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Abstract

This study aims to find the genotoxic and cytotoxic effects of a particular combination of pemetrexed (PMX) and
cefixime (CFX) in human peripheral blood lymphocytes. Chromosome aberration (CA), sister chromatid exchange
(SCE), and micronucleus (MN) tests were used to assess genotoxicity. Whereas, the cytotoxicity was evaluated by
using mitotic index (MI), proliferation index (PI), and nuclear division index (NDI). Our tests were proceeded with
concentrations of 12.5 + 450, 25 + 800, 37.5 + 1150, and 50 + 1500 μg/mL of a mixture of PMX and CFX separately
for 24 hr and 48 hr.
The combination of PMX + CFX did not induce the CA or SCE in human peripheral blood lymphocytes when
compared with both the control and the solvent control. MN in human peripheral blood lymphocytes was not
significantly increased after treatment with a particular combination of PMX + CFX. However, PMX + CFX significantly
decreased the MI, PI and NDI at all concentrations for 24- and 48-hr treatment periods when compared with both
controls. Generally, PMX + CFX inhibited cell proliferation more than positive control (MMC) and showed a higher
cytotoxic effect than MMC at both treatment periods. These results were compared with individual effects of PMX
and CFX. As a result, it was observed that a particular combination of PMX + CFX was not genotoxic. However, the
combination synergistically increase cytotoxicity in human peripheral blood lymphocytes.
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Introduction
In cytotoxic chemotherapy, patients often receive myelo-
suppressive doses of antineoplastic agents (Voog et al.
2000). Thus, the majority of patients receiving antineoplas-
tic drugs are potential recipients of antibiotics because of
significant myelosuppression that makes them susceptible
to bacterial infections. However, it is well-known that drugs
regardless of their sequence of administration can interact
with each other. The outcome of these interactions can not
be predicted based on the individual effect of each drug in
their combination. Previous studies on the combination
effects of pharmaceuticals with different mechanisms of
action have occasionally reported an increasing trend
through cytotoxicity. According to Pakulska (1992), benzy-
penicillin which normally does not demonstrate potential
cytotoxic and genotoxic activity (Koseoglu et al. 2004),
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enhanced the anticancer effect of cyclophosphamide against
L1210 leukemia cell line. However, such an interaction was
not observed between benzylpenicillin and methotrexate in
the same experimental design. Another study by Meurette
et al. (2006) demonstrated that TRAIL (TNF-α-related
apoptosis-inducing ligand), which failed to induce cytotox-
icity in normal human lymphocytes, augmented the
cytotoxic activity of 5-fluorouracil and cisplatin in PHA-IL2-
activated human peripheral lymphocytes. These authors
found that TRAIL-anticancer drug combinations activated a
significant cytotoxicity (30-35%) in human peripheral lym-
phocytes as compared to cytotoxicity elicited by cisplatin
(5%) or 5-fluorouracil (10%). A recent study by Jarmalaitė
et al. (2008) pointed out that the anti-rheumatic drug inflixi-
mab synergistically promoted the cytotoxic activity of
methotrexate by decreasing the proliferative ability (mea-
sured by proliferation and mitotic index) of peripheral blood
lymphocytes from rheumatoid arthritis patients. Thus, we
hypothesized that patients receiving antineoplastic drugs
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could be at risk for potential antineoplastic-antibiotic inter-
actions during the treatment of bacterial infection.
Pemetrexed (PMX) is a folate antagonist that disrupts

folate-dependent biosynthetic cycles required for purine
and pyrimidine synthesis (Istifli and Topaktas 2013). It
is used for the treatment of non-small cell lung cancer,
which is the leading cause of cancer related mortality
worldwide (Molina et al. 2008). The cytogenetic geno-
toxicity of PMX is still poorly understood; however, the
mechanism is believed to be the misincorporation of
uracil base into DNA. Also this aberrant process is asso-
ciated with increased chromosome breakage (Blount
et al. 1997; Weeks et al. 2014). Cefixime (CFX) is a
widely prescribed cephalosporin against many gram-
negative and gram-positive microorganisms. CFX has a
unique chemical formula among other cephalosporins
and exerts its bactericidal effect through binding one or
more penicillin-binding proteins (PBPs) in the bacterial
periplasm (Yotsuji et al. 1988).
To the best of our knowledge, the genotoxic and cyto-

