Grinblat Journal of Inequalities and Applications (2015) 2015:116 DOI 10.1186/s13660-015-0578-7

# RESEARCH

**Open Access** 

# Families of sets not belonging to algebras and combinatorics of finite sets of ultrafilters

Leonid Š Grinblat\*

\*Correspondence: grinblat@ariel.ac.il Department of Computer Science and Mathematics, Ariel University, Ariel, Israel

#### Abstract

This article is a part of the theory developed by the author in which the following problem is solved under natural assumptions: to find necessary and sufficient conditions under which the union of at most countable family of algebras on a certain set *X* is equal to  $\mathcal{P}(X)$ . Here the following new result is proved. Let  $\{\mathcal{A}_{\lambda}\}_{\lambda \in \Lambda}$  be a finite collection of algebras of sets given on a set *X* with  $\#(\Lambda) = n > 0$ , and for each  $\lambda$  there exist at least  $\frac{10}{3}n + \sqrt{\frac{2n}{3}}$  pairwise disjoint sets belonging to  $\mathcal{P}(X) \setminus \mathcal{A}_{\lambda}$ . Then there exists a family  $\{U_{\lambda}^{1}, U_{\lambda}^{2}\}_{\lambda \in \Lambda}$  of pairwise disjoint subsets of X ( $U_{\lambda}^{i} \cap U_{\lambda}^{j} = \emptyset$  except the case  $\lambda = \lambda', i = j$ ); and for each  $\lambda$  the following holds: if  $Q \in \mathcal{P}(X)$  and Q contains one of the two sets  $U_{\lambda}^{1}, U_{\lambda}^{2}$ , and its intersection with the other set is empty, then  $Q \notin \mathcal{A}_{\lambda}$ .

MSC: Primary 03E05; secondary 54D35

**Keywords:** algebra of sets;  $\sigma$ -algebra; ultrafilter; pairwise disjoint sets

## **1** Introduction

The present article is a further development of the theory formulated in [1-7]. The topic studied in these articles, as well as in the present paper, is sets not belonging to algebras of sets.

**Definition 1.1** An *algebra*  $\mathcal{A}$  on a set X is a non-empty family of subsets of X possessing the following properties: (1) if  $M \in \mathcal{A}$ , then  $X \setminus M \in \mathcal{A}$ ; (2) if  $M_1, M_2 \in \mathcal{A}$ , then  $M_1 \cup M_2 \in \mathcal{A}$ .

It is clear that if  $M_1, M_2 \in A$ , then  $M_1 \cap M_2 \in A$  and  $M_1 \setminus M_2 \in A$ ; also, it is clear that  $X \in A$ .

#### 1.1 Some notation and names

All algebras and measures are considered on some abstract set  $X \neq \emptyset$ . When it is clear from the context, we will not state explicitly that a set belongs to the family  $\mathcal{P}(X)$  of all subsets of *X*. By  $\mathbb{N}^+$  we denote the set of natural numbers. If  $n_1, n_2 \in \mathbb{N}^+$  and  $n_1 \leq n_2$ , then  $[n_1, n_2] = \{k \in \mathbb{N}^+ \mid n_1 \leq k \leq n_2\}$ . Let  $\rho$  be a real number. By  $\lfloor \rho \rfloor$  we denote the maximum integer  $\leq \rho$ . By  $\lceil \rho \rceil$  we denote the minimum integer  $\geq \rho$ . The symbol #(M) denotes the cardinality of the set *M*. A set *M* is *countable* if  $\#(M) = \aleph_0$ .

The following concept was used in [5].

**Definition 1.2** An algebra  $\mathcal{A}$  has  $\kappa$  *lacunae*, where  $\kappa$  is a cardinal number, if there exist  $\kappa$  pairwise disjoint sets not belonging to  $\mathcal{A}$ .

© 2015 Grinblat; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.



Let  $\{\mathcal{A}_{\lambda}\}_{\lambda \in \Lambda}$  be a family of algebras and  $\mathcal{A}_{\lambda} \neq \mathcal{P}(X)$  for each  $\lambda \in \Lambda$ . The following natural question arises: what are possible conditions that distinguish between the cases  $\bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda} \neq \mathcal{P}(X) \text{ and } \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda} = \mathcal{P}(X)? \text{ Let } \#(\Lambda) \leq \aleph_0, \text{ and let us assume that } \mathcal{A}_{\lambda} \text{ are } \sigma$ algebras if  $#(\Lambda) = \aleph_0$ . In [6] we obtained necessary and sufficient conditions for the equality  $\bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda} = \mathcal{P}(X)$  to hold. The first publication connected with this topic was that of Erdös [8] (this paper contains the well-known theorem of Alouglu-Erdös). Some information about the history of the subject after the publication of [8] and before the publication of [1] is presented in [2]. In fact, Alouglu and Erdös studied non-measurable sets with respect to families of measures. Let  $\aleph_1 \leq \#(X) \leq 2^{\aleph_0}$ . Let a  $\sigma$ -additive measure  $\mu$  be defined on X. Here  $\mu(X) = 1$ , the measure of a one-point set equals 0, and the measure of each  $\mu$ -measurable set equals 0 or 1. Such a measure  $\mu$  is called a  $\sigma$ -two-valued mea*sure*. Clearly, there exist  $\mu$ -non-measurable sets. The Alouglu-Erdös theorem states that if  $\#(X) = \aleph_1$ , then for any countable family of  $\sigma$ -two-valued measures  $\mu_1, \ldots, \mu_k, \ldots$  there exists a set which is non-measurable with respect to all these measures. The proof of the Alouglu-Erdös theorem is very simple and is based on the possibility of constructing the well-known Ulam matrix (see [9]). The non-trivial Gitik-Shelah theorem (see [10]) asserts the validity of the Alouglu-Erdös theorem if  $\#(X) = 2^{\aleph_0}$ . Obviously, the Gitik-Shelah theorem is a generalization of the Alouglu-Erdös theorem. The Gitik-Shelah theorem can be reformulated in our language. As before, let us consider the  $\sigma$ -two-valued measures  $\mu_1, \ldots, \mu_k, \ldots$  For each measure  $\mu_k$ , we examine the algebra  $\mathcal{A}_k$  of all  $\mu_k$  measurable sets. The Gitik-Shelah theorem asserts that  $\bigcup_{k \in \mathbb{N}^+} \mathcal{A}_k \neq \mathcal{P}(X)$ . We note that here each algebra  $\mathcal{A}_k$  has  $\aleph_0$  lacunae. If  $\#(X) = \aleph_1$ , then the situation is much simpler: each algebra  $\mathcal{A}_k$  has  $\aleph_1$  lacunae. The Gitik-Shelah theorem is used in the proofs of our theorems for countable families of  $\sigma$ -algebras.

**Definition 1.3** Let  $\{A_{\lambda}\}_{\lambda \in \Lambda}$  be a family of algebras, and  $\{U_{\lambda}^{1}, U_{\lambda}^{2}\}_{\lambda \in \Lambda}$  be a family of sets with the following properties:

- (1)  $U_{\lambda}^{i} \cap U_{\lambda'}^{j} = \emptyset$  except when  $\lambda = \lambda', i = j$ ;
- (2) for any  $\lambda \in \Lambda$ , the following holds: if a set Q contains one of the two sets  $U_{\lambda}^{1}$ ,  $U_{\lambda}^{2}$  and its intersection with the other set is empty, then  $Q \notin A_{\lambda}$ .

Then we say that the family  $\{A_{\lambda}\}_{\lambda \in \Lambda}$  has the full set of lacunae  $\{U_{\lambda}^{1}, U_{\lambda}^{2}\}_{\lambda \in \Lambda}$ .

Now we give a simple proposition.

**Proposition 1.4** If a family of algebras  $\{A_{\lambda}\}_{\lambda \in \Lambda}$  has the full set of lacunae  $\{U_{\lambda}^{1}, U_{\lambda}^{2}\}_{\lambda \in \Lambda}$ , then there exists a family of pairwise distinct sets  $\{Q_{\vartheta}\}_{\vartheta \in \Theta}$  such that the following holds:

- (1)  $Q_{\vartheta} \notin \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$  for any  $\vartheta \in \Theta$ ;
- (2) any set  $Q_{\vartheta}$  is a union of sets  $U_{\lambda}^{i}$ ;
- (3)  $Q_{\theta_1} \setminus Q_{\vartheta_2} \notin \bigcap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$  for any pair  $\vartheta_1 \neq \vartheta_2$ ;
- (4)  $\#(\Theta) = 2^{\#(\Lambda)}$ .

*Proof* Put  $\Theta = \mathcal{P}(\Lambda)$ . If  $\vartheta \in \mathcal{P}(\Lambda)$ , put

$$Q_{\vartheta} = \left(\bigcup_{\lambda \in \vartheta} U_{\lambda}^{1}\right) \cup \left(\bigcup_{\lambda \in \Lambda \setminus \vartheta} U_{\lambda}^{2}\right).$$

In this paper we deal mostly with the following problem: under which conditions a family of algebras  $\{A_{\lambda}\}_{\lambda \in \Lambda}$  has a full set of lacunae. We assume that  $\#(\Lambda) \leq \aleph_0$ . This was studied in [1–3]. The proof of the two following theorems can be found in [2].

**Theorem 1.5** Let  $A_1, \ldots, A_n$  be a finite family of algebras, and assume that for each  $k \in [1, n]$  the algebra  $A_k$  has 4k - 3 lacunae. Then this family has a full set of lacunae.

It is easy to prove (see [2], Chapter 14) that the estimate 4k - 3 is the best possible in some sense.

**Theorem 1.6** Let  $\{A_k\}_{k \in \mathbb{N}^+}$  be a family of  $\sigma$ -algebras, and assume that for each k the algebra  $A_k$  has 4k - 3 lacunae. Then this family has some full set of lacunae.

