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Abstract
This article is a part of the theory developed by the author in which the following
problem is solved under natural assumptions: to find necessary and sufficient
conditions under which the union of at most countable family of algebras on a certain
set X is equal to P (X). Here the following new result is proved. Let {Aλ}λ∈� be a finite
collection of algebras of sets given on a set X with #(�) = n > 0, and for each λ there

exist at least 10
3 n +

√
2n
3 pairwise disjoint sets belonging to P (X) \Aλ. Then there

exists a family {U1
λ,U

2
λ}λ∈� of pairwise disjoint subsets of X (Ui

λ ∩ Uj
λ′ = ∅ except the

case λ = λ′, i = j); and for each λ the following holds: if Q ∈ P (X) and Q contains one
of the two sets U1

λ, U
2
λ, and its intersection with the other set is empty, then Q /∈Aλ.
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1 Introduction
The present article is a further development of the theory formulated in [–]. The topic
studied in these articles, as well as in the present paper, is sets not belonging to algebras
of sets.

Definition . An algebra A on a set X is a non-empty family of subsets of X pos-
sessing the following properties: () if M ∈ A, then X \ M ∈ A; () if M, M ∈ A, then
M ∪ M ∈A.

It is clear that if M, M ∈ A, then M ∩ M ∈ A and M \ M ∈ A; also, it is clear that
X ∈A.

1.1 Some notation and names
All algebras and measures are considered on some abstract set X �= ∅. When it is clear
from the context, we will not state explicitly that a set belongs to the family P(X) of all
subsets of X. By N

+ we denote the set of natural numbers. If n, n ∈N
+ and n ≤ n, then

[n, n] = {k ∈ N
+ | n ≤ k ≤ n}. Let ρ be a real number. By 	ρ
 we denote the maximum

integer ≤ ρ . By �ρ� we denote the minimum integer ≥ ρ . The symbol #(M) denotes the
cardinality of the set M. A set M is countable if #(M) = ℵ.

The following concept was used in [].

Definition . An algebra A has κ lacunae, where κ is a cardinal number, if there exist κ

pairwise disjoint sets not belonging to A.
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Let {Aλ}λ∈� be a family of algebras and Aλ �= P(X) for each λ ∈ �. The following
natural question arises: what are possible conditions that distinguish between the cases⋃

λ∈� Aλ �= P(X) and
⋃

λ∈� Aλ = P(X)? Let #(�) ≤ ℵ, and let us assume that Aλ are σ -
algebras if #(�) = ℵ. In [] we obtained necessary and sufficient conditions for the equal-
ity

⋃
λ∈� Aλ = P(X) to hold. The first publication connected with this topic was that of

Erdös [] (this paper contains the well-known theorem of Alouglu-Erdös). Some informa-
tion about the history of the subject after the publication of [] and before the publication
of [] is presented in []. In fact, Alouglu and Erdös studied non-measurable sets with
respect to families of measures. Let ℵ ≤ #(X) ≤ ℵ . Let a σ -additive measure μ be de-
fined on X. Here μ(X) = , the measure of a one-point set equals , and the measure of
each μ-measurable set equals  or . Such a measure μ is called a σ -two-valued mea-
sure. Clearly, there exist μ-non-measurable sets. The Alouglu-Erdös theorem states that
if #(X) = ℵ, then for any countable family of σ -two-valued measures μ, . . . ,μk , . . . there
exists a set which is non-measurable with respect to all these measures. The proof of the
Alouglu-Erdös theorem is very simple and is based on the possibility of constructing the
well-known Ulam matrix (see []). The non-trivial Gitik-Shelah theorem (see []) asserts
the validity of the Alouglu-Erdös theorem if #(X) = ℵ . Obviously, the Gitik-Shelah the-
orem is a generalization of the Alouglu-Erdös theorem. The Gitik-Shelah theorem can
be reformulated in our language. As before, let us consider the σ -two-valued measures
μ, . . . ,μk , . . . . For each measure μk , we examine the algebra Ak of all μk measurable sets.
The Gitik-Shelah theorem asserts that

⋃
k∈N+ Ak �= P(X). We note that here each algebra

Ak has ℵ lacunae. If #(X) = ℵ, then the situation is much simpler: each algebra Ak has
ℵ lacunae. The Gitik-Shelah theorem is used in the proofs of our theorems for countable
families of σ -algebras.

Definition . Let {Aλ}λ∈� be a family of algebras, and {U
λ, U

λ}λ∈� be a family of sets
with the following properties:

() Ui
λ ∩ Uj

λ′ = ∅ except when λ = λ′, i = j;
() for any λ ∈ �, the following holds: if a set Q contains one of the two sets U

λ, U
λ and

its intersection with the other set is empty, then Q /∈Aλ.
Then we say that the family {Aλ}λ∈� has the full set of lacunae {U

λ, U
λ}λ∈�.

Now we give a simple proposition.

Proposition . If a family of algebras {Aλ}λ∈� has the full set of lacunae {U
λ, U

λ}λ∈�,
then there exists a family of pairwise distinct sets {Qϑ }ϑ∈� such that the following holds:

() Qϑ /∈ ⋃
λ∈� Aλ for any ϑ ∈ �;

() any set Qϑ is a union of sets Ui
λ;

() Qθ \ Qϑ /∈ ⋂
λ∈� Aλ for any pair ϑ �= ϑ;

() #(�) = #(�).

Proof Put � = P(�). If ϑ ∈P(�), put

Qϑ =
(⋃

λ∈ϑ

U
λ

)
∪

( ⋃
λ∈�\ϑ

U
λ

)
.

�
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In this paper we deal mostly with the following problem: under which conditions a family
of algebras {Aλ}λ∈� has a full set of lacunae. We assume that #(�) ≤ ℵ. This was studied
in [–]. The proof of the two following theorems can be found in [].

Theorem . Let A, . . . ,An be a finite family of algebras, and assume that for each k ∈
[, n] the algebra Ak has k –  lacunae. Then this family has a full set of lacunae.