toxic effects of an antineoplastic-antibiotic combination
(PMX + CFX) have not been investigated by an in vitro
test system using human peripheral blood lymphocytes
so far. Chromosome aberration (CA) test in human
peripheral blood lymphocytes is the most widely used
cytogenetic marker to detect the effects of DNA-
damaging agents (Carrano and Natarajan 1988). Chro-
matid and chromosome-type CAs can be used to
predict the risk of cancer (Hagmar et al. 1994; Hagmar
et al. 1998; Hagmar et al. 2004). However, there is evi-
dence that chromosome-type CAs are more robust end-
points to predict cancer as compared to chromatid-type
CAs (Bonassi et al. 1995; Bonassi et al. 2000; Boffetta
et al. 2007; Liou et al. 1999; Rossner et al. 2005). SCEs
are the reciprocal exchanges of DNA between homolo-
gous loci of sister chromatids (Gutierrez et al. 1999) and
the frequency of SCEs has been used to identify geno-
toxic agents (Perry and Thomson 1984). There is posi-
tive correlation between gene mutations and the
increase in SCE (Carrano et al. 1978) and it is well-
known that mutagens and carcinogens can induce SCE
in different cell types even at concentrations below cyto-
toxic and carcinogenic limits (Tofilon et al. 1983). MN
can be formed as a result of chromosome breaks and
dysfunction of mitotic apparatus. Like the CA fre-
quency, epidemiological evidence indicate that in a
population consisting of healthy individuals, MN fre-
quency in peripheral blood lymphocytes can be used as
a biological marker in the prediction of cancer (Bonassi
et al. 2007; Bonassi et al. 2011; Fenech et al. 2011).
The aim of the present study was therefore to investi-

gate the genotoxic and cytotoxic effects of a particular
combination of PMX and CFX in human peripheral
blood lymphocytes. While SCE, CA, and MN tests were
used as the genetic endpoints, the PI, MI, and NDI were
calculated to evaluate cytotoxic effect of PMX + CFX.

Materials and methods
Cukurova University Institutional review board was in-
formed of the protocol to be used with the human sub-
jects, and approved the protocol for the work described
prior to the performance of the experiments. In addition,
all healthy blood donors gave informed consent for the
participation in this study.

Test samples and chemicals
This study was carried out by using blood samples from
four (n = 4 ) healthy volunteer donors (two males and two
females, all nonsmokers) aged from 23 to 25 years. Also,
the healthy blood donors were not using any medication
or dietary supplements throughout the study.
A commercial formulation of PMX (Pemetrexed diso-

dium [Alimta], containing 500 mg pemetrexed disodium
as active ingredient) and CFX (Cefixime, containing 98%
cefixime trihydrate as active ingredient) were obtained
from local pharmacy and Zentiva (Turkey), respectively.
The chemical structures and formulas of PMX and CFX
are shown in Figure 1. PMX and CFX were dissolved in
sterile bidistilled water and dimethylsulphoxide (DMSO,
purity 99%, supplied by Merck - Hohenbrunn, Germany),
respectively. Mitomycin-C was used as a positive control
(MMC, Kyowa, Hakko, Japan, CAS registry number: 50-
07-7) and was dissolved in sterile double-distilled water.
5-Bromodeoxyuridine (B-5002, St. Louis, MO), colchicine
(C-9754, St. Louis, MO) and cytochalasin B (C-6762, St.
Louis, MO) were purchased from Sigma. Giemsa dye and
all other chemicals were purchased from Merck (Darmstadt,
Germany). All test solutions were freshly prepared prior to
each experiment.

Concentration selection
In this study, PMX and CFX were tested in combination
to evaluate a possible interaction between two drugs.
The concentrations of the combination components
were chosen according to the individual concentration-
finding studies of PMX and CFX. In the previous studies
from our laboratory, we investigated the in vitro geno-
toxic effects of PMX and CFX at concentrations of 25,
50, 75, and 100 μg/mL (Istifli and Topaktas 2013) and
900, 1600, 2300, and 3000 μg/mL, respectively, in hu-
man peripheral blood lymphocytes. In the present work,
the combinations of half of the single concentrations of
PMX and CFX were used as the test concentrations of
the drugs. Therefore, the following combinations were
tested:

1. 12.5 μg/mL PMX + 450 μg/mL CFX
2. 25 μg/mL PMX + 800 μg/mL CFX



Figure 1 The chemical structure and formula of Pemetrexed disodium (A) and Cefixime trihydrate (B). (A) C20H21N5O6
(2R)-2-[[4-[2-(2-amino-4-oxo-1,7- dihydropyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]amino]pentanedioic acid (CAS registry number:150399-23-8).
(B) C16H15N5O7S2 (6R,7R)-7-{[2-(2-amino-1,3- thiazol-4-yl)-2-(carboxy methoxyimino)acetyl]amino}-3-ethenyl-8-oxo-5-thia- 1- azabicyclo[4.2.0]
oct-2-ene-2-carboxylic acid (CAS registry number:79350-37-1).
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3. 37.5 μg/mL PMX + 1150 μg/mL CFX
4. 50 μg/mL PMX + 1500 μg/mL CFX

The test concentrations of PMX and CFX were pre-
pared on the basis of active ingredient of Alimta (peme-
trexed disodium) and cefixime trihydrate, respectively.