**Remark 1.7** Using the notion of absolute introduced by Gleason in [11], we can construct a family of algebras  $\{\mathcal{B}_k\}_{k \in \mathbb{N}^+}$  with the following properties: each algebra  $\mathcal{B}_k$  has  $\aleph_0$  lacunae, is not a  $\sigma$ -algebra, and  $\bigcup_{k \in \mathbb{N}^+} \mathcal{B}_k = \mathcal{P}(X)$  (see [2], Chapter 5). Hence, Theorem 1.6 and Theorem 2.4 below do not hold if we claim them for algebras which are not assumed to be  $\sigma$ -additive. Therefore, we suppose that *all algebras of a countable family of algebras are*  $\sigma$ -*algebras*.

The following definition was given in [2].

**Definition 1.8** For each  $n \in \mathbb{N}^+$ , denote by v(n) the minimal cardinal number such that if  $\{\mathcal{A}_{\lambda}\}_{\lambda \in \Lambda}$ ,  $\#(\Lambda) = n$ , is a family of algebras, and for each  $\lambda \in \Lambda$  the algebra  $\mathcal{A}_{\lambda}$  has v(n) lacunae, then the family  $\{\mathcal{A}_{\lambda}\}_{\lambda \in \Lambda}$  has a full set of lacunae.

In [2] we proved that:

- (1) v(n) = 4n 3 for  $n \le 3$ ;
- (2)  $v(n) \le 4n 5$  for n > 3;
- (3)  $\mathfrak{v}(n) \leq 4n \lfloor \frac{n+3}{2} \rfloor$  for any *n*;
- (4)  $3n-2 \leq \mathfrak{v}(n)$  for any n.

In this paper we will improve the upper bound of v(n).

From here until the end of Section 1 we present propositions and notions which form the method of proofs of our theorems. This method first appeared in [1] and was later used in [2–7]. Let  $\beta X$  be the Stone-Čech compactification of X with the discrete topology;  $\beta X$ is the family of all ultrafilters on X.

Consider an algebra  $\mathcal{A}$ . We say that  $a, b \in \beta X$  are  $\mathcal{A}$ -equivalent iff  $a \cap \mathcal{A} = b \cap \mathcal{A}$ . Let  $[b]_{\mathcal{A}}$  denote the  $\mathcal{A}$ -equivalence class of b, and define the *kernel* of the algebra  $\mathcal{A}$ :

 $\ker \mathcal{A} = \left\{ b \in \beta X \mid \#([b]_{\mathcal{A}}) > 1 \right\}.$ 

If  $\mathcal{A} = \mathcal{P}(X)$ , then ker  $\mathcal{A} = \emptyset$ . From now on, when we say *a* and *b* are  $\mathcal{A}$ -equivalent ultrafilters, we always assume that  $a \neq b$ . If *a*, *b* are  $\mathcal{A}$ -equivalent ultrafilters, then we say that *a* has an  $\mathcal{A}$ -equivalent ultrafilter *b*, or *a* is  $\mathcal{A}$ -equivalent to *b*.

**Statement 1.9** Consider an algebra  $\mathcal{A}$  and sets  $U, V \in \mathcal{P}(X)$  such that  $U \cap V = \emptyset$ . The following two conditions are equivalent. (1) Each set Q containing one of the sets U, V and

being disjoint from the other does not belong to A. (2) There exist A-equivalent ultrafilters a, b such that  $U \in a, V \in b$ .

*Proof* It is obvious that (1) follows from (2). Let us prove that (2) follows from (1). Let us assume the contrary. We fix an ultrafilter  $q \ni U$ . For any ultrafilter  $r \ni V$ , we choose a set  $W(r) \in r$  such that  $W(r) \in A$  and  $W(r) \notin q$ . Since the set of all ultrafilters which contain V is a compact subset of  $\beta X$ , there exists a finite sequence of sets  $W(r_1), \ldots, W(r_m)$  with the following properties:

- (1)  $W(r_k) \in \mathcal{A}$  for any  $k \in [1, m]$ ;
- (2)  $W(r_k) \notin q$  for any  $k \in [1, m]$ ;

(3) 
$$V \subseteq \bigcup_{k=1}^{m} W(r_k).$$

Let

$$\widetilde{W}(q) = X \setminus \bigcup_{k=1}^{m} W(r_k)$$

It is clear that  $\widetilde{W}(q) \in q$ ,  $\widetilde{W}(q) \in A$ , and  $\widetilde{W}(q) \cap V = \emptyset$ . Since the set of all ultrafilters which contain U is a compact subset of  $\beta X$ , there exists a finite sequence of sets  $\widetilde{W}(q_1), \ldots, \widetilde{W}(q_n)$  such that  $\widetilde{W}(q_k) \in A$  for any  $k \in [1, n], \bigcup_{k=1}^n \widetilde{W}(q_k) = \widetilde{W} \supseteq U$ , and  $\widetilde{W} \cap V = \emptyset$ . We have  $\widetilde{W} \in A$ , a contradiction.

The following crucial claim is a direct consequence of Statement 1.9.

**Claim 1.10** Consider an algebra A and  $U \in \mathcal{P}(X)$ . Then  $U \notin A$  if and only if there exist A-equivalent ultrafilters p and q such that  $U \in p$  and  $U \notin q$ .

*Proof* The sufficiency is obvious. If  $U \notin A$ , then the sets U and  $V = X \setminus U$  satisfy the condition (1) of Statement 1.9. Therefore, there exist the corresponding ultrafilters p and q.

It is clear that if  $\mathcal{A} \neq \mathcal{P}(X)$ , then  $\#(\ker \mathcal{A}) \geq 2$ . It is rather easy to show that an algebra  $\mathcal{A}$  has k lacunae, where  $2 \leq k \leq \aleph_0$ , if and only if  $\#(\ker \mathcal{A}) \geq k$ .<sup>a</sup>

**Definition 1.11** A set  $M \subseteq \beta X$  is said to be  $\mathcal{A}$ -equivalent if #(M) > 1, any two distinct ultrafilters in M are  $\mathcal{A}$ -equivalent, and there exist no  $\mathcal{A}$ -equivalent ultrafilters a, b such that  $a \in M, b \notin M$ .

Obviously, an  $\mathcal{A}$ -equivalent set has the form  $[b]_{\mathcal{A}}$  (see above). Also it is obvious that an  $\mathcal{A}$ -equivalent set is closed in  $\beta X$ .

**Remark 1.12** Consider algebras  $\mathcal{A}$ ,  $\mathcal{B}$ . It is very easy to prove that the following statements are equivalent.

- (1)  $\mathcal{A} \supseteq \mathcal{B}$ .
- (2) If *a* and *b* are A-equivalent ultrafilters, then *a* and *b* are B-equivalent ultrafilters.
- (3) If *M* is an A-equivalent set, then *M* is contained in a certain B-equivalent set.

**Remark 1.13** If  $M \subseteq \beta X$  (in particular, if  $M \subseteq X$ ), then by  $\overline{M}$  we denote the closure M in  $\beta X$ . The following arguments will be used later in this paper. Let  $A \subseteq \beta X$ ,  $2 \le \#(A) < \aleph_0$ .

The set *A* is divided into pairwise disjoint sets  $A_1, \ldots, A_m$  and  $\#(A_k) > 1$  for each  $k \in [1, m]$ . Two different ultrafilters are called *a*-equivalent if and only if they belong to the same set  $A_k$ . We can construct the algebra  $\mathcal{A}$  such that the *a*-equivalence relation is in fact the  $\mathcal{A}$ -equivalence relation, ker  $\mathcal{A} = A$ , and  $A_1, \ldots, A_m$  are all  $\mathcal{A}$ -equivalent sets. Indeed, by definition  $M \in \mathcal{A}$  if and only if for each  $k \in [1, m]$  either  $A_k \cap \overline{M} = \emptyset$ , or  $A_k \subseteq \overline{M}$ .

**Remark 1.14** Let us recall that an algebra which does not have  $\aleph_0$  lacunae is called  $\omega$ -*saturated*. So, an algebra  $\mathcal{A}$  is  $\omega$ -saturated if and only if  $\#(\ker \mathcal{A}) < \aleph_0$ . The algebra  $\mathcal{A}$  from Remark 1.13 is  $\omega$ -saturated.

**Remark 1.15** Further we use two following very simple statements. (1) By Statement 1.9 a finite family of algebras  $A_1, \ldots, A_n$  has a full set of lacunae if and only if there exist 2npairwise distinct ultrafilters  $a_1, \ldots, a_n, b_1, \ldots, b_n$  such that  $a_k, b_k$  are  $A_k$ -equivalent ultrafilters for each  $k \in [1, n]$ . (2) Let  $\mathfrak{A} = \{A_\lambda\}_{\lambda \in \Lambda}$  and  $\mathfrak{A}' = \{A'_\lambda\}_{\lambda \in \Lambda}$  be two non-empty families of algebras, and  $A'_\lambda \supseteq A_\lambda$  for every  $\lambda \in \Lambda$ . Assume that the family  $\mathfrak{A}'$  has a full set of lacunae  $\{U^1_\lambda, U^2_\lambda\}_{\lambda \in \Lambda}$ . Then the family  $\mathfrak{A}$  has the same full set of lacunae  $\{U^1_\lambda, U^2_\lambda\}_{\lambda \in \Lambda}$ .

#### 2 Main results. An open problem

The following result was announced in [3]:  $v(n) \leq \lceil \frac{10}{3}n + \frac{2}{\sqrt{3}}\sqrt{n} \rceil$  for any *n*. In this paper a stronger theorem is proved.