It is easy to prove (see [], Chapter ) that the estimate k –  is the best possible in
some sense.

Theorem . Let {Ak}k∈N+ be a family of σ -algebras, and assume that for each k the al-
gebra Ak has k –  lacunae. Then this family has some full set of lacunae.

Remark . Using the notion of absolute introduced by Gleason in [], we can construct
a family of algebras {Bk}k∈N+ with the following properties: each algebraBk has ℵ lacunae,
is not a σ -algebra, and

⋃
k∈N+ Bk = P(X) (see [], Chapter ). Hence, Theorem . and

Theorem . below do not hold if we claim them for algebras which are not assumed to
be σ -additive. Therefore, we suppose that all algebras of a countable family of algebras are
σ -algebras.

The following definition was given in [].

Definition . For each n ∈ N
+, denote by v(n) the minimal cardinal number such that

if {Aλ}λ∈�, #(�) = n, is a family of algebras, and for each λ ∈ � the algebra Aλ has v(n)
lacunae, then the family {Aλ}λ∈� has a full set of lacunae.

In [] we proved that:
() v(n) = n –  for n ≤ ;
() v(n) ≤ n –  for n > ;
() v(n) ≤ n – 	 n+

 
 for any n;
() n –  ≤ v(n) for any n.
In this paper we will improve the upper bound of v(n).
From here until the end of Section  we present propositions and notions which form

the method of proofs of our theorems. This method first appeared in [] and was later used
in [–]. Let βX be the Stone-Čech compactification of X with the discrete topology; βX
is the family of all ultrafilters on X.

Consider an algebra A. We say that a, b ∈ βX are A-equivalent iff a ∩ A = b ∩ A. Let
[b]A denote the A-equivalence class of b, and define the kernel of the algebra A:

kerA =
{

b ∈ βX | #
(
[b]A

)
> 

}
.

If A = P(X), then kerA = ∅. From now on, when we say a and b are A-equivalent ultrafil-
ters, we always assume that a �= b. If a, b are A-equivalent ultrafilters, then we say that a
has an A-equivalent ultrafilter b, or a is A-equivalent to b.

Statement . Consider an algebra A and sets U , V ∈ P(X) such that U ∩ V = ∅. The
following two conditions are equivalent. () Each set Q containing one of the sets U , V and
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being disjoint from the other does not belong toA. () There existA-equivalent ultrafilters
a, b such that U ∈ a, V ∈ b.

Proof It is obvious that () follows from (). Let us prove that () follows from (). Let us
assume the contrary. We fix an ultrafilter q � U . For any ultrafilter r � V , we choose a set
W (r) ∈ r such that W (r) ∈ A and W (r) /∈ q. Since the set of all ultrafilters which contain
V is a compact subset of βX, there exists a finite sequence of sets W (r), . . . , W (rm) with
the following properties:

() W (rk) ∈A for any k ∈ [, m];
() W (rk) /∈ q for any k ∈ [, m];
() V ⊆ ⋃m

k= W (rk).
Let

W̃ (q) = X
∖ m⋃

k=

W (rk).

It is clear that W̃ (q) ∈ q, W̃ (q) ∈A, and W̃ (q)∩V = ∅. Since the set of all ultrafilters which
contain U is a compact subset of βX, there exists a finite sequence of sets W̃ (q), . . . , W̃ (qn)
such that W̃ (qk) ∈ A for any k ∈ [, n],

⋃n
k= W̃ (qk) = W̃ ⊇ U , and W̃ ∩ V = ∅. We have

W̃ ∈A, a contradiction. �

The following crucial claim is a direct consequence of Statement ..

Claim . Consider an algebra A and U ∈ P(X). Then U /∈ A if and only if there exist
A-equivalent ultrafilters p and q such that U ∈ p and U /∈ q.

Proof The sufficiency is obvious. If U /∈ A, then the sets U and V = X \ U satisfy the
condition () of Statement .. Therefore, there exist the corresponding ultrafilters p and q.

�

It is clear that if A �= P(X), then #(kerA) ≥ . It is rather easy to show that an algebra A
has k lacunae, where  ≤ k ≤ ℵ, if and only if #(kerA) ≥ k.a

Definition . A set M ⊆ βX is said to be A-equivalent if #(M) > , any two distinct
ultrafilters in M are A-equivalent, and there exist no A-equivalent ultrafilters a, b such
that a ∈ M, b /∈ M.

Obviously, an A-equivalent set has the form [b]A (see above). Also it is obvious that an
A-equivalent set is closed in βX.

Remark . Consider algebrasA,B. It is very easy to prove that the following statements
are equivalent.

() A⊇ B.
() If a and b are A-equivalent ultrafilters, then a and b are B-equivalent ultrafilters.
() If M is an A-equivalent set, then M is contained in a certain B-equivalent set.

Remark . If M ⊆ βX (in particular, if M ⊆ X), then by M we denote the closure M in
βX. The following arguments will be used later in this paper. Let A ⊆ βX,  ≤ #(A) < ℵ.



Grinblat Journal of Inequalities and Applications  (2015) 2015:116 Page 5 of 19

The set A is divided into pairwise disjoint sets A, . . . , Am and #(Ak) >  for each k ∈ [, m].
Two different ultrafilters are called a-equivalent if and only if they belong to the same
set Ak . We can construct the algebra A such that the a-equivalence relation is in fact the
A-equivalence relation, kerA = A, and A, . . . , Am are all A-equivalent sets. Indeed, by
definition M ∈A if and only if for each k ∈ [, m] either Ak ∩ M = ∅, or Ak ⊆ M.

Remark . Let us recall that an algebra which does not have ℵ lacunae is called ω-
saturated. So, an algebra A is ω-saturated if and only if #(kerA) < ℵ. The algebra A from
Remark . is ω-saturated.