SCE and CA assay
In the present study, human peripheral blood lymphocytes
were treated with a combination of PMX and CFX (PMX+
CFX). Fresh blood from volunteer donors was collected and
transferred to sterile culture tubes containing PB-MAX
(GIBCO—Life Technologies, Carlsbad, CA, USA), and was
used immediately for the determination of the genotoxicity
of PMX+CFX. SCE and CA analyses were conducted using
the methods developed by Evans (1984) and Perry and
Thomson (1984), with some modifications and this study
was organized according to IPCS guidelines (Albertini et al.
2000). Lymphocyte cultures were set up by adding 0.2 mL
of whole blood from each of four healthy donors to 2.5 mL
of PB-MAX and 5-bromodeoxyuridine (10 μg/mL) was sup-
plemented immediately afterwards. The cultures were incu-
bated at 37°C for 72 h. Serial dilutions of PMX and CFX
were made in DMSO (based on the active ingredient) under
sterile conditions; thus, DMSO (9 μL/mL) was used as solv-
ent control. A control (untreated control) and a positive
control (0.25 μg/mL MMC) were also established for each
experiment to ensure the validity of the assay. Treatment
times were conducted as 24 h (PMX and CFX were added
48 h after initiating the culture) and 48 h (PMX and CFX
were added 24 h after initiating the culture). In order to
arrest the cells in metaphase, the cells were exposed to
0.06 μg/mL colchicine 2 h before harvesting. The cells were
treated with a hypotonic solution (0.4% KCl) for 15 min at
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37°C and then fixed three times in a cold solution consisting
of methanol:glacial acetic acid (3:1 v/v) at room temperature.
Finally, the centrifuged cells were dropped onto clean slides.
The staining of the air-dried slides was performed following
the standard methods using 5% Giemsa stain for CA and the
modified fluorescence plus Giemsa method for SCE (Speit
and Haupter 1985). The slides were irradiated with 30 W,
254 nm UV lamp at 15 cm distance in Sorensen buffer for
30 min, then incubated with 1 × SSC (standard saline citrate)
at 60°C for 50 min and stained with 5% Giemsa prepared
with Sorensen buffer. One hundred well-spread metaphase
per donor were examined to obtain the required number of
CAs (a total of 400 metaphase per concentration). Structural
and numerical chromosome aberrations within each meta-
phase were recorded. However, only the structural CAs were
taken into consideration to determine the genotoxicity. Per-
centages of cells with structural chromosomal aberrations
were calculated for each donor separately. CAs were classi-
fied according to the ISCN (Paz-y-Mino et al. 2002) and
evaluated as chromatid-type (breaks and exchanges) and
chromosome-type (breaks, fragments, sister chromatid
unions, dicentrics, translocations) aberrations. Gaps were not
evaluated as CA according to Mace et al. (1978). The scoring
of SCE was carried out according to the IPCS guidelines
(Albertini et al. 2000). Twenty five well-differentiated
second-division metaphase cells were analyzed per donor
(a total of 100 second division metaphase for each concen-
tration) for SCE scoring. In addition, a total of 400 cells (100
cells per donor) were scored to determine the PI, which was
calculated using the formula: PI = (M1× 1) + (M2× 2) +
(M3× 3)/total scored cells. M1, M2, and M3 represent the
number of cells undergoing first, second and third mitosis
72-hr cell culture times. In addition, The MI was also deter-
mined by scoring 3,000 cells from each donor.

MN Assay
For the analysis of MN in binucleated lymphocytes,
0.2 mL of fresh blood was used to establish the cultures
and the cultures were incubated for 68 hr. Treatment
times were conducted as 24 h (PMX and CFX were added
44 h after initiating the culture) and 48 h (PMX and CFX
were added 20 h after initiating the culture). Cytochalasin
B (Sigma, C6762) was added at 44 hr of the incubation to
a final concentration of 6 μg/mL to block cytokinesis.
After an additional 24-hr incubation at 37°C, cells were
harvested by centrifugation and processed for the MN test
in peripheral blood lymphocytes (Rothfuss et al. 2000;
Kirsch-Volders et al. 2003). In all subjects, 2,000 binucle-
ated lymphocytes were scored from each donor (8,000 bi-
nucleated cells were scored per concentration). A total of
1,000 cells were scored to determine the frequency of the
cells with 1, 2, 3, or 4 nuclei and calculate the nuclear div-
ision index (NDI) for the cytotoxicity of combination
using the formula: NDI = (M1) + (2 ×M2) + (3 ×M3) +
(4 ×M4)/N, where M1–M4 represent the number of cells
with one to four nuclei and N is the total number of the
cells scored (Fenech 2000).