**Theorem 2.1**  $\mathfrak{v}(n) \leq \lceil \frac{10}{3}n + \sqrt{\frac{2n}{3}} \rceil$ .

**Remark 2.2** The combinatorial nature of Theorem 2.1 is discussed in Section 4. Also in Section 4 the proof of Theorem 4.5 uses the classical Ramsey theorem.

**Problem 2.3** We know that  $v(n) \ge 3n - 2$  for any n, and v(n) > 3n - 2 if n = 2, 3 since v(2) = 5, v(3) = 9 (see Section 1). Is it true that v(n) = 3n - 2 for any  $n \ne 2, 3$ ? This result is obviously true for n = 1.

The final section of this article is devoted to the proof of the following theorem, which is a generalization of theorems of Alaouglu-Erdös and Gitik-Shelah.

**Theorem 2.4** It is possible to construct nondecreasing functions  $\varphi : \mathbb{N}^+ \to \mathbb{N}^+$  such that the following conditions hold:

- (1)  $\underline{\lim}_{n \to \infty} \frac{\varphi(n) \frac{10}{3}n}{\sqrt{n}} = \sqrt{\frac{2}{3}};$
- (2) if {A<sub>k</sub>}<sub>k∈ℕ+</sub> is a family of σ-algebras and each algebra A<sub>k</sub> has φ(k) lacunae, then this family has a full set of lacunae.

#### 3 Finite families of algebras. Proof of Theorem 2.1

The following lemma is used in the proof of Lemma 3.2.

**Lemma 3.1** Consider an algebra  $\mathcal{A}$  which is not  $\omega$ -saturated,<sup>b</sup> let a number  $\xi \in \mathbb{N}^+$  be given. Then it is possible to construct an  $\omega$ -saturated algebra  $\mathcal{A}'$  such that  $\#(\ker \mathcal{A}') \ge \xi$  and  $\mathcal{A}' \supset \mathcal{A}$ .

*Proof* Take two distinct  $\mathcal{A}$ -equivalent ultrafilters  $s_1, t_1$ . Consider two distinct ultrafilters  $a_1, a_2 \in \ker \mathcal{A} \setminus \{s_1, t_1\}$ . If  $a_1$  has an  $\mathcal{A}$ -equivalent ultrafilter in  $\{s_1, t_1\}$ , and  $a_2$  has an  $\mathcal{A}$ equivalent ultrafilter in  $\{s_1, t_1\}$ , then  $a_1$  and  $a_2$  are  $\mathcal{A}$ -equivalent ultrafilters. Denote  $s_2 = a_1$ ,  $t_2 = a_2$ . If, for example,  $a_1$  does not have an A-equivalent ultrafilter in  $\{s_1, t_1\}$ , then take an ultrafilter *c* such that  $a_1 \neq c$  and  $a_1$ , *c* are  $\mathcal{A}$ -equivalent ultrafilters. In this case denote  $s_2 = a_1, t_2 = c$ . Now take three pairwise disjoint ultrafilters  $b_1, b_2, b_3 \in \ker \mathcal{A} \setminus \{s_1, t_1, s_2, t_2\}$ . If every ultrafilter  $b_i$  has an  $\mathcal{A}$ -equivalent ultrafilter in  $\{s_1, t_1, s_2, t_2\}$ , then in the set  $\{b_1, b_2, b_3\}$ we can choose two distinct A-equivalent ultrafilters, for example,  $b_1$  and  $b_2$ . Put  $s_3 = b_1$ ,  $t_3 = b_2$ . If, for example,  $b_1$  does not have an  $\mathcal{A}$ -equivalent ultrafilter in  $\{s_1, t_1, s_2, t_2\}$ , then take an ultrafilter *d* such that  $b_1 \neq d$  and  $b_1$ , *d* are *A*-equivalent ultrafilters. Denote  $s_3 = b_1$ ,  $t_3 = d$ . It is clear that for every  $\ell \in \mathbb{N}^+$  it is possible to construct a sequence of pairwise distinct ultrafilters  $s_1, t_1, \ldots, s_\ell, t_\ell$  such that  $s_i$  and  $t_i$  are  $\mathcal{A}$ -equivalent ultrafilters for all  $i \in [1, \ell]$ . Let  $2\ell \ge \xi$ . Define  $M_1 = \{s_1, t_1\}, \dots, M_\ell = \{s_\ell, t_\ell\}$ . By Remark 1.13 it is possible to construct an algebra  $\mathcal{A}'$  such that ker  $\mathcal{A}' = \bigcup_{i=1}^{\ell} M_i$  and  $M_1, \ldots, M_{\ell}$  are  $\mathcal{A}'$ -equivalent sets.

The following lemma is given in [2] without proof.

**Lemma 3.2**  $v(n) \in \mathbb{N}^+$ , and  $v(n+1) - v(n) \leq 4$ .

*Proof* It is obvious that v(1) = 1. Let  $n \in \mathbb{N}^+$  and assume that  $v(n) \in \mathbb{N}^+$ . Consider a family of algebras  $\mathcal{A}_1, \ldots, \mathcal{A}_{n+1}$  with  $\#(\ker \mathcal{A}_k) \ge v(n) + 4$  for each  $k \in [1, n + 1]$ . We must prove that this family has a full set of lacunae. By Lemma 3.1 and the arguments in Remark 1.15 we can assume that the algebras  $\mathcal{A}_1, \ldots, \mathcal{A}_{n+1}$  are  $\omega$ -saturated. We choose  $\mathcal{A}_{n+1}$ -equivalent ultrafilters  $s_{n+1}^{(1)}, s_{n+1}^{(2)}$ . Put  $B_k = \ker \mathcal{A}_k \setminus \{s_{n+1}^{(1)}, s_{n+1}^{(2)}\}$  for each  $k \in [1, n]$ . Put

 $B'_k = \{q \in B_k \mid q \text{ does not have an } A_k \text{-equivalent ultrafilter in } B_k\}$ 

and has an  $A_k$ -equivalent ultrafilter in  $\{s_{n+1}^{(1)}, s_{n+1}^{(2)}\}$ .

It is clear that  $\#(B'_k) \leq 2$ . Put  $B''_k = B_k \setminus B'_k$ . Clearly, each ultrafilter in  $B''_k$  has an  $\mathcal{A}_k$ -equivalent ultrafilter in  $B''_k$ . Therefore, by Remark 1.13, we can construct an algebra  $\mathcal{A}'_k$  such that ker  $\mathcal{A}'_k = B''_k$  and the  $\mathcal{A}'_k$ -equivalent relation in ker  $\mathcal{A}'_k$  is in fact the  $\mathcal{A}_k$ -equivalent relation. We have  $\#(\ker \mathcal{A}'_k) \geq \mathfrak{v}(n)$  for each  $k \in [1, n]$ . Therefore, there exist 2n pairwise distinct ultrafilters  $s_1^{(1)}, s_1^{(2)}, \ldots, s_n^{(1)}, s_n^{(2)}$ , and  $s_k^{(1)}, s_k^{(2)}$  are  $\mathcal{A}_k$ -equivalent ultrafilters from ker  $\mathcal{A}'_k$ . We have pairwise distinct ultrafilters  $s_1^{(1)}, s_1^{(2)}, \ldots, s_{n+1}^{(1)}, s_{n+1}^{(2)}$ , and  $s_k^{(1)}, s_{n+1}^{(2)}$ .

**Remark 3.3** It is obvious that v(1) = 1. Therefore, by Lemma 3.2 we have  $v(n) \le 4n - 3$  for any *n*. In Chapter 14, [2], we proved that  $v(4) \le 11$ . Therefore, by Lemma 3.2, we have that  $v(n) \le 4n - 5$  for any  $n \ge 4$ .

We now turn to the proof of Theorem 2.1. This proof is a strong improvement of the proposition  $v(n) \le 4n - \lfloor \frac{n+3}{2} \rfloor$  mentioned above (see [2], Chapter 14).

*Proof of Theorem* 2.1 (1) By Remark 3.3 our theorem is true for all  $n \le 13$ . (This can be verified by a simple computation.) Fix a natural number  $n \ge 14$  and a real number

$$\omega(n) \ge \sqrt{\frac{2n}{3}}.$$

Let  $A_1, \ldots, A_n$  be algebras such that

$$\#(\ker \mathcal{A}_k) \ge \frac{10}{3}n + \omega(n)$$

for each  $k \in [1, n]$ . By Lemma 3.1 and arguments in Remark 1.15, we can assume that the algebras  $A_1, \ldots, A_n$  are  $\omega$ -saturated. We will prove that there exist pairwise distinct ultra-filters

$$a_1^*,\ldots,a_n^*,b_1^*,\ldots,b_n^*$$

such that  $a_k^*$ ,  $b_k^*$  are  $A_k$ -equivalent ultrafilters for each  $k \in [1, n]$ . Our goal is to contradict *the assumption that ultrafilters*  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$  *do not exist.* Inductively assume that

$$\mathfrak{v}(n-1) \leq \left\lceil \frac{10}{3}(n-1) + \sqrt{\frac{2n-2}{3}} \right\rceil.$$

Then there exists a set of pairwise distinct ultrafilters

$$\mathfrak{F} = \{a_1, \dots, a_{n-1}, b_1, \dots, b_{n-1}\}$$

such that  $a_k$ ,  $b_k$  are  $A_k$ -equivalent ultrafilters for each  $k \in [1, n - 1]$ . Consider ker  $A_n$ . It is clear that

$$#(\ker \mathcal{A}_n \setminus \mathfrak{F}) \ge \frac{10}{3}n + \omega(n) - 2n + 2 = \frac{4}{3}n + \omega(n) + 2.$$