Remark . Further we use two following very simple statements. () By Statement .
a finite family of algebras A, . . . ,An has a full set of lacunae if and only if there exist n
pairwise distinct ultrafilters a, . . . , an, b, . . . , bn such that ak , bk are Ak-equivalent ultrafil-
ters for each k ∈ [, n]. () Let A = {Aλ}λ∈� and A′ = {A′

λ}λ∈� be two non-empty families of
algebras, and A′

λ ⊇Aλ for every λ ∈ �. Assume that the family A′ has a full set of lacunae
{U

λ, U
λ}λ∈�. Then the family A has the same full set of lacunae {U

λ, U
λ}λ∈�.

2 Main results. An open problem
The following result was announced in []: v(n) ≤ � 

 n + √


√
n� for any n. In this paper a

stronger theorem is proved.

Theorem . v(n) ≤ � 
 n +

√
n
 �.

Remark . The combinatorial nature of Theorem . is discussed in Section . Also in
Section  the proof of Theorem . uses the classical Ramsey theorem.

Problem . We know that v(n) ≥ n –  for any n, and v(n) > n –  if n = ,  since
v() = , v() =  (see Section ). Is it true that v(n) = n –  for any n �= , ? This result is
obviously true for n = .

The final section of this article is devoted to the proof of the following theorem, which
is a generalization of theorems of Alaouglu-Erdös and Gitik-Shelah.

Theorem . It is possible to construct nondecreasing functions ϕ : N+ →N
+ such that the

following conditions hold:
() limn→∞

ϕ(n)– 
 n√

n =
√


 ;

() if {Ak}k∈N+ is a family of σ -algebras and each algebra Ak has ϕ(k) lacunae, then this
family has a full set of lacunae.

3 Finite families of algebras. Proof of Theorem 2.1
The following lemma is used in the proof of Lemma ..

Lemma . Consider an algebra A which is not ω-saturated;b let a number ξ ∈ N
+ be

given. Then it is possible to construct an ω-saturated algebra A′ such that #(kerA′) ≥ ξ

and A′ ⊃A.
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Proof Take two distinct A-equivalent ultrafilters s, t. Consider two distinct ultrafilters
a, a ∈ kerA \ {s, t}. If a has an A-equivalent ultrafilter in {s, t}, and a has an A-
equivalent ultrafilter in {s, t}, then a and a are A-equivalent ultrafilters. Denote s = a,
t = a. If, for example, a does not have an A-equivalent ultrafilter in {s, t}, then take
an ultrafilter c such that a �= c and a, c are A-equivalent ultrafilters. In this case denote
s = a, t = c. Now take three pairwise disjoint ultrafilters b, b, b ∈ kerA\{s, t, s, t}. If
every ultrafilter bi has an A-equivalent ultrafilter in {s, t, s, t}, then in the set {b, b, b}
we can choose two distinct A-equivalent ultrafilters, for example, b and b. Put s = b,
t = b. If, for example, b does not have an A-equivalent ultrafilter in {s, t, s, t}, then
take an ultrafilter d such that b �= d and b, d are A-equivalent ultrafilters. Denote s = b,
t = d. It is clear that for every � ∈ N

+ it is possible to construct a sequence of pairwise
distinct ultrafilters s, t, . . . , s�, t� such that si and ti are A-equivalent ultrafilters for all
i ∈ [,�]. Let � ≥ ξ . Define M = {s, t}, . . . , M� = {s�, t�}. By Remark . it is possible
to construct an algebra A′ such that kerA′ =

⋃�
i= Mi and M, . . . , M� are A′-equivalent

sets. �

The following lemma is given in [] without proof.

Lemma . v(n) ∈N
+, and v(n + ) – v(n) ≤ .

Proof It is obvious that v() = . Let n ∈ N
+ and assume that v(n) ∈ N

+. Consider a family
of algebras A, . . . ,An+ with #(kerAk) ≥ v(n) +  for each k ∈ [, n + ]. We must prove
that this family has a full set of lacunae. By Lemma . and the arguments in Remark .
we can assume that the algebras A, . . . ,An+ are ω-saturated. We choose An+-equivalent
ultrafilters s()

n+, s()
n+. Put Bk = kerAk \ {s()

n+, s()
n+} for each k ∈ [, n]. Put

B′
k =

{
q ∈ Bk | q does not have an Ak-equivalent ultrafilter in Bk

and has an Ak-equivalent ultrafilter in
{

s()
n+, s()

n+
}}

.

It is clear that #(B′
k) ≤ . Put B′′

k = Bk \ B′
k . Clearly, each ultrafilter in B′′

k has an Ak-
equivalent ultrafilter in B′′

k . Therefore, by Remark ., we can construct an algebraA′
k such

that kerA′
k = B′′

k and the A′
k-equivalent relation in kerA′

k is in fact the Ak-equivalent re-
lation. We have #(kerA′

k) ≥ v(n) for each k ∈ [, n]. Therefore, there exist n pairwise dis-
tinct ultrafilters s()

 , s()
 , . . . , s()

n , s()
n , and s()

k , s()
k are Ak-equivalent ultrafilters from kerA′

k .
We have pairwise distinct ultrafilters s()

 , s()
 , . . . , s()

n+, s()
n+, and s()

k , s()
k are Ak-equivalent

ultrafilters for each k ∈ [, n + ]. �

Remark . It is obvious that v() = . Therefore, by Lemma . we have v(n) ≤ n – 
for any n. In Chapter , [], we proved that v() ≤ . Therefore, by Lemma ., we have
that v(n) ≤ n –  for any n ≥ .

We now turn to the proof of Theorem .. This proof is a strong improvement of the
proposition v(n) ≤ n – 	 n+

 
 mentioned above (see [], Chapter ).
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Proof of Theorem . () By Remark . our theorem is true for all n ≤ . (This can be
verified by a simple computation.) Fix a natural number n ≥  and a real number

ω(n) ≥
√

n


.

Let A, . . . ,An be algebras such that

#(kerAk) ≥ 


n + ω(n)

for each k ∈ [, n]. By Lemma . and arguments in Remark ., we can assume that the
algebras A, . . . ,An are ω-saturated. We will prove that there exist pairwise distinct ultra-
filters

a∗
 , . . . , a∗

n, b∗
 , . . . , b∗

n

such that a∗
k , b∗

k are Ak-equivalent ultrafilters for each k ∈ [, n]. Our goal is to contradict
the assumption that ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n do not exist. Inductively assume that

v(n – ) ≤
⌈




(n – ) +
√

n – 


⌉
.