Statistical analysis
All of the subjects (i.e., the four donors; n = 4), were used
as the experimental unit (n) for statistical analysis. Results
are expressed as the means ± S.E. (standard error). The
multiple comparison of mean data among control, positive
control and exposed groups was performed by one-way
analysis of variance (ANOVA) and a least significant dif-
ference (LSD) was used for inter-group comparisons at
p < 0.05. The analysis of interaction between PMX and
CFX was performed using CompuSyn 1.0 (ComboSyn,
USA), where the combination index (CI) =1 indicates an
additive effect, CI < 1 indicates a synergistic effect, and
CI > 1 indicates an antagonistic effect according to Chou
(2006). In our previous studies on the genotoxicity and
cytotoxicity of PMX and CFX, and in this study related to
genotoxicity and cytotoxicity of PMX+CFX combination,
the same donors were used. All experiments were carried
out at the same laboratory and the slides were scored by
the same person.

Results
Effect of PMX + CFX combination on human lymphocyte
culture and its comparison with the negative, solvent and
positive control
Four different concentrations and six different parameters
(CA, SCE, MN, MI, PI, NDI) were evaluated in two expos-
ure periods (24 and 48 h) to determine the genotoxic and
cytotoxic effects of the combination of PMX and CFX on
human peripheral blood lymphocytes in vitro.

Genotoxicity of PMX + CFX combination
The effects of the combination of PMX and CFX on the
CAs and MN formation are summarized in Table 1. PMX+
CFX did not induce CAs at 24- and 48- hr treatment pe-
riods when compared to the negative and the solvent
control.
Increasing combination concentrations did not cause a

significant increase in the percentage of the binuclear
cells with micronuclei (MNBN%) for 24- and 48-hr
treatment periods (Table 1). %MN was also not signifi-
cantly increased when compared with both the negative
and the solvent controls in cells treated with PMX+
CFX for 24- and 48-hr treatment periods (Table 1).
The observed frequencies of SCE after the addition of

PMX and CFX, in peripheral lymphocytes are summa-
rized in Table 1. No significant increase in the mean fre-
quency of SCE values was observed for 24- and 48-hr
treatment periods. The positive control MMC signifi-
cantly induced the SCE in comparison with all concen-
trations of PMX + CFX (Table 1).



Table 1 Percentage (%) of cells with chromosome aberrations (CAs), %MN, percent of micronucleated binuclear cells
(%MNBN) and frequency of SCE in human peripheral blood lymphocytes treated with PMX + CFX for 24- and 48-h
treatment periods

Treatment

Test substance Time (h) Concentration (μg/mL) % Cells with CAs ± S.E. MN ± S.E. (%) %MNBN ± S.E. SCE/Cell ± S.E. Min-Max SCE

Control - - 0.50 ± 0.28 0.30 ± 0.09 0.30 ± 0.09 5.56 ± 0.16 1-12

DMSO 24 9 μL 1.75 ± 0.75 0.17 ± 0.07 0.17 ± 0.07 4.54 ± 0.68 1-13

MMC 24 0.25 9.25 ± 1.03 1.72 ± 0.28 1.72 ± 0.28 21.54 ± 1.39 6-47

PMX + CFX 24 12.5 + 450 2.00 ± 0.40 c3 0.22 ± 0.02 c3 0.22 ± 0.02 c3 5.65 ± 0.77 c3 1-33

25 + 800 3.25±0.85 a1c3 0.12±0.06 c3 0.10± 0.04 c3 4.28±0.12 c3 1-13

37.5 + 1150 2.50±1.04 c3 0.02±0.02 c3 0.02±0.02 c3 3.77±0.73 c3 1-12

50 + 1500 2.00±0.70 c3 0.10±0.04 c3 0.10±0.04 c3 3.71±0.69 c3 1-11

DMSO 48 9 μL 1.00 ± 0.00 0.30 ± 0.14 0.27 ± 0.12 4.11 ± 0.42 1-13

MMC 48 0.25 13.25 ± 1.54 2.90 ± 0.43 2.87 ± 0.44 41.19 ± 4.66 2-78

PMX + CFX 48 12.5 + 450 1.25 ± 0.75 c3 0.12 ± 0.02 c3 0.12 ± 0.02 c3 7.27 ± 1.52 c3 1-34