If there exist two  $\mathcal{A}_n$ -equivalent ultrafilters in ker  $\mathcal{A}_n \setminus \mathfrak{F}$ , we immediately obtain the required construction yielding the existence of ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$ . Therefore, each ultrafilter from ker  $\mathcal{A}_n \setminus \mathfrak{F}$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $\mathfrak{F}$ . Therefore, there exist distinct ultrafilters  $c_n, d_n \in \ker \mathcal{A}_n \setminus \mathfrak{F}$  and  $k_1 \in [1, n - 1]$  such that  $(a_{k_1}, c_n)$  and  $(b_{k_1}, d_n)$  are two pairs of  $\mathcal{A}_n$ -equivalent ultrafilters. For simplicity, say  $k_1 = 1$ . Now consider ker  $\mathcal{A}_1$ . It is clear that

$$\#\left(\ker \mathcal{A}_1 \setminus \left(\mathfrak{F} \cup \{c_n, d_n\}\right)\right) \geq \frac{10}{3}n + \omega(n) - 2n = \frac{4}{3}n + \omega(n).$$

If there exist two  $\mathcal{A}_1$ -equivalent ultrafilters in ker  $\mathcal{A}_1 \setminus (\mathfrak{F} \cup \{c_n, d_n\})$ , we immediately obtain the required construction yielding the existence of ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$ . Similarly, if an ultrafilter in ker  $\mathcal{A}_1 \setminus (\mathfrak{F} \cup \{c_n, d_n\})$  has an  $\mathcal{A}_1$ -equivalent ultrafilter in  $\{a_1, b_1, c_n, d_n\}$ , then the construction which contradicts the non-existence of ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$  is yielded immediately. So, each ultrafilter in ker  $\mathcal{A}_1 \setminus (\mathfrak{F} \cup \{c_n, d_n\})$  has an  $\mathcal{A}_1$ -equivalent ultrafilter in the set  $\mathfrak{F} \setminus \{a_1, b_1\}$ . Therefore, there exist distinct ultrafilters  $c_1, d_1 \in \ker \mathcal{A}_1 \setminus (\mathfrak{F} \cup \{c_n, d_n\})$  and  $k_2 \in [2, n-1]$  such that  $(a_{k_2}, c_1)$  and  $(b_{k_2}, d_1)$  are two pairs of  $A_1$ -equivalent ultrafilters. For simplicity, say  $k_2 = 2$ . This process can be continued. Suppose that there exists a natural number  $\eta$  such that

$$3 \le \eta \le \frac{1}{3}n + \omega(n) + 2.$$

Suppose also that there exists a set of pairwise distinct ultrafilters

$$\mathfrak{E} = \{c_1, \ldots, c_{n-1}, c_n, d_1, \ldots, d_{n-1}, d_n\}$$

and the following holds:

(A)  $(a_{i+1}, c_i)$  and  $(b_{i+1}, d_i)$  are two pairs of  $\mathcal{A}_i$ -equivalent ultrafilters for each  $i \in [2, \eta - 1]$ ; (B)  $\mathfrak{F} \cap \mathfrak{E} = \emptyset$ .

Let us recall what we have said above:  $(a_1, c_n)$  and  $(b_1, d_n)$  are two pairs of  $A_n$ -equivalent ultrafilters;  $(a_2, c_1)$  and  $(b_2, d_1)$  are two pairs of  $A_1$ -equivalent ultrafilters.

Define  $L_{\eta} = \ker \mathcal{A}_{\eta} \setminus (\mathfrak{F} \cup \mathfrak{E})$ . It is clear that

$$\#(L_{\eta}) \geq \frac{10}{3}n + \omega(n) - (2n-2) - 2\eta = \frac{4}{3}n + \omega(n) - 2\eta + 2.$$

If there exist two  $\mathcal{A}_{\eta}$ -equivalent ultrafilters in  $L_{\eta}$ , we immediately obtain the required construction yielding the existence of ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$ . Similarly, if an ultrafilter in  $L_{\eta}$  has an  $\mathcal{A}_{\eta}$ -equivalent ultrafilter in  $\{a_1, \ldots, a_{\eta}, b_1, \ldots, b_{\eta}\} \cup \mathfrak{E}$ , then the construction which contradicts the non-existence of ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$  is yielded immediately. Therefore, every ultrafilter from  $L_{\eta}$  has an  $\mathcal{A}_{\eta}$ -equivalent ultrafilter in  $\{a_{\eta+1}, \ldots, a_{n-1}, b_{\eta+1}, \ldots, b_{n-1}\}$ . We have

$$\#(L_{\eta}) - \#([\eta+1, n-1]) \ge \frac{4}{3}n + \omega(n) - 2\eta + 2 - n + \eta + 1 = \frac{1}{3}n + \omega(n) + 3 - \eta > 0.$$

Therefore, there exist distinct ultrafilters  $c_{\eta}, d_{\eta} \in L_{\eta}$  and  $k_{\eta+1} \in [\eta + 1, n - 1]$  such that  $(a_{k_{\eta+1}}, c_{\eta})$  and  $(b_{k_{\eta+1}}, d_{\eta})$  are two pairs of  $\mathcal{A}_{\eta}$ -equivalent ultrafilters. For simplicity, say  $k_{\eta+1} = \eta + 1$ . We have that  $(a_{i+1}, c_i)$  and  $(b_{i+1}, d_i)$  are two pairs of  $\mathcal{A}_i$ -equivalent ultrafilters for each  $i \in [1, \eta]$ .

Put  $\rho = \lfloor \frac{n}{3} \rfloor$ . In view of the above, we can assume that there exist pairwise distinct ultrafilters  $c_1, \ldots, c_{\rho-1}, c_n, d_1, \ldots, d_{\rho-1}, d_n$  such that the following holds:

- (a)  $(a_1, c_n)$  and  $(b_1, d_n)$  are two pairs of  $\mathcal{A}_n$ -equivalent ultrafilters;
- (b)  $(a_{i+1}, c_i)$  and  $(b_{i+1}, d_i)$  are two pairs of  $\mathcal{A}_i$ -equivalent ultrafilters for each  $i \in [1, \rho 1]$ ;
- (c)  $\mathfrak{F} \cap \{c_1, \dots, c_{\rho-1}, c_n, d_1, \dots, d_{\rho-1}, d_n\} = \emptyset$ , see Figure 1.
- (2) Put

Figure 1 Ultrafilters 
$$a_i$$
,  $b_i$ ,  $c_i$ , and  $d_i$ .

 $Z_{\rho} = \{a_1, \dots, a_{\rho}, b_1, \dots, b_{\rho}, c_1, \dots, c_{\rho-1}, c_n, d_1, \dots, d_{\rho-1}, d_n\},\$ 

$$Z'_{\rho} = \{a_1, \dots, a_{n-1}, b_1, \dots, b_{n-1}, c_1, \dots, c_{\rho-1}, c_n, d_1, \dots, d_{\rho-1}, d_n\},\$$
$$Z''_{\rho} = \{a_{\rho+1}, \dots, a_{n-1}, b_{\rho+1}, \dots, b_{n-1}\},\$$
$$L_{\rho} = \ker \mathcal{A}_{\rho} \setminus Z'_{\rho}.$$

Clearly,

$$\begin{aligned} #(L_{\rho}) &\geq \frac{10}{3}n + \omega(n) - 4 \cdot \left\lfloor \frac{n}{3} \right\rfloor - 2\left(n - 1 - \left\lfloor \frac{n}{3} \right\rfloor\right) \\ &= \frac{4}{3}n - 2 \cdot \left\lfloor \frac{n}{3} \right\rfloor + \omega(n) + 2 \geq \frac{2}{3}n + \omega(n) + 2, \\ #(L_{\rho}) - #(\left[\rho + 1, n - 1\right]) \geq \frac{2}{3}n + \omega(n) + 2 - \left(n - 1 - \left\lfloor \frac{n}{3} \right\rfloor\right) \\ &= \left\lfloor \frac{n}{3} \right\rfloor - \frac{n}{3} + \omega(n) + 3 > 0. \end{aligned}$$

The above arguments show that the following assumption should be made: for each ultrafilter  $q \in L_{\rho}$ , there exists an ultrafilter  $\tilde{q} \in Z_{\rho}''$  such that q and  $\tilde{q}$  are  $\mathcal{A}_{\rho}$ -equivalent ultrafilters. In general, there can be such q for which the number of corresponding  $\tilde{q}$  is greater than 1. We choose in an arbitrary way only one  $\tilde{q}$  for each  $q \in L_{\rho}$ . We obtain the mapping  $f: L_{\rho} \to Z_{\rho}'', f(q) = \tilde{q}$ . The map f is one-to-one. (If  $f(q_1) = f(q_2)$  and  $q_1 \neq q_2$ , then  $q_1, q_2$ are  $\mathcal{A}_{\rho}$ -similar ultrafilters, and the construction which contradicts the non-existence of ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$  is yielded immediately.) Put

$$\begin{aligned} \mathfrak{I}_{1}^{\rho} &= \left\{ k \in [\rho + 1, n - 1] \mid \text{there exist ultrafilters } q_{k}^{a}, q_{k}^{b} \in L_{\rho} \\ &\text{such that } f\left(q_{k}^{a}\right) = a_{k}, f\left(q_{k}^{b}\right) = b_{k} \right\}, \\ \mathfrak{I}_{2}^{\rho} &= \left\{ k \in [\rho + 1, n - 1] \setminus \mathfrak{I}_{1}^{\rho} \mid \text{there exists an ultrafilter } q_{k}^{*} \in L_{\rho} \\ &\text{such that } f\left(q_{k}^{*}\right) \in \{a_{k}, b_{k}\} \right\}. \end{aligned}$$

Obviously,  $\mathfrak{I}_1^{\rho} \cap \mathfrak{I}_2^{\rho} = \emptyset$ . Since  $\#(L_{\rho}) - \#([\rho + 1, n - 1]) > 0$ , we have  $\#(\mathfrak{I}_1^{\rho}) = \tau > 0$ . Clearly,

$$\#(\mathfrak{I}_{2}^{\rho}) = \#(L_{\rho}) - 2\tau \ge \frac{2}{3}n + \omega(n) + 2 - 2\tau.$$

Put

$$L_n = \ker \mathcal{A}_n \setminus Z'_{\rho}$$

We have obtained above the estimate  $\#(L_{\rho}) \ge \frac{2}{3}n + \omega(n) + 2$ . In exactly the same way, the following estimate can be obtained:

$$\#(L_n) \geq \frac{2}{3}n + \omega(n) + 2.$$

If there exist two  $A_n$ -equivalent ultrafilters from  $L_n$ , we immediately obtain the required construction regarding the existence of ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$ . Similarly, if an ultrafilter in  $L_n$  has an  $A_n$ -equivalent ultrafilter in  $\{a_1, b_1, c_1, \ldots, c_{\rho-1}, c_n, d_1, \ldots, d_{\rho-1}, d_n\}$ , then it is easy to find the corresponding ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$ .

