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Abstract
This paper aims to give some refinements of recent results on Fischer-type
determinantal inequalities for accretive-dissipative matrices.
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1 Introduction
Let Mn(C) be the set of n × n complex matrices. For any A ∈ Mn(C), the conjugate trans-
pose of A is denoted by A∗. A ∈ Mn(C) is accretive-dissipative if it has the Hermitian de-
composition

A = B + iC, B = B∗, C = C∗, (.)

where both matrices B and C are positive definite. Conformally partition A, B, C as

(
A A

A A

)
=

(
B B

B∗
 B

)
+ i

(
C C

C∗
 C

)
, (.)

such that all diagonal blocks are square. Say k and l (k, l >  and k + l = n) the order of A

and A, respectively, and let m = min{k, l}. In this article, we always partition A as in (.).
If B = In in (.), then an accretive-dissipative matrix A ∈ Mn(C) is called a Buckley ma-

trix.
Let A =

( A A
A A

) ∈ Mn(C). If A is invertible, then the Schur complement of A in A is
denoted by A/A := A – AA–

 A. For a nonsingular matrix A, its condition number is
denoted by k(A) :=

√
λmax(A∗A)
λmin(A∗A) , which is the ratio of the largest and the smallest singular

value of A. For Hermitian matrices B, C ∈ Mn(C), we write B > (≥) C to mean that B – C
is Hermitian positive (semi)definite.

If A ∈ Mn(C) is positive definite, then the famous Fischer-type determinantal inequality
([], p.) states that

det A ≤ det A · det A. (.)
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If A ∈ Mn(C) is accretive-dissipative, Ikramov [] first proved the determinantal inequal-
ity

|det A| ≤ m|det A| · |det A|. (.)

If A ∈ Mn(C) is accretive-dissipative, Lin [] proved the determinantal inequality

|det A| ≤ 
m
 |det A| · |det A|. (.)

Recently, Fu and He ([], Theorem ) got a stronger result than (.) as follows.
Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.). Then

|det A| ≤ 
m


[
 +

(
 – k
 + k

)]m

|det A| · |det A|, (.)

where k = max(k(B), k(C)).
For Buckley matrices, Ikramov [] obtained the stronger bound

|det A| ≤
(

 +
√




)m

|det A| · |det A|. (.)

In this paper, we will give refinements of (.) and (.) in Section . Other related studies
of the Fischer-type determinantal inequalities for accretive-dissipative matrices can be
found in [–].

2 Main results
We begin this section with the following lemmas.

Lemma  ([], Property ) Let A ∈ Mn(C) be accretive-dissipative and partitioned as in
(.). Then A/A is also accretive-dissipative.

Lemma  ([], Lemma ) Let A ∈ Mn(C) be accretive-dissipative as in (.). Then

A– = E – iF , E =
(
B + CB–C

)–, F =
(
C + BC–B

)–.

Lemma  ([], Lemma .) Let B, C ∈ Mn(C) be Hermitian and assume B is positive defi-
nite. Then

B + CB–C ≥ C.

Lemma  ([], ()) Let B =
( B B

B∗
 B

)
be Hermitian positive definite. Then

B∗
B–

 B ≤
(

 – k(B)
 + k(B)

)

B.

Lemma  ([], Lemma ) Let B, C ∈ Mn(C) be positive semidefinite. Then

∣∣det(B + iC)
∣∣ ≤ det(B + C).
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Lemma  ([], (.)) Let a, b > . Then

[
 +

(ln a – ln b)



]√
ab ≤ a + b


.

Lemma  Let B, C ∈ Mn(C) be positive definite. Then

det(B + C) ≤ rn∣∣det(B + iC)
∣∣,

where r = max
≤j≤n

{
√

 + 
+(lnλj) }, λj are the eigenvalues of B–/CB–/, and B/ means the

unique positive definite square root of B.