25 + 800 1.25±0.25 c3 0.10±0.04 c3 0.10±0.04 c3 3.82±0.33 c3 1-14

37.5 + 1150 0.75±0.47 c3 0.12±0.04 c3 0.12±0.04 c3 3.28±0.26 c3 1-9

50 + 1500 0.50 ± 0.50 c3 0.05±0.02 c3 0.05±0.02 c3 4.00±0.17 c3 1-8

All data are expressed as mean ± S.E; n = 4.
400 cells were scored per concentration in the CA assay.
4000 cells were scored for the %MNBN.
100 cells were scored per concentration for the SCE assay.
a, significant from control; b, significant from solvent control (DMSO); c, significant from positive control (MMC). a1b1c1: p < 0.05; a2b2c2: p < 0.01; a3b3c3: p < 0.001.
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Cytotoxicity of PMX + CFX combination
In 24- and 48-hr treated cultures MI was found to be signifi-
cantly reduced when compared with both the negative con-
trol and the solvent control. The combination of PMX+
CFX decreased the MI to the same extent as the positive
control at 12.5 + 450, 25 + 800, 37.5 + 1150 μg/mL, and
exerted a greater effect than MMC at 50 + 1500 μg/mL for
the 24-h treatment period. Furthermore, PMX+CFX com-
bination showed a greater cytotoxic effect than MMC at all
concentrations (12.5 + 450, 25 + 800, 37.5 + 1150, and 50 +
1500 μg/mL) for the 48-h treatment period (Table 2).
The combination of PMX+CFX decreased the PI signifi-

cantly at all concentrations (12.5 + 450, 25 + 800, 37.5 +
1150, and 50 + 1500 μg/mL) in both 24 – and 48-hr treat-
ment periods when compared with the negative control and
the solvent control. In addition, the decrease observed in the
PI for 48-hr treatment was significantly greater than the
positive control MMC at the two highest concentrations
(37.5 + 1150 and 50 + 1500 μg/mL) (Table 2).
PMX+CFX combination decreased the NDI signifi-

cantly for all concentrations and treatment periods when
compared with the control groups (Table 2). Furthermore,
the combination of PMX+CFX significantly decreased
the NDI at all concentrations (12.5 + 450, 25 + 800, 37.5 +
1150, and 50 + 1500 μg/mL) for 24- and 48-h treatment
periods when compared with positive control, MMC
(Table 2). Thus, PMX+CFX exerted greater inhibitory ef-
fect on nuclear division when compared with MMC and
showed a higher cytotoxic/cytostatic effect than MMC.
The comparison of the combination and single treatment
effects of PMX and CFX in human peripheral blood
lymphocytes
Genotoxicity
To compare the combination and single effects of PMX+
CFX; the complete results of this study (CAs, SCEs, MN,
MI, PI and NDI) and the dataset of the same parameters of
single treatments of PMX (Istifli and Topaktas 2013) and
CFX are summarized together in Table 3. Generally, in 24-
hr treatment, there was no significant difference on the in-
duction of CAs in cultures treated with PMX+CFX as
compared to single treatment of CFX; however, CAs were
significantly reduced when compared to single treatment
of PMX for 24-hr (Table 3). Except two concentrations
(12.5 + 450, 50 + 1500 μg/mL), the formation of CAs in
48-hr treatment period was significantly lower than sin-
gle treatment of PMX, but not CFX. Also, individual ex-
posure of PMX at 25, 50 and 75 μg/mL showed greater
percentage of MNBN in 24-hr treatment period than
the combination of PMX + CFX at 12.5 + 450, 25 + 800
and 37.5 + 1150 μg/mL. However, in 48-hr treatment,
the PMX + CFX combination induced the %MNBN to
the same extent with the individual exposure of PMX or
CFX. Finally, the PMX + CFX combination (37.5 + 1150
and 50 + 1500 μg/mL) showed reduced frequency of
SCE than the individual exposure of CFX but not PMX
for 24- and 48-hr treatment periods. Therefore, we con-
clude that when used in combination, the PMX + CFX
combination does not show genotoxic potential.



Table 2 MI, PI and NDI in human peripheral blood lymphocytes treated with PMX + CFX for 24- and 48-h treatment
periods

Treatment

Test substance Time (h) Concentration (μg/mL) MI ± S.E. PI ± S.E. NDI ± S.E.