We are interested in the following situation: let  $q \in L_n$ , and q has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $\{a_2, \ldots, a_\rho, b_1, \ldots, b_\rho\}$ . Let, for instance, q and  $a_2$  be  $\mathcal{A}_n$ -equivalent ultrafilters. Then let us consider  $d_1$ . For  $d_1$  there are four possible cases:

- $\langle 1 \rangle \ d_1 \notin \ker \mathcal{A}_n;$
- $\langle 2 \rangle$   $b_2$ ,  $d_1$  are  $\mathcal{A}_n$ -equivalent ultrafilters;
- (3)  $d_1$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $\{a_3, \ldots, a_\rho, b_3, \ldots, b_\rho\}$ ;
- $\langle 4 \rangle d_1$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $Z''_{\rho}$ .

In case (2) let us consider  $c_1$ . For  $c_1$  the possible corresponding cases are:

- $\langle \mathbf{i} \rangle \quad c_1 \notin \ker \mathcal{A}_n;$
- (ii)  $c_1$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $\{a_3, \ldots, a_\rho, b_3, \ldots, b_\rho\}$ ;
- (iii)  $c_1$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $Z_{\rho}''$ .

Consider case  $\langle 3 \rangle$  for  $d_1$ . Let  $d_1$ ,  $b_3$  be  $A_n$ -equivalent ultrafilters. Let us consider  $c_2$ . For  $c_2$  there are four possible cases:

- $\langle 1 \rangle \ c_2 \notin \ker \mathcal{A}_n;$
- $\langle 2 \rangle$   $a_3, c_2$  are  $\mathcal{A}_n$ -equivalent ultrafilters;
- (3)  $c_2$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $\{a_4, \ldots, a_\rho, b_2, b_4, \ldots, b_\rho\}$ ;
- $\langle 4 \rangle \ c_2$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $Z''_{\rho}$ .

Consider case  $\langle 3 \rangle$  for  $c_2$ . Let  $b_2$ ,  $c_2$  be  $A_n$ -equivalent ultrafilters. Let us consider  $c_1$ . For  $c_1$  the possible corresponding cases are:

- $\langle \mathbf{i} \rangle \quad c_1 \notin \ker \mathcal{A}_n;$
- (ii)  $c_1$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $\{a_3, \ldots, a_\rho, b_4, \ldots, b_\rho\}$ ;
- (iii)  $c_1$  has an  $\mathcal{A}_n$ -equivalent ultrafilter in  $Z''_{\rho}$ .

Continuing these constructions in an obvious way, we find an ultrafilter

 $q_* \in \{c_1, \ldots, c_{\rho-1}, d_1, \ldots, d_{\rho-1}\}$ 

such that one of the following two statements is true: (1)  $q_* \notin \ker A_n$ ; (2)  $q_*$  has an  $A_n$ -equivalent ultrafilter in  $Z''_{\rho}$ . Let us put

$$\alpha = \#(\{q \in L_n \mid q \text{ has an } \mathcal{A}_n\text{-equivalent ultrafilter in } \{a_2, \dots, a_\rho, b_2, \dots, b_\rho\}\}),$$
  

$$\beta = \#(\{c_1, \dots, c_{\rho-1}, d_1, \dots, d_{\rho-1}\} \setminus \ker \mathcal{A}_n),$$
  

$$\gamma = \#(\{q_* \in \{c_1, \dots, c_{\rho-1}, d_1, \dots, d_{\rho-1}\} \mid q_* \text{ has an } \mathcal{A}_n\text{-equivalent}$$
  
ultrafilter in  $Z''_{\rho}\}).$ 

The above constructions clearly show that  $\alpha \leq \beta + \gamma$ . Put

$$\hat{L} = \left\{ q \in L_n \cup \{c_1, \dots, c_{\rho-1}, d_1, \dots, d_{\rho-1}\} \mid q \text{ has } \mathcal{A}_n \text{-similar ultrafilter in } Z_\rho'' \right\}.$$

Clearly,

$$\#(\hat{L}) \geq \#(L_n) + \gamma - \alpha \geq \frac{2}{3}n + \omega(n) + 2 + \beta + \gamma - \alpha \geq \frac{2}{3}n + \omega(n) + 2.$$

So, for every ultrafilter  $q \in \hat{L}$ , there exists an ultrafilter  $\bar{q} \in Z''_{\rho}$  such that q and  $\bar{q}$  are  $\mathcal{A}_n$ -similar ultrafilters. In general it can happen that for some q there exist more than one corresponding  $\bar{q}$ . Choose arbitrarily only one ultrafilter  $\bar{q}$  for each  $q \in \hat{L}$ . We obtain a mapping  $\hat{f} : \hat{L} \to Z''_{\rho}, \hat{f}(q) = \bar{q}$ . Consider the corresponding map  $\hat{f} : \hat{L}_{\rho} \to Z''_{\rho}$ . It is one-to-one. Indeed, if  $\hat{f}(q_1) = \hat{f}(q_2)$  and  $q_1 \neq q_2$ , then  $q_1, q_2$  are  $\mathcal{A}_n$ -similar ultrafilters, and the construction which contradicts the non-existence of ultrafilters  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$  is yielded immediately. Put

$$\begin{aligned} \hat{\mathfrak{I}}_1 &= \left\{ k \in [\rho + 1, n - 1] \mid \text{there exist ultrafilters } \mathfrak{q}_k^a, \mathfrak{q}_k^b \in \hat{L} \\ &\text{such that } \hat{f}(\mathfrak{q}_k^a) = a_k, \hat{f}(\mathfrak{q}_k^b) = b_k \right\}, \\ \hat{\mathfrak{I}}_2 &= \left\{ k \in [\rho + 1, n - 1] \setminus \hat{\mathfrak{I}}_1 \mid \text{there exists an ultrafilter } \mathfrak{q}_k^* \in \hat{L} \\ &\text{such that } \hat{f}(\mathfrak{q}_k^*) \in \{a_k, b_k\} \right\}. \end{aligned}$$

Obviously,  $\hat{\mathfrak{I}}_1 \cap \hat{\mathfrak{I}}_2 = \emptyset$ . Since  $\#(\hat{L}) - \#([\rho + 1, n - 1]) > 0$ , we have  $\#(\hat{\mathfrak{I}}_1) = \hat{\tau} > 0$ . Clearly,

$$\#(\hat{\Im}_2) = \#(\hat{L}) - 2\hat{\tau} \ge \frac{2}{3}n + \omega(n) + 2 - 2\hat{\tau}.$$

If  $\tau \geq \hat{\tau}$ , put

$$\mathfrak{I} = (\hat{\mathfrak{I}}_1 \cup \hat{\mathfrak{I}}_2) \cap \mathfrak{I}_1^{\rho}.$$

If  $\tau < \hat{\tau}$ , put

$$\mathfrak{I} = (\mathfrak{I}_1^{\rho} \cup \mathfrak{I}_2^{\rho}) \cap \hat{\mathfrak{I}}_1.$$

Clearly,

$$#(\mathfrak{I}) \geq \frac{2}{3}n + \omega(n) + 2 - n + 1 + \left\lfloor \frac{n}{3} \right\rfloor > \omega(n) + 2$$

(3) We fix  $v \in \mathfrak{I}$ . A number  $k \in [1, \rho]$  is called *v*-marked if the following is true: for k = 1:  $(a_1, d_n)$  and  $(b_1, c_n)$  are pairs of  $\mathcal{A}_v$ -equivalent ultrafilters;

for k > 1:  $(a_k, d_{k-1})$  and  $(b_k, c_{k-1})$  are pairs of  $A_v$ -equivalent ultrafilters. Put

$$\chi_{\nu} = \#(\{k \in [1, \rho] \mid k \text{ is a } \nu \text{-marked number}\}).$$

Our aim is to prove that

$$\chi_{\nu} > \frac{\omega(n)}{2}.$$

We have the following options:

- (1) There exist ultrafilters  $q_{\nu}^{a}, q_{\nu}^{b} \in \mathfrak{I}_{1}^{\rho}$  and an ultrafilter  $\mathfrak{q}_{\nu}^{*} \in \hat{\mathfrak{I}}_{2}$ .
- (2) There exists an ultrafilter  $q_{\nu}^* \in \mathfrak{I}_2^{\rho}$  and ultrafilters  $\mathfrak{q}_{\nu}^a, \mathfrak{q}_{\nu}^b \in \hat{\mathfrak{I}}_1$ .
- (3) There exist ultrafilters  $q_{\nu}^{a}, q_{\nu}^{b} \in \widehat{\mathcal{I}}_{1}^{\rho}$  and ultrafilters  $\mathfrak{q}_{\nu}^{a}, \mathfrak{q}_{\nu}^{b} \in \widehat{\mathcal{I}}_{1}$ .