Then there exists a set of pairwise distinct ultrafilters

F = {a, . . . , an–, b, . . . , bn–}

such that ak , bk are Ak-equivalent ultrafilters for each k ∈ [, n – ]. Consider kerAn. It is
clear that

#(kerAn \ F) ≥ 


n + ω(n) – n +  =



n + ω(n) + .

If there exist two An-equivalent ultrafilters in kerAn \ F, we immediately obtain the re-
quired construction yielding the existence of ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n. Therefore,

each ultrafilter from kerAn \F has an An-equivalent ultrafilter in F. Therefore, there exist
distinct ultrafilters cn, dn ∈ kerAn \ F and k ∈ [, n – ] such that (ak , cn) and (bk , dn) are
two pairs of An-equivalent ultrafilters. For simplicity, say k = . Now consider kerA. It is
clear that

#
(
kerA \ (

F∪ {cn, dn}
)) ≥ 


n + ω(n) – n =




n + ω(n).

If there exist two A-equivalent ultrafilters in kerA \ (F ∪ {cn, dn}), we immediately ob-
tain the required construction yielding the existence of ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n.

Similarly, if an ultrafilter in kerA \ (F ∪ {cn, dn}) has an A-equivalent ultrafilter in
{a, b, cn, dn}, then the construction which contradicts the non-existence of ultrafilters
a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n is yielded immediately. So, each ultrafilter in kerA \ (F∪ {cn, dn}) has

an A-equivalent ultrafilter in the set F \ {a, b}. Therefore, there exist distinct ultrafil-
ters c, d ∈ kerA \ (F∪ {cn, dn}) and k ∈ [, n – ] such that (ak , c) and (bk , d) are two
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pairs ofA-equivalent ultrafilters. For simplicity, say k = . This process can be continued.
Suppose that there exists a natural number η such that

 ≤ η ≤ 


n + ω(n) + .

Suppose also that there exists a set of pairwise distinct ultrafilters

E = {c, . . . , cη–, cn, d, . . . , dη–, dn}

and the following holds:
(A) (ai+, ci) and (bi+, di) are two pairs of Ai-equivalent ultrafilters for each i ∈ [,η – ];
(B) F∩E = ∅.
Let us recall what we have said above: (a, cn) and (b, dn) are two pairs of An-equivalent

ultrafilters; (a, c) and (b, d) are two pairs of A-equivalent ultrafilters.
Define Lη = kerAη \ (F∪E). It is clear that

#(Lη) ≥ 


n + ω(n) – (n – ) – η =



n + ω(n) – η + .

If there exist two Aη-equivalent ultrafilters in Lη , we immediately obtain the required
construction yielding the existence of ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n. Similarly, if an ul-

trafilter in Lη has an Aη-equivalent ultrafilter in {a, . . . , aη, b, . . . , bη} ∪ E, then the con-
struction which contradicts the non-existence of ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n is yielded

immediately. Therefore, every ultrafilter from Lη has an Aη-equivalent ultrafilter in
{aη+, . . . , an–, bη+, . . . , bn–}. We have

#(Lη) – #
(
[η + , n – ]

) ≥ 


n + ω(n) – η +  – n + η +  =



n + ω(n) +  – η > .

Therefore, there exist distinct ultrafilters cη, dη ∈ Lη and kη+ ∈ [η + , n – ] such that
(akη+ , cη) and (bkη+ , dη) are two pairs of Aη-equivalent ultrafilters. For simplicity, say
kη+ = η + . We have that (ai+, ci) and (bi+, di) are two pairs of Ai-equivalent ultrafilters
for each i ∈ [,η].

Put ρ = 	 n
 
. In view of the above, we can assume that there exist pairwise distinct ultra-

filters c, . . . , cρ–, cn, d, . . . , dρ–, dn such that the following holds:
(a) (a, cn) and (b, dn) are two pairs of An-equivalent ultrafilters;
(b) (ai+, ci) and (bi+, di) are two pairs of Ai-equivalent ultrafilters for each i ∈ [,ρ – ];
(c) F∩ {c, . . . , cρ–, cn, d, . . . , dρ–, dn} = ∅, see Figure .
() Put

Zρ = {a, . . . , aρ , b, . . . , bρ , c, . . . , cρ–, cn, d, . . . , dρ–, dn},

Figure 1 Ultrafilters ai , bi , ci , and di .
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Z′
ρ = {a, . . . , an–, b, . . . , bn–, c, . . . , cρ–, cn, d, . . . , dρ–, dn},

Z′′
ρ = {aρ+, . . . , an–, bρ+, . . . , bn–},

Lρ = kerAρ \ Z′
ρ .

Clearly,

#(Lρ) ≥ 


n + ω(n) –  ·
⌊

n


⌋
– 

(
n –  –

⌊
n


⌋)

=



n –  ·
⌊

n


⌋
+ ω(n) +  ≥ 


n + ω(n) + ,

#(Lρ) – #
(
[ρ + , n – ]

) ≥ 


n + ω(n) +  –
(

n –  –
⌊

n


⌋)

=
⌊

n


⌋
–

n


+ ω(n) +  > .

The above arguments show that the following assumption should be made: for each ultra-
filter q ∈ Lρ , there exists an ultrafilter q̃ ∈ Z′′

ρ such that q and q̃ are Aρ-equivalent ultrafil-
ters. In general, there can be such q for which the number of corresponding q̃ is greater
than . We choose in an arbitrary way only one q̃ for each q ∈ Lρ . We obtain the mapping
f : Lρ → Z′′

ρ , f (q) = q̃. The map f is one-to-one. (If f (q) = f (q) and q �= q, then q, q

are Aρ-similar ultrafilters, and the construction which contradicts the non-existence of
ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n is yielded immediately.) Put

I
ρ
 =

{
k ∈ [ρ + , n – ] | there exist ultrafilters qa

k , qb
k ∈ Lρ

such that f
(
qa

k
)

= ak , f
(
qb

k
)

= bk
}

,

I
ρ
 =

{
k ∈ [ρ + , n – ] \ Iρ

 | there exists an ultrafilter q∗
k ∈ Lρ

such that f
(
q∗

k
) ∈ {ak , bk}

}
.

