model, Xi is a binary variable equal to
either +1 or −1 (e.g., magnetic moment [6]). In this work, the values Xi may contain any
one of G color levels in the range {0, 1, ..,G − 1} (following the integer range extension
of the Ising model by Besag [7]). A coloring of L denoted by X maps each particle in the
lattice L to a particular value in the set {0, 1, ..,G−1}. Ising models fall under the umbrella
of undirected graph models in probability theory. In order to rewrite the Ising model as a
graph, we assign neighbors to particles and link pairs of neighbors using a bond as shown
in Figure 1a. The rule to assign neighbors is based on a pairwise Markov property. A
particle j is said to be a neighbor of particle i only if the conditional probability of the value
Xi given all other particles (except (i, j), i.e., p(Xi|X1,X2, ..,Xi−1,Xi+1, ..,Xj−1,Xj+1, ..,XN2))
depends on the value Xj.
Note that the above definition does not warrant the neighbor particles to be close

in distance, although this is widely employed for physical reasons. For example, in the
classical Ising model, each particle is bonded to the next nearest neighbor as shown in
Figure 1a. In this work, we assume that a microstructure is a higher-order Ising model
(Figure 1b). The particles of the microstructure correspond to pixels of the 2D image
(or voxels in 3D). The neighborhood of a pixel is modeled using a square window around
that pixel and bonding the center pixel to every other pixel within the window. The win-
dow size is a parameter that is chosen based on the scale of the biggest regular feature
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(b)(a)
Figure 1 Markov random field as an undirected graphmodel. Circles are pixels in the image, and bonds
are used to connect neighbors. (a) Ising model with nearest neighbor interactions. (b)Microstructure
modeled by including higher-order interactions in the Ising model.

(e.g., grain size). Using this graph structure, a Markov random field can be defined as
the joint probability density P(X) on the set of all possible colorings X, subject to a local
Markov property. The local Markov property states that the probability of value Xi, given
its neighbors, is conditionally independent of the values of all other particles. In other
words, P(Xi|all particles except i) = p(Xi|neighbors of particle i). The microstructures
are obtained by sampling the Markov random field P(X). In this paper, we present an
algorithm to sample 3D microstructures by selecting the color of pixel Xi by sampling the
conditional probability density p(Xi|neighbors of voxel i) from available 2D experimental
data.

Algorithm

In the following discussion, let Sx, Sy, and Sz denote the set of orthogonal (x, y, and z,
respectively) slices of the microstructure. Let V denote the solid (3D) microstructure.
The color of voxel v in the 3D microstructure is denoted by V v. In addition to the color
(e.g., RGB triplet), the vectorV v may also contain other values including grain orientation
and phase index. In this work, the color is represented using G color levels in the range
{0, 1, ..,G−1}, each of which maps to an RGB triplet. The number of color levels is chosen
based on the microstructure to be reconstructed, e.g., for binary images G = 2.
Recall our Markovian assumption which states that the probability distribution of the

color for a pixel given the colors of its spatial neighborhood is independent of the rest of
the image. The vectors denoting the spatial neighborhood of voxel v in the slices orthog-
onal to the x, y, and z axis, respectively, are denoted as V x

v , V
y
v, and V z

v (see Figure 2). The
neighborhood is taken over a small user-assigned window around the voxel v. Let Sx,w,
Sy,w, and Sz,w denote a window of the same size in the input 2D micrographs. In order to
find the coloring of voxel v based on the neighbor voxels in the x-plane, one needs to com-
pute the conditional probability density p(V v|color of x-plane neighbors of v). Explicit
construction of such a probability density is often computationally intractable. Instead,
the most likely value of v is identified by first finding a window Sx,w that is most similar
to V x

v in the input 2D micrograph. This window is denoted by Sxv (see Figure 2). Similarly,



Sundararaghavan IntegratingMaterials andManufacturing Innovation 2014, 3:19 Page 4 of 11
http://www.immijournal.com/content/3/1/19

Figure 2 The neighborhoods of v in the slices orthogonal to the x, y, and z axis, respectively, are
shown. The windows in the input 2D micrograph shown in dotted lines are denoted by Siv (i = x, y, z). These
windows closely resemble the neighborhoods of v.