Denote  $q_v^*$  by  $q_v$ . Denote  $\mathfrak{q}_v^*$  by  $q'_v$ . Choose one of two ultrafilters  $q_v^a$ ,  $q_v^b$  and denote it by  $q_v$ ; at this step we do not consider the second ultrafilter. Choose one of two ultrafilters  $\mathfrak{q}_v^a$ ,  $\mathfrak{q}_v^b$  and denote it by  $q'_v$ ; at this step we do not consider the second ultrafilter. If possible, the ultrafilter  $q'_v$  is taken from  $\hat{L} \setminus L_n$ . Let  $v = \rho + 1$ . We know that there exists a corresponding ultrafilter  $q_{\rho+1} \in L_\rho$  which has an  $\mathcal{A}_\rho$ -equivalent ultrafilter in  $\{a_{\rho+1}, b_{\rho+1}\}$ . We also know that there exists a corresponding ultrafilter  $q'_{\rho+1} \in \hat{L}$  which has  $\mathcal{A}_n$ -equivalent ultrafilter in  $\{a_{\rho+1}, b_{\rho+1}\}$ .

When the number  $\chi_{\rho+1}$  attains its minimal value, we must assume the following: there exist pairwise distinct ultrafilters

$$a'_{\rho+2},\ldots,a'_{n-1},b'_{\rho+2},\ldots,b'_{n-1}\in \ker \mathcal{A}_{\rho+1}\setminus (Z'_{\rho}\cup \{q_{\rho+1},q'_{\rho+1}\}),$$

and  $(a_k, a'_k)$ ,  $(b_k, b'_k)$  are pairs of  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters for each  $k \in [\rho + 2, n - 1]$ . We will only consider the cases where *finding ultrafilters*  $a_1^*, \ldots, a_n^*, b_1^*, \ldots, b_n^*$  is not immediate.

Case 1.  $q'_{\rho+1} \in L_n$ .

*Case* 1-1.  $q_{\rho+1} = q'_{\rho+1}$ .

We consider only two subcases of Case 1-1.

*Case* 1-1-1. There exists an ultrafilter  $q^* \notin Z_\rho$  such that  $q^*$ ,  $q_{\rho+1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters.

*Case* 1-1-2. There exists an ultrafilter  $q^* \in Z_\rho$  such that  $q^*$ ,  $q_{\rho+1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters.

*Case* 1-2.  $q_{\rho+1} \neq q'_{\rho+1}$ .

We consider only two subcases of Case 1-2.

*Case* 1-2-1.  $q_{\rho+1}$ ,  $q'_{\rho+1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters.

*Case* 1-2-2. There exists an ultrafilter  $q^* \in \{a_1, \ldots, a_\rho, b_1, \ldots, b_\rho\}$  such that  $q^*$ ,  $q_{\rho+1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters.

Before we consider these cases, let us denote  $\mathcal{R}_1 = \{a_1, b_1, c_n, b_n\}$ , and  $\mathcal{R}_k = \{a_k, b_k, c_{k-1}, d_{k-1}\}$  if  $k \in [2, \rho]$ .

First we consider Cases 1-1-1 and 1-2-1. For the situation where the number  $\chi_{\rho+1}$  attains its the minimum value, we have the following options for the set  $\mathcal{R}_1$ :

(1)  $a_1, b_1$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters and  $\#(\ker \mathcal{A}_{\rho+1} \cap \mathcal{R}_1) = 2;$ 

(2)  $a_1, d_n$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters and  $\#(\ker \mathcal{A}_{\rho+1} \cap \mathcal{R}_1) = 2;$ 

- (3)  $b_1$ ,  $c_n$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters and  $\#(\ker \mathcal{A}_{\rho+1} \cap \mathcal{R}_1) = 2;$
- (4) the number 1 is  $(\rho + 1)$ -marked.

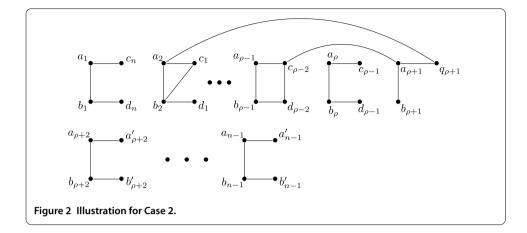
If  $k \in [2, \rho]$ , by analogy, we have the following options for the set  $\mathcal{R}_k$ :

- (1\*)  $a_k$ ,  $b_k$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters and #(ker  $\mathcal{A}_{\rho+1} \cap \mathcal{R}_k$ ) = 2;
- (2\*)  $a_k$ ,  $d_{k-1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters and #(ker  $\mathcal{A}_{\rho+1} \cap \mathcal{R}_k$ ) = 2;
- (3\*)  $b_k$ ,  $c_{k-1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters and #(ker  $\mathcal{A}_{\rho+1} \cap \mathcal{R}_k$ ) = 2;

(4\*) the number k is  $(\rho + 1)$ -marked.

So we have

$$4(n-1-\rho) + 4 \cdot \chi_{\rho+1} + 2(\rho - \chi_{\rho+1}) = \#(\ker \mathcal{A}_{\rho+1}) \ge \frac{10}{3}n + \omega(n).$$



Recall that  $\rho = \lfloor \frac{n}{3} \rfloor$ . Therefore we have

$$\chi_{\rho+1} > \frac{\omega(n)}{2} + 1.$$

Now consider Case 1-1-2. The situation is as follows:

- (a)  $c_{\rho-1}$ ,  $q_{\rho+1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters;
- $\langle b \rangle a_{\rho}, d_{\rho-1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters;
- $\langle c \rangle$  for  $\mathcal{R}_1$  one of the options (1)-(4) is fulfilled;
- $\langle d \rangle$  for  $\mathcal{R}_k$ , where  $k \in [2, \rho 1]$ , one of the options  $(1^*)$ - $(4^*)$  is fulfilled.

Now consider Case 1-2-2. The situation is as follows:  $b_{\rho}$ ,  $q_{\rho+1}$  are  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters, and the conditions  $\langle b \rangle$ ,  $\langle c \rangle$ ,  $\langle d \rangle$  are fulfilled. It is clear that in Cases 1-1-2 and 1-2-2 we have

$$\chi_{\rho+1} > \frac{\omega(n)}{2} + 1.$$

It is clear that in Case 1 there may be subcases which we have not considered. But always

$$\chi_{\rho+1} > \frac{\omega(n)}{2} + 1.$$

*Case* 2.  $q'_{\rho+1} \in \hat{L} \setminus L_n$ . Suppose that  $q'_{\rho+1} = c_{\rho-2}$  and  $c_{\rho-2}, a_{\rho+1}$  are  $A_n$ -equivalent ultrafilters. For the number  $\chi_{\rho+1}$  to be minimal and the situation to be nontrivial, we assume the following:

- (i)  $(a_{\rho-1}, b_{\rho-1}), (c_{\rho-2}, d_{\rho-2}), (a_2, q_{\rho+1}), (b_2, c_1)$  are pairs of  $\mathcal{A}_{\rho+1}$ -equivalent ultrafilters;
- (ii)  $a_{\rho+1}$ ,  $q_{\rho+1}$  are  $\mathcal{A}_{\rho}$ -equivalent ultrafilters;
- (iii) ker  $\mathcal{A}_{\rho+1} \subset Z'_{\rho} \cup \{a'_{\rho+2}, \dots, a'_{n-1}, b'_{\rho+2}, \dots, b'_{n-1}\} \cup \{q_{\rho+1}\}$ , see Figure 2.

We assume that one of the cases (1)-(4) holds for  $\mathcal{R}_1$  and that one of the cases (1\*)-(4\*) holds for  $\mathcal{R}_k$ , where  $k \in [3, \rho] \setminus \{\rho - 1\}$ . We have

$$4(n-1-\rho)+4\cdot\chi_{\rho+1}+2(\rho-2-\chi_{\rho+1})+6=\#(\ker \mathcal{A}_{\rho+1})\geq \frac{10}{3}n+\omega(n).$$

Recall that  $\rho = \lfloor \frac{n}{3} \rfloor$ . Therefore we have

$$\chi_{\rho+1} > \frac{\omega(n)}{2}.$$

Analyzing the other situations in Case 2, we come to the same conclusion:  $\chi_{\rho+1} > \frac{\omega(n)}{2}$ ; and we can assume that if *k* is a  $(\rho + 1)$ -marked number, then  $q'_{\rho+1} \notin \mathcal{R}_k$ . It is obvious that the same conclusion is true in Case 1.

(4) It is obvious that for each  $\nu \in \mathfrak{I}$  we have  $\chi_{\nu} > \frac{\omega(n)}{2}$ , and  $q'_k \notin \mathcal{R}_k$  if k is a  $\nu$ -marked number. We know that

$$\omega(n) \ge \sqrt{\frac{2n}{3}}, \qquad \#(\mathfrak{I}) > \omega(n) + 2, \qquad \rho = \left\lfloor \frac{n}{3} \right\rfloor.$$

Therefore we have

$$\frac{\omega(n)}{2}\cdot \#(\mathfrak{I}) > \frac{\omega(n)}{2}\cdot \left(\omega(n)+2\right) > \rho$$

Therefore there exist distinct numbers  $v_1, v_2 \in \mathfrak{I}$  and  $k_0 \in [1, \rho]$  such that  $k_0$  is a  $v_1$ -marked number and  $v_2$ -marked number. Let  $v_1 = \rho + 1$ ,  $v_2 = \rho + 2$ . Consider the ultrafilters  $q_{\rho+1}$ ,  $q'_{\rho+2}$ . If  $q_{\rho+1} \neq q'_{\rho+2}$ , put  $z_{\rho+1} = q_{\rho+1}$ ,  $z'_{\rho+2} = q'_{\rho+2}$ . Let  $q_{\rho+1} = q'_{\rho+2}$ . There are two possible cases.