Obviously, Iρ
 ∩ I

ρ
 = ∅. Since #(Lρ) – #([ρ + , n – ]) > , we have #(Iρ

 ) = τ > . Clearly,

#
(
I

ρ

)

= #(Lρ) – τ ≥ 


n + ω(n) +  – τ .

Put

Ln = kerAn \ Z′
ρ .

We have obtained above the estimate #(Lρ) ≥ 
 n + ω(n) + . In exactly the same way, the

following estimate can be obtained:

#(Ln) ≥ 


n + ω(n) + .

If there exist two An-equivalent ultrafilters from Ln, we immediately obtain the required
construction regarding the existence of ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n. Similarly, if an ul-

trafilter in Ln has an An-equivalent ultrafilter in {a, b, c, . . . , cρ–, cn, d, . . . , dρ–, dn}, then
it is easy to find the corresponding ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n.
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We are interested in the following situation: let q ∈ Ln, and q has an An-equivalent ul-
trafilter in {a, . . . , aρ , b, . . . , bρ}. Let, for instance, q and a be An-equivalent ultrafilters.
Then let us consider d. For d there are four possible cases:

〈〉 d /∈ kerAn;
〈〉 b, d are An-equivalent ultrafilters;
〈〉 d has an An-equivalent ultrafilter in {a, . . . , aρ , b, . . . , bρ};
〈〉 d has an An-equivalent ultrafilter in Z′′

ρ .

In case 〈〉 let us consider c. For c the possible corresponding cases are:

〈i〉 c /∈ kerAn;
〈ii〉 c has an An-equivalent ultrafilter in {a, . . . , aρ , b, . . . , bρ};
〈iii〉 c has an An-equivalent ultrafilter in Z′′

ρ .

Consider case 〈〉 for d. Let d, b be An-equivalent ultrafilters. Let us consider c. For c

there are four possible cases:

〈〉 c /∈ kerAn;
〈〉 a, c are An-equivalent ultrafilters;
〈〉 c has an An-equivalent ultrafilter in {a, . . . , aρ , b, b, . . . , bρ};
〈〉 c has an An-equivalent ultrafilter in Z′′

ρ .

Consider case 〈〉 for c. Let b, c be An-equivalent ultrafilters. Let us consider c. For c

the possible corresponding cases are:

〈i〉 c /∈ kerAn;
〈ii〉 c has an An-equivalent ultrafilter in {a, . . . , aρ , b, . . . , bρ};
〈iii〉 c has an An-equivalent ultrafilter in Z′′

ρ .

Continuing these constructions in an obvious way, we find an ultrafilter

q∗ ∈ {c, . . . , cρ–, d, . . . , dρ–}

such that one of the following two statements is true: () q∗ /∈ kerAn; () q∗ has an An-
equivalent ultrafilter in Z′′

ρ . Let us put

α = #
({

q ∈ Ln | q has an An-equivalent ultrafilter in {a, . . . , aρ , b, . . . , bρ}
})

,

β = #
({c, . . . , cρ–, d, . . . , dρ–} \ kerAn

)
,

γ = #
({

q∗ ∈ {c, . . . , cρ–, d, . . . , dρ–} | q∗ has an An-equivalent

ultrafilter in Z′′
ρ

})
.

The above constructions clearly show that α ≤ β + γ . Put

L̂ =
{

q ∈ Ln ∪ {c, . . . cρ–, d, . . . , dρ–} | q has An-similar ultrafilter in Z′′
ρ

}
.

Clearly,

#(L̂) ≥ #(Ln) + γ – α ≥ 


n + ω(n) +  + β + γ – α ≥ 


n + ω(n) + .
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So, for every ultrafilter q ∈ L̂, there exists an ultrafilter q̄ ∈ Z′′
ρ such that q and q̄ are An-

similar ultrafilters. In general it can happen that for some q there exist more than one
corresponding q̄. Choose arbitrarily only one ultrafilter q̄ for each q ∈ L̂. We obtain a map-
ping f̂ : L̂ → Z′′

ρ , f̂ (q) = q̄. Consider the corresponding map f̂ : L̂ρ → Z′′
ρ . It is one-to-one.

Indeed, if f̂ (q) = f̂ (q) and q �= q, then q, q are An-similar ultrafilters, and the con-
struction which contradicts the non-existence of ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n is yielded

immediately. Put

Î =
{

k ∈ [ρ + , n – ] | there exist ultrafilters qa
k ,qb

k ∈ L̂

such that f̂
(
q

a
k
)

= ak , f̂
(
q

b
k
)

= bk
}

,

Î =
{

k ∈ [ρ + , n – ] \ Î | there exists an ultrafilter q∗
k ∈ L̂

such that f̂
(
q

∗
k
) ∈ {ak , bk}

}
.

Obviously, Î ∩ Î = ∅. Since #(L̂) – #([ρ + , n – ]) > , we have #(Î) = τ̂ > . Clearly,

#(Î) = #(L̂) – τ̂ ≥ 


n + ω(n) +  – τ̂ .

If τ ≥ τ̂ , put

I = (Î ∪ Î) ∩ I
ρ
 .

If τ < τ̂ , put

I =
(
I

ρ
 ∪ I

ρ

) ∩ Î.

Clearly,

#(I) ≥ 


n + ω(n) +  – n +  +
⌊

n


⌋
> ω(n) + .

() We fix ν ∈ I. A number k ∈ [,ρ] is called ν-marked if the following is true:
for k = : (a, dn) and (b, cn) are pairs of Aν-equivalent ultrafilters;
for k > : (ak , dk–) and (bk , ck–) are pairs of Aν-equivalent ultrafilters.