matching windows to the y- and z- plane neighborhoods of voxel v in the corresponding
2D sectional image (denoted as Syv, Szv) are found. Each of these matching windows Sxv ,
Syv, and Szv may have different coloring of the center pixel. Thus, we need an optimization
methodology to effectively merge these disparate values and identify a unique coloring
for voxel v. The optimization approach is described next.
Let the value V x

v,u denote the color of voxel u in the neighborhood V x
v . Similarly, the

values Sxv,u and Sx,wu , respectively, denote the color of pixel u in the window Sxv and Sx,w.
The 3D microstructure is synthesized by posing the problem as a L2 minimization of the
energy [8]:

E(V ) =
∑

i∈{x,y,z}

∑
v

∑
u

ωi
v,u‖V i

v,u − Siv,u‖2. (1)

Here, ωi
v,u denotes a per pixel weight. In order to preserve the short-range correlations

of the microstructure as much as possible, the weight for the nearby pixel is taken to be
greater than those of the pixels farther away (Gaussian weighting is used).
The optimization is carried out in two steps. In the first step, the energy is mini-

mized with respect to Siv. In this step, we assume that the most likely sample from
the conditional probability distribution of the center pixel in the 3D image (e.g.,
p(V v|colors of x-plane neighbors of v)) is the center pixel of a best matching window in
an experimentally obtained 2D slice on the corresponding plane. The best matching
neighborhood of voxel v along the x-plane is selected by solving the following problem:

Sxv = arg min
Sx,w

∑
u

ωx
v,u‖V x

v,u − Sx,wu ‖2. (2)

This is an exhaustive search that compares all the windows in the input 2D micrograph
to the corresponding x-slice neighborhood of voxel v and identifies a window that leads to
a minimum weighted squared distance. In this process, for 2D images of size 64×64 with
a 16 × 16 neighborhood window, a matrix of size 162 × (64 − 16)2 is built containing all
possible neighborhoods of pixels that have a complete 162 window around it. The column
in this matrix that has a minimum distance to the 3D slice V x

v is then found through a
k-nearest neighbor algorithm [9]. Note that we are only given a limited (in this work,
a single) 2D experimental sample along each cross-section, which means that the best
match may not be an exact match for V x

v .



Sundararaghavan IntegratingMaterials andManufacturing Innovation 2014, 3:19 Page 5 of 11
http://www.immijournal.com/content/3/1/19

Thus, for each voxel v, a set of three bestmatching neighborhoods are obtained, possibly
with different colors corresponding to the center pixel. A unique value of v thus needs to
be found by weighting colors pertaining to location v not only in the matching windows of
voxel v but also in its neighbors. This is exactly done in the second step of the optimization
procedure, where the optimal color of voxel v is computed by setting the derivative of
the energy function with respect to V v to zero. This leads to a simple weighted average
expression for the color of voxel v:

V v =
( ∑

i∈{x,y,z}

∑
u

ωi
u,vS

i
u,v

)
/

( ∑
i∈{x,y,z}

∑
u

ωi
u,v

)
. (3)

Note that the subscripts u and v are switched in the above expression as compared to
Equation 1. This implies that the optimal color of the voxel v is the weighted average of
the colors at locations corresponding to voxel v in the best matching windows (Siu) of vox-
els (u) in the solid microstructure. Since V v changes after this step, the set of closest input
neighborhoods Siv will also change. Hence, these two steps were repeated until conver-
gence, i.e., until the set Siv stops changing. As a starting condition, a random color from
the input 2D images is assigned to each voxel v. The process is carried out in a multires-
olution (or multigrid) fashion [10]: starting with a coarse voxel mesh and interpolating
the results to a finer mesh once the coarser 3D image has converged to a local minimum.
Three resolution levels (163, 323, and 643) were used. Synthesizing a 643 solid microstruc-
ture took between 10 and 15 min on a 3-GHz desktop computer, with about two-thirds of
the time spend in step 1 (search) algorithm.

Results and discussion
The approach has been demonstrated for three test cases with 2D images corresponding
to

1. Case 1. An isotropic distribution of solid circles;
2. Case 2. An anisotropic case with solid circles in the z-slice (similar to case 1) but an

interconnected lamellar structure in the x- and y-slices;
3. Case 3. A polycrystalline microstructure.