I. There exist the ultrafilters  $q_{\rho+1}^a$ ,  $q_{\rho+1}^b$ , and assume that  $q_{\rho+1} = q_{\rho+1}^b$ . Put  $z_{\rho+1} = q_{\rho+1}^a$ ,  $z'_{\rho+2} = q'_{\rho+2}$ .

II. The ultrafilters  $q_{\rho+1}^a$ ,  $q_{\rho+1}^b$  do not exist. Then there exist the ultrafilters  $q_{\rho+1}^a$ ,  $q_{\rho+1}^b$ , and assume that  $q'_{\rho+1} = q_{\rho+1}^b$ . Put  $z_{\rho+2} = q_{\rho+2}$ . If  $q'_{\rho+1} \neq z_{\rho+2}$ , put  $z'_{\rho+1} = q'_{\rho+1}$ . Otherwise we have  $q_{\rho+1}^a \in L_n$  since  $q'_{\rho+1} = q_{\rho+2} \in L_n$  (see in the part (3) of our proof how we have chosen the ultrafilter  $q'_{\nu}$ ); and put  $z'_{\rho+1} = q_{\rho+1}^a$ .

Thus, we consider either the pair of ultrafilters  $z_{\rho+1}$ ,  $z'_{\rho+2}$ , or the pair of ultrafilters  $z'_{\rho+1}$ ,  $z_{\rho+2}$ . These two pairs have the same properties. We will consider the pair  $z_{\rho+1}$ ,  $z'_{\rho+2}$ . We have the following:

1°  $z_{\rho+1}$  has an  $\mathcal{A}_{\rho}$ -equivalent ultrafilter in { $a_{\rho+1}, b_{\rho+1}$ };

- 2°  $z'_{\rho+2}$  has an  $A_n$ -equivalent ultrafilter in  $\{a_{\rho+2}, b_{\rho+2}\}$ ;
- $3^{\circ} \ z_{\rho+1} \neq z'_{\rho+2};$
- $4^{\circ} \ z_{\rho+1} \notin Z'_{\rho};$
- 5°  $z'_{\rho+2} \notin \mathfrak{F} \cup \mathcal{R}_{k_0}$ .

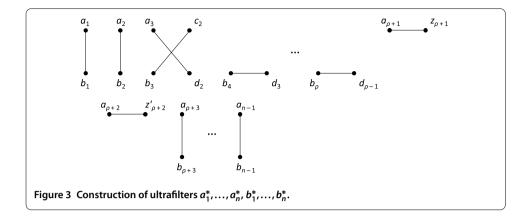
Suppose that  $a_{\rho+1}$  and  $z_{\rho+1}$  are  $A_{\rho}$ -equivalent ultrafilters,  $a_{\rho+2}$  and  $z'_{\rho+2}$  are  $A_n$ -equivalent ultrafilters, and  $k_0 = 3$ . It is possible that

$$z'_{\rho+2} \in \{c_3, \ldots, c_{\rho-1}, d_3, \ldots, d_{\rho-1}\}.$$

Suppose that

$$z'_{\rho+2} \notin \{d_3, \ldots, d_{\rho-1}\}.$$

Now it is easy to construct the corresponding ultrafilters  $a_1^*, ..., a_n^*, b_1^*, ..., b_n^*$ . Let us list them in pairs:  $(a_1^*, b_1^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (b_4, d_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_1, b_1), (a_2^*, b_2^*) = (a_2, b_2), (a_3^*, b_3^*) = (a_3, b_3), ..., (a_{\rho-1}^*, b_{\rho-1}^*) = (a_3, b_3), ..., (a$ 



 $(b_{\rho}, d_{\rho-1}), (a_{\rho}^*, b_{\rho}^*) = (a_{\rho+1}, z_{\rho+1}), (a_{\rho+1}^*, b_{\rho+1}^*) = (a_3, d_2), (a_{\rho+2}^*, b_{\rho+2}^*) = (b_3, c_2), (a_{\rho+3}^*, b_{\rho+3}^*) = (a_{\rho+3}, b_{\rho+3}), \dots, (a_{n-1}^*, b_{n-1}^*) = (a_{n-1}, b_{n-1}), (a_n^*, b_n^*) = (a_{\rho+2}, z_{\rho+2}'), \text{see Figure 3.}$ 

# 4 Combinatorial theorems

In this section we consider for each  $n \in \mathbb{N}^+$  a matrix  $\mathfrak{M}(n)$  which has n rows and  $\aleph_0$  columns. We denote by  $\alpha_i^k$  the element of  $\mathfrak{M}(n)$  in the *i*th row and the *k*th column. The following holds:

(1)  $\alpha_i^k \in \mathbb{N};$ 

(2) for any  $\alpha_i^k > 0$ , there exists  $\alpha_i^{k'}$  such that  $\alpha_i^k = \alpha_i^{k'}$  and  $k \neq k'$ .

We denote by  $w(\mathfrak{M}(n), i)$  the number of nonzero elements in the *i*th row of  $\mathfrak{M}(n)$ . It is clear that

 $0 \leq w(\mathfrak{M}(n), i) \leq \aleph_0.$ 

**Definition 4.1** A matrix  $\mathfrak{M}(n)$  is said to be *saturated* if there exist pairwise distinct natural numbers  $k_1, k'_1, \ldots, k_n, k'_n$  such that  $\alpha_i^{k_i} = \alpha_i^{k'_i} > 0$  for each  $i \in [1, n]$ .

**Definition 4.2** For each  $n \in \mathbb{N}^+$ , denote by v'(n) the minimal natural number such that if for some matrix  $\mathfrak{M}(n)$  we have  $w(\mathfrak{M}(n), i) \ge v'(n)$  for each  $i \in [1, n]$ , then  $\mathfrak{M}(n)$  is saturated.

We suppose that  $v'(n) \in \mathbb{N}^+$  since, obviously,  $v'(n) < \aleph_0$ .

It is easy to prove that v(n) = v'(n). Therefore, by Theorem 2.1, the following theorem is true.

**Theorem 4.3** If for some matrix  $\mathfrak{M}(n)$  we have

$$w\bigl(\mathfrak{M}(n),i\bigr) \geq \frac{10}{3}n + \sqrt{\frac{2n}{3}}$$

for each  $i \in [1, n]$ , then  $\mathfrak{M}(n)$  is saturated.

The following theorem is a particular case of the well-known theorem of Ramsey [12].

**Theorem 4.4** Consider a set S,  $\#(S) = n \in \mathbb{N}^+$ , and let T be the family of all two-element subsets of S. We divide T into two disjoint sub-families  $T_1$ ,  $T_2$ . Fix a natural number  $\mu \ge 2$ .

We claim that there exists the minimal number  $R(\mu) \in \mathbb{N}^+$  such that if  $n \ge R(\mu)$ , then there exists a set  $S' \subset S$ ,  $\#(S') = \mu$ , and either all two-element subsets of S' belong to  $T_1$  or they all belong to  $T_2$ .

In the formulation of the following theorem, we use the number  $R(\mu)$  from Theorem 4.4.

**Theorem 4.5** Consider a matrix  $\mathfrak{M}(n)$ , and fix a natural number  $\mu \geq 2$ . Let

$$w\bigl(\mathfrak{M}(n),i\bigr) \geq \frac{10}{3}n + \sqrt{\frac{2n}{3}}$$

for any  $i \in [1, n]$ , and  $n \ge R(\mu)$ . Then

(1) there exist pairwise distinct natural numbers

$$k_1, k'_1, \ldots, k_n, k'_n$$

such that  $\alpha_i^{k_i} = \alpha_i^{k'_i} > 0$  and  $k_i < k'$  for each  $i \in [1, n]$ ; (2) there exists a family of segments

$$D \subset \left\{ \left[ k_i, k_i' \right] \right\}_{i < n}$$

#(D) = μ, and one of the following two cases holds;
(a) if I<sub>1</sub>, I<sub>2</sub> ∈ D are distinct, then I<sub>1</sub> ∩ I<sub>2</sub> = Ø;
(b) ∩D ≠ Ø.<sup>c</sup>

*Proof* Let us use the notation of Theorem 4.4. By Theorem 4.3 there exists a corresponding family of segments

$$S = \left\{ \left[ k_i, k_i' \right] \right\}_{i < n}.$$

Let *T* be the family of all subsets of *S* with the exact two elements. Divide *T* into two disjoint sub-families  $T_1$ ,  $T_2$ . Let  $T_1$  be the family of pairs of disjoint segments. Let  $T_2$  be the family of pairs of distinct joint segments. By Theorem 4.4 there exists a family  $D \subset S$  such that  $\#(D) = \mu$  and all pairs of distinct segments from *D* belong either to  $T_1$  or to  $T_2$ . If all pairs of distinct segments belong to  $T_2$ , then it is easy to see that  $\cap D \neq \emptyset$ .

**Remark 4.6** The following well-known result is given, for example, in [13]:

$$R(\mu) \leq \begin{pmatrix} 2\mu - 2\\ \mu - 1 \end{pmatrix}$$

Therefore Theorem 4.5 is true if the condition  $n \ge R(\mu)$  will be exchanged by  $n \ge {\binom{2\mu-2}{\mu-1}}$ .

# 5 Countable families of $\sigma$ -algebras

In the first nine subsections we present facts from [1] and [2].

**Definition 5.1** A point  $a \in \beta X$  is said to be *irregular* if for any countable sequence of sets  $M_1, \ldots, M_k, \ldots \subset \beta X$  such that  $a \notin \overline{M}_k$  for all k, we have  $a \notin \overline{\bigcup M_k}$ .

Since a point of  $\beta X$  is an ultrafilter on X and, *vice versa*, an ultrafilter on X is a point of  $\beta X$ , we will also call an irregular point an *irregular ultrafilter*. All points of X are irregular.