Control - - 5.11 ± 0.27 2.47 ± 0.03 1.54 ± 0.05

DMSO 24 9 μL 4.39 ± 0.13 2.31 ± 0.04 1.48 ± 0.03

MMC 24 0.25 1.99 ± 0.20 1.74 ± 0.09 1.31 ± 0.03

PMX + CFX 24 12.5 + 450 1.58 ± 0.25 a3b3 1.91 ± 0.04 a3b2 1.24 ± 0.03 a3b3c1

25 + 800 1.70 ± 0.07 a3b3 1.85 ± 0.09 a3b3 1.17 ± 0.05 a3b3c2

37.5 + 1150 1.67 ± 0.34 a3b3 2.01 ± 0.09 a3b1 1.17 ± 0.01 a3b3c2

50 + 1500 1.25 ± 0.20 a3b3c1 1.99 ± 0.14 a3b2 1.17 ± 0.01 a3b3c3

DMSO 48 9 μL 2.48 ± 0.15 2.33 ± 0.04 1.38 ± 0.04

MMC 48 0.25 1.17 ± 0.19 1.39 ± 0.09 1.22 ± 0.03

PMX + CFX 48 12.5 + 450 0.70 ± 0.18 a3b3c2 1.48 ± 0.07 a3b3 1.09 ± 0.03 a3b3c2

25 + 800 0.84 ± 0.17 a3b3c1 1.38 ± 0.05 a3b3 1.09 ± 0.02 a3b3c2

37.5 + 1150 0.54 ± 0.19 a3b3c2 1.22 ± 0.05 a3b3c1 1.04 ± 0.01 a3b3c3

50 + 1500 0.22 ± 0.14 a3b3c3 1.26 ± 0.05 a3b3c1 1.05 ± 0.01 a3b3c3

All data are expressed as mean ± S.E; n = 4.
12000 cells were scored for the MI.
400 cells were scored for the PI.
4000 cells were scored for the NDI.
a, significant from control; b, significant from solvent control (DMSO); c, significant from positive control (MMC). a1b1c1: p < 0.05; a2b2c2: p < 0.01; a3b3c3: p < 0.001.
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Cytotoxicity
On the otherhand, combination exposure of human lym-
phocytes to various concentrations of PMX and CFX de-
creased the MI, PI and NDI to the same extent or more
than the individual exposure of PMX or CFX (Table 3).
Generally, the combination of PMX + CFX decreased the
MI and PI significantly at all concentrations in 48-hr
treatment period when compared to PMX or CFX alone;
however, all the concentrations of the combination de-
creased the NDI greater than that of the individual ex-
posure of CFX in both treatment times (Table 3).

Discussion
This is the first study to assess the genotoxicity and
cytotoxicity of a particular combination of PMX (com-
mercial formulation) and CFX (active substance) in hu-
man peripheral blood lymphocytes.
Our study revealed that the particular combination of

PMX and CFX (PMX+CFX) did not increase the fre-
quency of structural CAs or SCEs (Table 1) in any concen-
tration intervals (PMX+CFX; 12.5 + 450, 25 + 800, 37.5 +
1150 and 50 + 1500 μg/mL) and treatment periods (24 and
48 h). Also, when compared with the control groups, the
PMX+CFX was not found to significantly induce MN for-
mation as well (Table 1). Even though PMX itself increased
the percentage of cells with structural CAs in 24-hr treat-
ment period (Istifli and Topaktas 2013), the PMX+CFX
decreased the number of aberrant cells more than the sin-
gle treatment of PMX (Table 3). That decrease was not a
function of an antagonistic interaction between PMX and
CFX on the induction of chromosome aberrations due to
an enhancement in the cytotoxicity.
The results of this study revealed that the PMX+CFX

significantly decreased the MI, PI, and also NDI for all
concentrations and exposure periods. This decrease
showed a synergistic pattern in 48-hr treatment period
(Table 2). The PMX mediated clastogenicity after 24-hr
treatment is associated with thymidine nucleotide pool
imbalance, DNA topoisomerase II inhibition, and the for-
mation of reactive oxygen species (Tonkinson et al. 1997;
Snyder 2009; Buque et al. 2012). DNA damage blocks the
entry of cells into S-phase and leads to the activation of
DNA repair enzymes. However, the CFX in our pharma-
ceutical mixture facilitated a faster entry of damaged cells
into the S-phase, which refers to the enhancement of the
cytotoxicity of PMX. Hence, the reduction of the fre-
quency of cells with CAs was resulted from the death of
cells bearing highly damaged chromosomes. In turn, the
cells with reduced incidence of chromosome aberrations
became dominant. Fairchild et al. (1988) reported that the
concurrent addition of hypoxanthine induced normal
rates of RNA synthesis and cell cycle progression from G1
to S phase in L1210 cells exposed to MTX for 12 or 24 hr.
They concluded that the L1210 cells progressed into cyto-
toxic S phase instead of being in G1 because of the inhib-
ition of DNA and RNA synthesis by MTX. Our results for
the synergistic cytotoxic effect of PMX+CFX are in good
agreement with Fairchild et al. (1988).
Generally, the combination with half PMX and CFX