Proof Letting a = λj, b = 
a in Lemma  gives +λj ≤

√
 + 

+(lnλj) | + iλj|, j = , . . . , n. Then

det(B + C) = det B · det
(
I + B–/CB–/)

= det B ·
n∏

j=

( + λj)

≤ det B ·
n∏

j=

(√
 +


 + (lnλj) | + iλj|

)

≤ det B ·
n∏

j=

(
r| + iλj|

)

= rn det B · ∣∣det
(
I + iB–/CB–/)∣∣

= rn∣∣det(B + iC)
∣∣.

This completes the proof. �

Theorem  Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.). Then

|det A| ≤
[

 +
(

 – k
 + k

)]m

rm|det A| · |det A|, (.)

where r = max
≤j≤n

{
√

 + 
+(lnλj) }, λj are the eigenvalues of B–/CB–/, B/ means the unique

positive definite square root of B, and k = max(k(B), k(C)).

Proof By Lemma  and Lemma , we have

A/A = A – AA–
 A

= B + iC –
(
B∗

 + iC∗


)
(B + iC)–(B + iC)

= B + iC –
(
B∗

 + iC∗


)
(Ek – iFk)(B + iC)

with

Ek =
(
B + CB–

 C
)– ≤ 


C–

 , Fk =
(
C + BC–

 B
)– ≤ 


B–

 . (.)
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Set A/A = R + iS with R = R∗ and S = S∗. By Lemma , we obtain

R = B – B∗
EkB + C∗

EkC – B∗
FkC – C∗

FkB,

S = C + B∗
FkB – C∗

FkC – C∗
EkB – B∗

EkC.

It can be proved that

±(
B∗

FkC + C∗
FkB

) ≤ B∗
FkB + C∗

FkC,

±(
C∗

EkB + B∗
EkC

) ≤ C∗
EkC + B∗

EkB.

Thus,

R + S ≤ B + B∗
FkB + C + C∗

EkC. (.)

As B, C are positive definite, by Lemma , we have

B∗
B–

 B ≤
(

 – k(B)
 + k(B)

)

B, C∗
C–

 C ≤
(

 – k(C)
 + k(C)

)

C. (.)

Without loss of generality, we assume m = l, then

∣∣det(A/A)
∣∣ =

∣∣det(R + iS)
∣∣

≤ det(R + S) (by Lemma )

≤ det
(
B + B∗

FkB + C + C∗
EkC

)
(by (.))

≤ det
(
B + B∗

B–
 B + C + C∗

C–
 C

)
(by (.))

≤ det

{[
 +

(
 – k(B)
 + k(B)

)]
B +

[
 +

(
 – k(C)
 + k(C)

)]
C

}
(by (.))

≤
[

 +
(

 – k
 + k

)]m

det(B + C)

≤
[

 +
(

 – k
 + k

)]m

rm∣∣det(B + iC)
∣∣ (by Lemma )

=
[

 +
(

 – k
 + k

)]m

rm|det A|,

where k = max(k(B), k(C)).
The proof is completed by noting |det A| = |det A| · |det(A/A)|. �

Remark  Because of r ≤ √
, inequality (.) is a refinement of inequality (.).

Theorem  Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.) with B = .
Then

|det A| ≤
(√

 + 


)m

|det A| · |det A|. (.)
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Proof Compute

|det A| =
∣∣det(B + iC)

∣∣
= det B · ∣∣det

(
I + iB–/CB–/)∣∣

≤
(√

 + 


)m

det B · ∣∣det
(
Ik + iB–/

 CB–/


)∣∣
· ∣∣det

(
Il + iB–/

 CB–/


)∣∣ (by (.))

=
(√

 + 


)m∣∣det(B + iC)
∣∣ · ∣∣det(B + iC)

∣∣
=

(√
 + 


)m

|det A| · |det A|.

This completes the proof. �

Remark  It is clear that inequality (.) is an extension of inequality (.).
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