In case 1, all three slices (x, y, and z) were assigned to the same 2D image depicted in
Figure 3a. The resulting 3D microstructure is expected to be a random distribution of
spheres. The 3D microstructure obtained by our approach is shown in Figure 3b. The
internal structure of the solid microstructure is shown via slices in the x-plane at differ-
ent distances from the origin. Various slices ‘look’ similar to the input image as expected
from the Markov random field assumption. Case 2 builds upon this case by introducing
anisotropy in the x- and y-planes. Three 2D images corresponding to x, y, and z-slices (as
shown in Figure 4a) were used in the reconstruction. An interconnected lamellar struc-
ture was used in the x- and z-planes, while the z-plane image allowed merging of the
solid circles to allow for a more complex microstructure. In the algorithm, we match the
2D images with all three orthogonal slices through every voxel. The resulting anisotropic
3D microstructure shown in Figure 4b is quite complex. The y-axis slices as shown in
Figure 4c show the depth profile of various solid circles seen at the top surface, with
intricate internal structure revealed.



Sundararaghavan IntegratingMaterials andManufacturing Innovation 2014, 3:19 Page 6 of 11
http://www.immijournal.com/content/3/1/19

Figure 3 Example of Markov random field reconstruction: case 1. (a) Input 2D microstructure showing
an isotropic distribution of solid circles. (b) 3D reconstruction. (c) 3D sectional images of the reconstructed
microstructure.

In the last example, a polycrystalline microstructure was employed to show the applica-
bility of the algorithm to cases beyond two-phase media. The microstructure is equiaxed,
and all three slices were assigned to the same 2D image shown in Figure 5a. The
resulting 3D microstructure is shown in Figure 5b, and its internal structure revealed
through the x-axis slices in Figure 5c. The results show that the grains built by the
algorithm are also equiaxed with a variety of 3D shapes identified by the algorithm.

Figure 4 Example of Markov random field reconstruction: case 2. (a) An anisotropic case with solid
circles in the z-slice (similar to case 1) but an interconnected lamellar structure in the x- and y-slices. (b) 3D
reconstruction. (c) 3D sectional images of the reconstructed microstructure.
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Figure 5 Example of Markov random field reconstruction: case 3. (a) An experimental 2D polycrystalline
microstructure. (b) 3D reconstruction. (c) 3D sectional images of the reconstructed microstructure.

However, some of grain boundaries do not show up well in the slices which is primarily
attributed to the lower resolution of the 3D image (643) compared to the original input
image.

Validation tests

For testing the validity of the 3D reconstructions, quantitative comparisons were made
between the original 2D image and the reconstructed image, through comparison of
the statistical correlation functions as described in [11]. Rotationally invariant prob-
ability functions are employed as the microstructural features. Rotationally invariant
N-point correlation measure (Si(N)) can be interpreted as the probability of finding the
N vertices of a polyhedron separated by relative distances x1, x2, ..., xN in phase i when
tossed, without regard to orientation, in the microstructure. The simplest of these prob-
ability functions is the one-point function, S(1), which is just the volume fraction (V )
of phase i. The two-point correlation measure, Si(2)(r), can be obtained by randomly
placing line segments of length r within the microstructure and counting the fraction
of times the end points fall in phase i. These statistical descriptors occur in rigorous
expressions for the effective electromagnetic, mechanical, and transport properties like
effective conductivity, magnetic permeability, effective elastic modulus, Poisson’s ratio,
and fluid permeability of such microstructures ([4,12]). All the required correlation mea-
sures needed for comparison and property bound calculation are obtained using a Monte
Carlo sampling procedure [1]. The procedure involves initially selecting a large num-
ber of initial points in the microstructure. For every initial point, several end points
at various distances are randomly sampled, and the number of successes (of all points
falling in the ith phase) are counted to obtain the required correlation measures. Sta-
tistical measures were extracted from the microstructures by sampling 15,000 initial
points.
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Two- and three-point correlations of the isotropic distribution of solid circles

The statistical features of the 2D distribution of solid circles from Figure 3 and its 3D
reconstruction were compared. The original 2D image was a square of side 64 μmand had
a phase 1 (white phase) volume fraction of 70%. The comparison of two-point probability
(S1(2)) and the three-point probability function S1(3) is shown in Figure 6a,b, respectively.
The three-point probability measure S1(3)(r, s, t) is depicted in a feature vector format with
the distances (r, s, t)μm indicated for key points in Figure 6b. The first points in both
graphs (Figure 6) show the volume fraction of white phase for 2D image as well as the
reconstructed image. The decay in the two-point correlation function is identical for the
reconstructed image up until 3μm, showing excellent reproduction of the short-range cor-
relation. The same aspect can also be seen from comparing the short-range correlation in
the three-point probability function (Figure 6b). Although the longer range correlations
match qualitatively, there is a drift seen as the distance between pixels increases. Both the
excellent match in short-range correlation and the small drift in the long-range correla-
tion can be explained based on the reconstruction algorithm, which models a stronger
interaction of a center pixel to pixels in its immediate local neighborhood than pixels
farther away. In effect, the algorithm gives a stronger weighting towards matching the
short-range correlations in the microstructure.