Put

χν = #
({

k ∈ [,ρ] | k is a ν-marked number
})

.

Our aim is to prove that

χν >
ω(n)


.

We have the following options:

〈〉 There exist ultrafilters qa
ν , qb

ν ∈ I
ρ
 and an ultrafilter q∗

ν ∈ Î.
〈〉 There exists an ultrafilter q∗

ν ∈ I
ρ
 and ultrafilters qa

ν ,qb
ν ∈ Î.

〈〉 There exist ultrafilters qa
ν , qb

ν ∈ I
ρ
 and ultrafilters qa

ν ,qb
ν ∈ Î.
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Denote q∗
ν by qν . Denote q∗

ν by q′
ν . Choose one of two ultrafilters qa

ν , qb
ν and denote it by qν ;

at this step we do not consider the second ultrafilter. Choose one of two ultrafilters qa
ν , qb

ν

and denote it by q′
ν ; at this step we do not consider the second ultrafilter. If possible, the

ultrafilter q′
ν is taken from L̂ \ Ln. Let ν = ρ + . We know that there exists a corresponding

ultrafilter qρ+ ∈ Lρ which has an Aρ-equivalent ultrafilter in {aρ+, bρ+}. We also know
that there exists a corresponding ultrafilter q′

ρ+ ∈ L̂ which has An-equivalent ultrafilter in
{aρ+, bρ+}.

When the number χρ+ attains its minimal value, we must assume the following: there
exist pairwise distinct ultrafilters

a′
ρ+, . . . , a′

n–, b′
ρ+, . . . , b′

n– ∈ kerAρ+

∖(
Z′

ρ ∪ {
qρ+, q′

ρ+
})

,

and (ak , a′
k), (bk , b′

k) are pairs of Aρ+-equivalent ultrafilters for each k ∈ [ρ + , n – ]. We
will only consider the cases where finding ultrafilters a∗

 , . . . , a∗
n, b∗

 , . . . , b∗
n is not immediate.

Case . q′
ρ+ ∈ Ln.

Case -. qρ+ = q′
ρ+.

We consider only two subcases of Case -.
Case --. There exists an ultrafilter q∗ /∈ Zρ such that q∗, qρ+ are Aρ+-equivalent ul-

trafilters.
Case --. There exists an ultrafilter q∗ ∈ Zρ such that q∗, qρ+ are Aρ+-equivalent

ultrafilters.
Case -. qρ+ �= q′

ρ+.
We consider only two subcases of Case -.
Case --. qρ+, q′

ρ+ are Aρ+-equivalent ultrafilters.
Case --. There exists an ultrafilter q∗ ∈ {a, . . . , aρ , b, . . . , bρ} such that q∗, qρ+ are

Aρ+-equivalent ultrafilters.
Before we consider these cases, let us denote R = {a, b, cn, bn}, and Rk = {ak , bk , ck–,

dk–} if k ∈ [,ρ].
First we consider Cases -- and --. For the situation where the number χρ+ attains

its the minimum value, we have the following options for the set R:

() a, b are Aρ+-equivalent ultrafilters and #(kerAρ+ ∩R) = ;
() a, dn are Aρ+-equivalent ultrafilters and #(kerAρ+ ∩R) = ;
() b, cn are Aρ+-equivalent ultrafilters and #(kerAρ+ ∩R) = ;
() the number  is (ρ + )-marked.

If k ∈ [,ρ], by analogy, we have the following options for the set Rk :

(∗) ak , bk are Aρ+-equivalent ultrafilters and #(kerAρ+ ∩Rk) = ;
(∗) ak , dk– are Aρ+-equivalent ultrafilters and #(kerAρ+ ∩Rk) = ;
(∗) bk , ck– are Aρ+-equivalent ultrafilters and #(kerAρ+ ∩Rk) = ;
(∗) the number k is (ρ + )-marked.

So we have

(n –  – ρ) +  · χρ+ + (ρ – χρ+) = #(kerAρ+) ≥ 


n + ω(n).
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Figure 2 Illustration for Case 2.

Recall that ρ = 	 n
 
. Therefore we have

χρ+ >
ω(n)


+ .

Now consider Case --. The situation is as follows:

〈a〉 cρ–, qρ+ are Aρ+-equivalent ultrafilters;
〈b〉 aρ , dρ– are Aρ+-equivalent ultrafilters;
〈c〉 for R one of the options ()-() is fulfilled;
〈d〉 for Rk , where k ∈ [,ρ – ], one of the options (∗)-(∗) is fulfilled.

Now consider Case --. The situation is as follows: bρ , qρ+ are Aρ+-equivalent ultra-
filters, and the conditions 〈b〉, 〈c〉, 〈d〉 are fulfilled. It is clear that in Cases -- and --
we have

χρ+ >
ω(n)


+ .

It is clear that in Case  there may be subcases which we have not considered. But always

χρ+ >
ω(n)


+ .

Case . q′
ρ+ ∈ L̂ \ Ln. Suppose that q′

ρ+ = cρ– and cρ–, aρ+ are An-equivalent ultrafil-
ters. For the number χρ+ to be minimal and the situation to be nontrivial, we assume the
following:

(i) (aρ–, bρ–), (cρ–, dρ–), (a, qρ+), (b, c) are pairs of Aρ+-equivalent ultrafilters;
(ii) aρ+, qρ+ are Aρ-equivalent ultrafilters;

(iii) kerAρ+ ⊂ Z′
ρ ∪ {a′

ρ+, . . . , a′
n–, b′

ρ+, . . . , b′
n–} ∪ {qρ+}, see Figure .

We assume that one of the cases ()-() holds for R and that one of the cases (∗)-(∗)
holds for Rk , where k ∈ [,ρ] \ {ρ – }. We have

(n –  – ρ) +  · χρ+ + (ρ –  – χρ+) +  = #(kerAρ+) ≥ 


n + ω(n).
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Recall that ρ = 	 n
 
. Therefore we have

χρ+ >
ω(n)


.