concentration, decreased synergistically the MI, PI, and



Table 3 A comparison of the between combination and single effects of PMX and CFX on %cells with CAs, SCE/Cells, %MNBN, MI, PI, and NDI in human
peripheral blood lymphocytes for 24- and 48-h treatment periods

Treatment

Test substance Time (h) Concentration (μg/mL) % Cells with CAs ± S.E. SCE/Cell ± S.E. %MNBN ± S.E. MI ± S.E. PI ± S.E. NDI ± S.E.

PMXa 24 25 5.25 ± 0.25 9.52 ± 3.09 0.60 ± 0.07 3.29 ± 0.47 1.79 ± 0.15 1.27 ± 0.05

50 5.00 ± 1.08 4.73 ± 1.29 0.42 ± 0.14 3.53 ± 0.62 1.75 ± 0.14 1.28 ± 0.06

75 6.25 ± 0.62 3.67 ± 0.48 0.50 ± 0.12 3.25 ± 0.46 1.96 ± 0.09 1.19 ± 0.02

100 5.00 ± 1.08 3.42 ± 0.40 0.15 ± 0.06 3.73 ± 0.89 1.72 ± 0.14 1.21 ± 0.04

CFX 24 900 1.25 ± 0.75 5.49 ± 0.39 0.30 ± 0.04 3.20 ± 0.42 2.09 ± 0.09 1.51 ± 0.07

1600 0.75 ± 0.47 5.37 ± 0.52 0.22 ± 0.06 2.09 ± 0.32 1.84 ± 0.06 1.52 ± 0.04

2300 0.75 ± 0.25 5.85 ± 0.13 0.25 ± 0.06 2. 31 ± 0.44 1.95 ± 0.08 1.52 ± 0.09

3000 0.75 ± 0.47 6.09 ± 0.28 0.20 ± 0.07 2.19 ± 0.05 1.86 ± 0.05 1.46 ± 0.04

PMX + CFX 24 12.5 + 450 2.00 ± 0.40 d2 5.65 ± 0.77 d1 0.22 ± 0.02 d2 1.58 ± 0.25 d1e3 1.91 ± 0.04 1.24 ± 0.03 e2

25 + 800 3.25 ± 0.85 e1 4.28 ± 0.12 0.10 ± 0.04 d2 1.70 ± 0.07 d1 1.85 ± 0.09 1.17 ± 0.05 e3

37.5 + 1150 2.50 ± 1.04 d2 3.77 ± 0.73 e3 0.02 ± 0.02 d3e2 1.67 ± 0.34 d1 2.01 ± 0.09 1.17 ± 0.01 e3

50 + 1500 2.00 ± 0.70 d1 3.71 ± 0.69 e3 0.10 ± 0.04 1.25 ± 0.20 d3e1 1.99 ± 0.14 1.17 ± 0.01 e2

PMXa 48 25 2.25 ± 1.03 7.14 ± 2.11 0.55 ± 0.11 2.20 ± 0.49 1.88 ± 0.72 1.06 ± 0.21

50 3.00 ± 0.70 2.87 ± 0.20 0.25 ± 0.06 2.81 ± 0.62 1.65 ± 0.16 1.10 ± 0.26

75 2.50 ± 0.64 3.32 ± 0.29 0.05 ± 0.03 2.00 ± 0.51 1.70 ± 0.19 1.11 ± 0.02

100 1.00 ± 0.40 3.05 ± 0.33 0.10 ± 0.04 1.61 ± 0.68 1.53 ± 0.16 1.09 ± 0.24

CFX 48 900 1.25 ± 0.62 7.14 ± 0.90 0.15 ± 0.02 2.18 ± 0.18 1.93 ± 0.14 1.42 ± 0.04

1600 2.00 ± 0.91 6.23 ± 0.67 0.20 ± 0.04 2.28 ± 0.51 1.96 ± 0.08 1.37 ± 0.06

2300 1.50 ± 0.64 7.17 ± 1.00 0.20 ± 0.09 2.00 ± 0.52 1.81 ± 0.10 1.35 ± 0.07

3000 1.75 ± 0.47 7.19 ± 0.99 0.17 ± 0.11 1.70 ± 0.23 1.73 ± 0.08 1.29 ± 0.05

PMX + CFX 48 12.5 + 450 1.25 ± 0.75 7.27 ± 1.52 0.12 ± 0.02 d3 0.70 ± 0.18 d1e2 1.48 ± 0.07 d1e3 1.09 ± 0.03 e3