Elastic properties of two-phase composite

The experimental data in [13] provides a high-resolution planar microstructure image
(Figure 7a) of a silver-tungsten composite with porous tungsten matrix and molten sil-
ver (volume fraction of silver phase p = 20%). The microstructure has been employed
for several reconstruction studies [14,15]. A 657× 657 pixel region of the microstructure
corresponding to 204-μm square area was converted to a black-and-white image for dis-
tinguishing the two phases. This was done by selecting a threshold color below in which
phases were set to white (the silver phase), and the rest of the image was set to black (the
tungsten phase). The final black-and-white image is shown in the inset of Figure 7a. A
64-μm square cell within this image was chosen to reconstruct the 3D image.
An instance of the reconstructed microstructure is shown in Figure 7b,c with the distri-

bution of each phase shown separately. The auto-correlation function for the silver phase
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Figure 7 Markov random field reconstruction of a tungsten-silver microstructure. (a) Experimental
tungsten-silver composite image (204 × 236 μm) from Umekawa et al. [13]. The black-and-white image
corresponds to a thresholded image with white representing the silver phase and black representing
tungsten. A 64-μm square cell shown in the inset was used to reconstruct the 3D image. (b) A 64-μm length
cell of reconstructed 3D microstructure of the experimental image showing silver distribution. (c) The
tungsten phase of the reconstructed microstructure.

γ (r) = S1
(2)(r)−p2

p−p2 of the reconstructed 3D microstructure and the experimental image are
compared in Figure 8a showing excellent match of short-range correlations with a small
difference seen in longer range correlations. Short-range correlations carry the great-
est weightage in determining mechanical properties such as elastic modulus (e.g., [4]),
although long-range correlations have been found to be important for phenomena such
as surface roughening during plastic deformation [16]. To test if the elastic properties are
well captured in the reconstructed 3D microstructure, we compared against the exper-
imental data from [13] of the elastic modulus as a function of temperature. The elastic
properties of the individual components at different temperatures are available from [14]
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Table 1 Elastic properties of silver and tungsten phases as a function of temperature
(from [14])

T (°C) Esilver (GPa) νsilver Etungsten (GPa) νtungsten

25 71 0.36 400 0.28

200 69 0.36 392 0.28

400 63 0.36 383 0.28

600 54 0.36 373 0.28

800 45 0.37 363 0.28

860 42 0.37 361 0.28

910 39 0.37 359 0.28

950 37 0.37 357 0.28

and are listed in Table 1. The data was used within a finite-element simulation to com-
pute the elastic modulus of the reconstructed microstructure using the method described
in [17]. The computed properties of the reconstructed 3D microstructure closely follow
the experimentally measured Young’s modulus from [13] as shown in Figure 8b with an
average error from the experimental data of about 5%.

Conclusions
A method for reconstructing diverse microstructure from two-dimensional microstruc-
tures imaged on orthogonal planes is presented. The algorithm reconstructs 3D images
through matching of 3D slices at different voxels to the representative 2D micro-
graphs. This is posed as an iterative optimization problem where the first step involves
searching of patches in the 2D micrographs that look alike to the 3D voxel neighbor-
hood, followed by a second step involving the optimization of an energy function that
ensures various patches from the 2D micrographs meshed together seamlessly in the
3D image. The method is particularly promising for anisotropic cases where the x-, y-,
and z-slices look different. The results demonstrate that the method can effectively
model three-dimensional features in the microstructure including complex intercon-
nectivity of the features and complex shapes that are not intuitive at first sight. The
approach can be useful to rapidly build a library of 3D microstructures for model-
ing purposes from 2D micrographs. Although, this preliminary study shows significant
promise as to the feasibility of the approach, future work will focus on increasing
the resolution of the reconstruction and code optimization. In addition, future work
will focus on more rigorous testing of the stereological features (e.g., grain-size his-
tograms) and other engineering properties (yield strength) of reconstructed anisotropic
microstructures.
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