**Definition 5.2** An algebra A is said to be *simple* if there exists  $Z \subseteq \beta X$  such that:

- (1)  $\#(Z) \leq \aleph_0;$
- (2) if  $Z \neq \emptyset$ , all points of *Z* are irregular;
- (3) ker  $\mathcal{A} \subseteq \overline{Z}$ .

The proof of the following theorem is in [2], Chapter 17.

**Theorem 5.3** Let  $A_1, \ldots, A_k, \ldots$  and  $B_1, \ldots, B_k, \ldots$  be two countable families of  $\sigma$ -algebras. Let all algebras  $A_k$  be simple, and among the algebras  $B_k$  let there be no simple algebras. Then there exist pairwise disjoint sets  $W, U_1, \ldots, U_k, \ldots, V_1, \ldots, V_k, \ldots$  such that:

- (1) ker  $\mathcal{A}_k \subseteq \overline{W}$  for each k;
- (2) for each  $k \in \mathbb{N}^+$ , the following holds: if a set Q contains one of the two sets  $U_k$ ,  $V_k$  and intersection with the other set is empty, then  $Q \notin \mathcal{B}_k$ .

**Remark 5.4** The Gitik-Shelah theorem is essentially used in the proof of Theorem 5.3. Under the assumption that the continuum hypothesis ( $\aleph_1 = 2^{\aleph_0}$ ) is true, the proof of Theorem 5.3 essentially uses not the nontrivial Gitik-Shelah theorem but the rather simple Alaoglu-Erdös theorem.

**Definition 5.5** The set  $\{a \in \ker \mathcal{A} \mid a \text{ is an irregular point}\}$  is called the *spectrum* of an algebra  $\mathcal{A}$  and is denoted *sp* $\mathcal{A}$ .

It is clear that if  $\mathcal{A}$  is a simple algebra, then  $\#(sp\mathcal{A}) \leq \aleph_0$ .

The proof of the lemma below is in [2], Chapter 7.

**Lemma 5.6** If A is a simple  $\sigma$ -algebra, then ker  $A \subseteq \overline{spA}$ .

The proof of the lemma below is in [2], Chapter 7.

**Lemma 5.7** If A is a simple  $\sigma$ -algebra and  $a \in spA$ , then

 $\{b \in sp\mathcal{A} \mid a \text{ is } \mathcal{A}\text{-equivalent to } b\} \neq \emptyset.$ 

**Remark 5.8** If an  $\omega$ -saturated algebra  $\mathcal{A}$  is a  $\sigma$ -algebra, then  $\mathcal{A}$  is simple and ker  $\mathcal{A} = sp\mathcal{A}$ .

The proof of the following lemma is easily derived from Lemma 5.7 and arguments in Remark 1.13.

**Lemma 5.9** Let  $\mathcal{A}$  be a simple but not  $\omega$ -saturated  $\sigma$ -algebra  $\mathcal{A}$  and let  $v \in \mathbb{N}^+$ . We can construct an  $\omega$ -saturated  $\sigma$ -algebra  $\mathcal{A}'$  such that ker  $\mathcal{A}' \subset sp\mathcal{A}$ , #(ker  $\mathcal{A}') \geq v$ , and two ultrafilters are  $\mathcal{A}'$ -equivalent if and only if they are  $\mathcal{A}$ -equivalent.<sup>d</sup>

*Proof of Theorem* 2.4 Consider a sequence of integers  $n_0 = 0 < n_1 < n_2 < \cdots < n_m < \cdots$ . Construct the function  $\varphi : \mathbb{N}^+ \to \mathbb{N}^+$  as follows: if  $k \in [n_{m-1} + 1, n_m]$ , where  $m \in \mathbb{N}^+$ , then

$$\varphi(k) = 4 \cdot n_{m-1} + \left\lceil \frac{10}{3}(n_m - n_{m-1}) + \sqrt{\frac{2(n_m - n_{m-1})}{3}} \right\rceil$$

We can choose numbers  $n_1, n_2, ..., n_m, ...$  such that condition (1) of our theorem is true. By Theorem 5.3 and Lemma 5.9 we can suppose that all algebras  $\mathcal{A}_k$  are  $\omega$ -saturated  $\sigma$ algebras. Put  $\mathcal{A}'_k = \mathcal{A}_k$  if  $k \in [1, n_1]$ . By Theorem 2.1 there exists a set of pairwise distinct irregular ultrafilters  $G_1 = \{s_1, t_1, ..., s_{n_1}, t_{n_1}\}$ , and  $s_k, t_k$  are  $\mathcal{A}'_k$ -equivalent ultrafilters for each  $k \in [1, n_1]$ . Let  $k \in [n_1 + 1, n_2]$  and

$$E_k = \{a \in \ker \mathcal{A}_k \setminus G_1 \mid a \text{ has } A_k \text{-equivalent ultrafilter in } \ker \mathcal{A}_k \setminus G_1 \}.$$

We can construct (see Remark 1.13)  $\omega$ -saturated  $\sigma$ -algebra  $\mathcal{A}'_k$  and

(1) ker  $\mathcal{A}'_k = E_k$ ;

(2) two ultrafilters are  $\mathcal{A}'_k$ -equivalent if and only if they are  $\mathcal{A}_k$ -equivalent. In view of Remark 1.12,  $\mathcal{A}'_k \supseteq \mathcal{A}_k$ . It is clear that

$$\#(\ker \mathcal{A}'_k) \ge \left\lceil \frac{10}{3}(n_2 - n_1) + \sqrt{\frac{2(n_2 - n_1)}{3}} \right\rceil.$$

By Theorem 2.1 there exist pairwise distinct irregular ultrafilters  $s_{n_1+1}, t_{n_1+1}, \ldots, s_{n_2}, t_{n_2}$ , and  $s_k, t_k$  are  $\mathcal{A}'_k$ -equivalent ultrafilters for each  $k \in [n_1 + 1, n_2]$ . Put

$$G_2 = \{s_1, t_1, \ldots, s_{n_2}, t_{n_2}\}.$$

It is clear that  $\#(G_2) = 2n_2$ . Consider algebras  $\mathcal{A}_{n_2+1}, \ldots, \mathcal{A}_{n_3}$ . We can construct corresponding algebras  $\mathcal{A}'_{n_2+1}, \ldots, \mathcal{A}'_{n_3}$ , and

$$\ker \mathcal{A}'_k \cap G_2 = \emptyset,$$
  
# $(\ker \mathcal{A}'_k) \ge \left\lceil \frac{10}{3}(n_3 - n_2) + \sqrt{\frac{2(n_3 - n_2)}{3}} \right\rceil$ 

for each  $k \in [n_2 + 1, n_3]$  and so on. Further, we consider algebras  $A_{n_3+1}, \ldots, A_{n_4}$  and so on. So we can construct pairwise distinct irregular ultrafilters

 $s_1, t_1, \ldots, s_k, t_k, \ldots,$ 

such that  $s_k$ ,  $t_k$  are  $\mathcal{A}_k$ -equivalent ultrafilters for each  $k \in \mathbb{N}^+$ . We can construct a corresponding family of sets  $\{U_k^1, U_k^2\}_{k \in \mathbb{N}^+}$  (see Definition 1.3).

#### **Competing interests**

The author declares that they have no competing interests.

#### Endnotes

- <sup>a</sup> If #(ker  $\mathcal{A}$ )  $\geq \aleph_0$ , then, as it is shown in [2], #(ker  $\mathcal{A}$ )  $\geq 2^{2^{\aleph_0}}$ .
- <sup>b</sup> In footnote a we already noticed that in this case #(ker A)  $\geq 2^{2^{\aleph_0}}$ .
- <sup>C</sup> It is clear that if  $\cap D \neq \emptyset$ , then  $\#(\cap D) \ge 2$ .
- <sup>d</sup> It is clear that  $\mathcal{A}' \supset \mathcal{A}$  (see Remark 1.12).

Received: 20 November 2014 Accepted: 27 January 2015 Published online: 01 April 2015

#### References

- 1. Grinblat, LŠ: On sets not belonging to algebras of subsets. Mem. Am. Math. Soc. 100, 480 (1992)
- 2. Grinblat, LŠ: Algebras of Sets and Combinatorics. Translations of Mathematical Monographs, vol. 214. Am. Math. Soc., Providence (2002)
- 3. Grinblat, LŠ: Theorems on sets not belonging to algebras. Electron. Res. Announc. Am. Math. Soc. 10, 51-57 (2004)
- 4. Grinblat, LŠ: On sets not belonging to algebras. J. Symb. Log. 72, 483-500 (2007)
- 5. Grinblat, LŠ: Theorems with uniform conditions on sets not belonging to algebras. In: Topology Proceedings, vol. 33, pp. 361-380 (2009)
- 6. Grinblat, LŠ: Finite and countable families of algebras of sets. Math. Res. Lett. 17, 613-623 (2010)
- Grinblat, LŠ: Limitations on representing P(X) as a union of proper subalgebras. Proc. Am. Math. Soc. 143, 859-868 (2015)
- 8. Erdös, P: Some remarks on set theory. Proc. Am. Math. Soc. 1, 127-141 (1950)
- 9. Ulam, S: Zur Masstheorie in der allgemeinen Mengenlehre. Fundam. Math. 16, 140-150 (1930)
- 10. Gitik, M, Shelah, S: Forcing with ideals and simple forcing notions. Isr. J. Math. 68, 129-160 (1989)
- 11. Gleason, AM: Projective topological spaces. III. J. Math. 2, 482-489 (1958)
- 12. Ramsey, FP: On a problem of formal logic. Proc. Lond. Math. Soc.. 30, 264-286 (1930)
- 13. van Lint, JH, Wilson, RM: A Course in Combinatorics. Cambridge University Press, Cambridge (1992)

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com