Analyzing the other situations in Case , we come to the same conclusion: χρ+ > ω(n)
 ; and

we can assume that if k is a (ρ + )-marked number, then q′
ρ+ /∈ Rk . It is obvious that the

same conclusion is true in Case .
() It is obvious that for each ν ∈ I we have χν > ω(n)

 , and q′
k /∈ Rk if k is a ν-marked

number. We know that

ω(n) ≥
√

n


, #(I) > ω(n) + , ρ =
⌊

n


⌋
.

Therefore we have

ω(n)


· #(I) >
ω(n)


· (ω(n) + 

)
> ρ.

Therefore there exist distinct numbers ν,ν ∈ I and k ∈ [,ρ] such that k is a ν-marked
number and ν-marked number. Let ν = ρ + , ν = ρ + . Consider the ultrafilters qρ+,
q′

ρ+. If qρ+ �= q′
ρ+, put zρ+ = qρ+, z′

ρ+ = q′
ρ+. Let qρ+ = q′

ρ+. There are two possible
cases.

I. There exist the ultrafilters qa
ρ+, qb

ρ+, and assume that qρ+ = qb
ρ+. Put zρ+ = qa

ρ+, z′
ρ+ =

q′
ρ+.
II. The ultrafilters qa

ρ+, qb
ρ+ do not exist. Then there exist the ultrafilters qa

ρ+, qb
ρ+, and

assume that q′
ρ+ = qb

ρ+. Put zρ+ = qρ+. If q′
ρ+ �= zρ+, put z′

ρ+ = q′
ρ+. Otherwise we have

qa
ρ+ ∈ Ln since q′

ρ+ = qρ+ ∈ Ln (see in the part () of our proof how we have chosen the
ultrafilter q′

ν ); and put z′
ρ+ = qa

ρ+.
Thus, we consider either the pair of ultrafilters zρ+, z′

ρ+, or the pair of ultrafilters z′
ρ+,

zρ+. These two pairs have the same properties. We will consider the pair zρ+, z′
ρ+. We

have the following:

◦ zρ+ has an Aρ-equivalent ultrafilter in {aρ+, bρ+};
◦ z′

ρ+ has an An-equivalent ultrafilter in {aρ+, bρ+};
◦ zρ+ �= z′

ρ+;
◦ zρ+ /∈ Z′

ρ ;
◦ z′

ρ+ /∈ F∪Rk .

Suppose that aρ+ and zρ+ are Aρ-equivalent ultrafilters, aρ+ and z′
ρ+ are An-equivalent

ultrafilters, and k = . It is possible that

z′
ρ+ ∈ {c, . . . , cρ–, d, . . . , dρ–}.

Suppose that

z′
ρ+ /∈ {d, . . . , dρ–}.

Now it is easy to construct the corresponding ultrafilters a∗
 , . . . , a∗

n, b∗
 , . . . , b∗

n. Let us
list them in pairs: (a∗

 , b∗
 ) = (a, b), (a∗

, b∗
) = (a, b), (a∗

, b∗
) = (b, d), . . . , (a∗

ρ–, b∗
ρ–) =
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Figure 3 Construction of ultrafilters a∗
1, . . . , a∗

n , b∗
1, . . . , b∗

n .

(bρ , dρ–), (a∗
ρ , b∗

ρ) = (aρ+, zρ+), (a∗
ρ+, b∗

ρ+) = (a, d), (a∗
ρ+, b∗

ρ+) = (b, c), (a∗
ρ+, b∗

ρ+) =
(aρ+, bρ+), . . . , (a∗

n–, b∗
n–) = (an–, bn–), (a∗

n, b∗
n) = (aρ+, z′

ρ+), see Figure . �

4 Combinatorial theorems
In this section we consider for each n ∈ N

+ a matrix M(n) which has n rows and ℵ

columns. We denote by αk
i the element of M(n) in the ith row and the kth column. The

following holds:
() αk

i ∈N;
() for any αk

i > , there exists αk′
i such that αk

i = αk′
i and k �= k′.

We denote by w(M(n), i) the number of nonzero elements in the ith row of M(n). It is clear
that

 ≤ w
(
M(n), i

) ≤ ℵ.

Definition . A matrixM(n) is said to be saturated if there exist pairwise distinct natural
numbers k, k′

, . . . , kn, k′
n such that α

ki
i = α

k′
i

i >  for each i ∈ [, n].

Definition . For each n ∈N
+, denote by v′(n) the minimal natural number such that if

for some matrix M(n) we have w(M(n), i) ≥ v′(n) for each i ∈ [, n], then M(n) is saturated.

We suppose that v′(n) ∈N
+ since, obviously, v′(n) < ℵ.

It is easy to prove that v(n) = v′(n). Therefore, by Theorem ., the following theorem is
true.

Theorem . If for some matrix M(n) we have

w
(
M(n), i

) ≥ 


n +
√

n


for each i ∈ [, n], then M(n) is saturated.

The following theorem is a particular case of the well-known theorem of Ramsey [].

Theorem . Consider a set S, #(S) = n ∈ N
+, and let T be the family of all two-element

subsets of S. We divide T into two disjoint sub-families T, T. Fix a natural number μ ≥ .
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We claim that there exists the minimal number R(μ) ∈N
+ such that if n ≥ R(μ), then there

exists a set S′ ⊂ S, #(S′) = μ, and either all two-element subsets of S′ belong to T or they all
belong to T.

In the formulation of the following theorem, we use the number R(μ) from Theorem ..

Theorem . Consider a matrix M(n), and fix a natural number μ ≥ . Let

w
(
M(n), i

) ≥ 


n +
√

n


for any i ∈ [, n], and n ≥ R(μ). Then
() there exist pairwise distinct natural numbers

k, k′
, . . . , kn, k′

n

such that α
ki
i = α

k′
i

i >  and ki < k′ for each i ∈ [, n];
() there exists a family of segments

D ⊂ {[
ki, k′

i
]}

i≤n,

#(D) = μ, and one of the following two cases holds;
(a) if I, I ∈ D are distinct, then I ∩ I = ∅;
(b) ∩D �= ∅.c

Proof Let us use the notation of Theorem .. By Theorem . there exists a correspond-
ing family of segments

S =
{[

ki, k′
i
]}

i≤n.