25 + 800 1.25 ± 0.25 d3 3.82 ± 0.33 0.10 ± 0.04 0.84 ± 0.17 d2e2 1.38 ± 0.05 e3 1.09 ± 0.02 e3

37.5 + 1150 0.75 ± 0.47 d2 3.28 ± 0.26 e2 0.12 ± 0.04 0.54 ± 0.19 d1e2 1.22 ± 0.05 d2e3 1.04 ± 0.01 d1e3

50 + 1500 0.50 ± 0.50 4.00 ± 0.17 e1 0.05 ± 0.02 0.22 ± 0.14 d2e2 1.26 ± 0.05 d3e3 1.05 ± 0.01 e3

All data are expressed as mean ± S.E; n = 4.
aIstifli and Topaktas 2013.
d, significant from pemetrexed (PMX) separately; e, significant from cefixime (CFX) separately.
d1e1: p < 0.05; d2e2: p < 0.01; d3e3: p < 0.001.
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NDI in comparison to individual exposure of each drug.
These results are in good agreement with Bareford et al.
(2011, 2012) who reported that the antifolate PMX and the
multikinase inhibitor sorafenib acted in synergism with the
low clinically relevant doses to kill H460, 4 T1, BT474,
Huh7, MCF7, and MCF7F cancer cells. They further sug-
gested that PMX and sorafenib killed tumor cells more via
a toxic form of autophagy that leads to activation of intrin-
sic apoptosis pathway. The cephalosporin antibiotic CFX in
the current study possesses vinyl and aminothiazole func-
tional groups that are attached to 3′ and 7′ C atoms, re-
spectively. We believe this configuration is related to the
enhancement of the cytotoxic effect of PMX. Using zebra
fish embryo toxicity testing, Zhang et al. (2013) reported
that the toxicity of functional groups attached on the 3′
and 7′ C atoms of cephalosporins (cefaclor, cefaperazone,
ceftriaxone, cefepime, ceftizoxime, cefmenoxime and cef-
metazole) were positively correlated with the increase in
the concentration of the test solution. Although the mech-
anistic basis of PMX+CFX interaction was not researched
in this study, the synergistic cytotoxic effect of PMX and
CFX in peripheral blood lymphocytes may depend on the
7-aminothiazole group of CFX (Borzilleri et al. 2006; Das
et al. 2006). In the same studies, this 7-aminothiazole group
inhibits several cellular protein kinases via a conserved
hydrogen-bond interaction. Hence, we think that these
structural properties of CFX may contribute to cytotoxicity
of PMX by deactivating protein kinases which become acti-
vated upon DNA damage prior to the cell cycle arrest to re-
pair the damage.
Synergistic increases in cytotoxicity with the use of COX-

2 specific inhibitors, Chk1 inhibitors (PF-00477736), and ni-
tric oxide (NO) (O’Kane et al. 2010; Blasina et al. 2011;
Nagai et al. 2012) were also reported in previous studies on
the enhancement of PMX cytotoxicity in vitro on various
mesothelioma (MSTO-211H, NCl-H2052, NCl-H2452) and
human lung adenocarcinoma (A549) cell lines.

Conclusion
Our results showed that the combination of PMX and
CFX exerted synergistic cytotoxic activity, but not geno-
toxicity, in human peripheral blood lymphocytes. In
addition to cellular effects of PMX+CFX, previous studies
have indicated a histological level of toxic interaction be-
tween methotrexate and penicillin-derivative antibiotics
(Williams et al. 1984; Ronchera et al. 1993; Zarychanski
et al. 2006). It was confirmed that penicillins could com-
petitively bind to the human organic anion transporter
(hOAT) that reduce the tubular secretion of methotrexate
in an in vitro mouse model (Williams et al. 1984). Thus,
we propose that the interaction of drugs should be rigor-
ously examined to avoid toxicity in clinical practice not
only at the cellular but also at the histological level. Taken
together, we observed a significant cytotoxic interaction in
the mixture of half PMX and half CFX combinations in
human peripheral blood lymphocytes. We suggest that the
prescription of CFX for bacterial infections in patients re-
ceiving PMX could be relatively cytotoxic.
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