Let T be the family of all subsets of S with the exact two elements. Divide T into two
disjoint sub-families T, T. Let T be the family of pairs of disjoint segments. Let T be
the family of pairs of distinct joint segments. By Theorem . there exists a family D ⊂ S
such that #(D) = μ and all pairs of distinct segments from D belong either to T or to T.
If all pairs of distinct segments belong to T, then it is easy to see that ∩D �= ∅. �

Remark . The following well-known result is given, for example, in []:

R(μ) ≤
(

μ – 
μ – 

)
.

Therefore Theorem . is true if the condition n ≥ R(μ) will be exchanged by n ≥ ( μ–
μ–

)
.

5 Countable families of σ -algebras
In the first nine subsections we present facts from [] and [].

Definition . A point a ∈ βX is said to be irregular if for any countable sequence of sets
M, . . . , Mk , . . . ⊂ βX such that a /∈ Mk for all k, we have a /∈ ∪Mk .
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Since a point of βX is an ultrafilter on X and, vice versa, an ultrafilter on X is a point of
βX, we will also call an irregular point an irregular ultrafilter. All points of X are irregular.

Definition . An algebra A is said to be simple if there exists Z ⊆ βX such that:
() #(Z) ≤ ℵ;
() if Z �= ∅, all points of Z are irregular;
() kerA⊆ Z.

The proof of the following theorem is in [], Chapter .

Theorem . Let A, . . . ,Ak , . . . and B, . . . ,Bk , . . . be two countable families of σ -algebras.
Let all algebras Ak be simple, and among the algebras Bk let there be no simple algebras.
Then there exist pairwise disjoint sets W , U, . . . , Uk , . . . , V, . . . , Vk , . . . such that:

() kerAk ⊆ W for each k;
() for each k ∈N

+, the following holds: if a set Q contains one of the two sets Uk , Vk and
intersection with the other set is empty, then Q /∈ Bk .

Remark . The Gitik-Shelah theorem is essentially used in the proof of Theorem ..
Under the assumption that the continuum hypothesis (ℵ = ℵ ) is true, the proof of The-
orem . essentially uses not the nontrivial Gitik-Shelah theorem but the rather simple
Alaoglu-Erdös theorem.

Definition . The set {a ∈ kerA | a is an irregular point} is called the spectrum of an
algebra A and is denoted spA.

It is clear that if A is a simple algebra, then #(spA) ≤ ℵ.

The proof of the lemma below is in [], Chapter .

Lemma . If A is a simple σ -algebra, then kerA⊆ spA.

The proof of the lemma below is in [], Chapter .

Lemma . If A is a simple σ -algebra and a ∈ spA, then

{b ∈ spA | a is A-equivalent to b} �= ∅.

Remark . If an ω-saturated algebra A is a σ -algebra, then A is simple and kerA = spA.

The proof of the following lemma is easily derived from Lemma . and arguments in
Remark ..

Lemma . Let A be a simple but not ω-saturated σ -algebra A and let ν ∈ N
+. We can

construct an ω-saturated σ -algebra A′ such that kerA′ ⊂ spA, #(kerA′) ≥ ν , and two ul-
trafilters are A′-equivalent if and only if they are A-equivalent.d

Proof of Theorem . Consider a sequence of integers n =  < n < n < · · · < nm < · · · .
Construct the function ϕ : N+ →N

+ as follows: if k ∈ [nm– + , nm], where m ∈N
+, then

ϕ(k) =  · nm– +
⌈




(nm – nm–) +
√

(nm – nm–)


⌉
.
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We can choose numbers n, n, . . . , nm, . . . such that condition () of our theorem is true.
By Theorem . and Lemma . we can suppose that all algebras Ak are ω-saturated σ -
algebras. Put A′

k = Ak if k ∈ [, n]. By Theorem . there exists a set of pairwise distinct
irregular ultrafilters G = {s, t, . . . , sn , tn}, and sk , tk areA′

k-equivalent ultrafilters for each
k ∈ [, n]. Let k ∈ [n + , n] and

Ek = {a ∈ kerAk \ G | a has Ak-equivalent ultrafilter in kerAk \ G}.

We can construct (see Remark .) ω-saturated σ -algebra A′
k and

() kerA′
k = Ek ;

() two ultrafilters are A′
k-equivalent if and only if they are Ak-equivalent.

In view of Remark ., A′
k ⊇Ak . It is clear that

#
(
kerA′

k
) ≥

⌈



(n – n) +
√

(n – n)


⌉
.

By Theorem . there exist pairwise distinct irregular ultrafilters sn+, tn+, . . . , sn , tn , and
sk , tk are A′

k-equivalent ultrafilters for each k ∈ [n + , n]. Put

G = {s, t, . . . , sn , tn}.

It is clear that #(G) = n. Consider algebras An+, . . . ,An . We can construct corre-
sponding algebras A′

n+, . . . ,A′
n , and

kerA′
k ∩ G = ∅,

#
(
kerA′

k
) ≥

⌈



(n – n) +
√

(n – n)


⌉

for each k ∈ [n + , n] and so on. Further, we consider algebras An+, . . . ,An and so on.
So we can construct pairwise distinct irregular ultrafilters

s, t, . . . , sk , tk , . . . ,

such that sk , tk are Ak-equivalent ultrafilters for each k ∈ N
+. We can construct a corre-

sponding family of sets {U
k , U

k }k∈N+ (see Definition .). �
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Endnotes
a If #(kerA)≥ ℵ0 , then, as it is shown in [2], #(kerA)≥ 22

ℵ0 .
b In footnote a we already noticed that in this case #(kerA)≥ 22

ℵ0 .
c It is clear that if ∩D �= ∅, then #(∩D) ≥ 2.
d It is clear thatA′ ⊃ A (see Remark 1.12).
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