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Abstract
A robust test based on the indicators of the data minus the sample median is
proposed to detect the change in the mean of α-mixing stochastic sequences. The
asymptotic distribution of the test is established under the null hypothesis that the
mean μ remains as a constant. The consistency of the proposed test is also obtained
under the alternative hypothesis that μ changes at some unknown time. Simulations
demonstrate that the test behaves well for heavy-tailed sequences.
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1 Introduction
The problem of a mean change at an unknown location in a sequence of observations
has received considerable attention in the literature. For example, Sen and Srivastava [],
Hawkins [], Worsley [] proposed tests for a change in the mean of normal series. Yao
[] proposed some estimators of the change point in a sequence of independent variables.
For serially correlated data, Bai [] considered the estimation of the change point in linear
processes. Horváth and Kokoszka [] gave an estimator of the change point in a long-range
dependent series.

Most of the existing results in the statistic and econometric literature have concentrated
on the case that the innovations are Gaussian. In fact, many economic and financial time
series can be very heavy-tailed with infinite variances; see e.g. Mittnik and Rachev [].
Therefore, the series with infinite-variance innovations aroused a great deal of interest
of researchers in statistics, such as Phillips [], Horváth and Kokoskza [], Han and Tian
[, ]. It is more efficient to construct robust procedures for heavy-tailed innovations,
such as the M procedures in Hušková [, ] and the references therein. De Jong et al.
[] proposed a robust KPSS test based on the ‘sign’ of the data minus the sample median,
which behaves rather well for heavy-tailed series. In this paper, we shall construct a robust
test for the mean change in a sequence.

The rest of this paper is organized as follows: Section  introduces the models and nec-
essary assumptions for the asymptotic properties. Section  gives the asymptotic distri-
bution and the consistency of the test proposed in the paper. In Section , we shall show
the statistical behaviors through simulations. All mathematical proofs are collected in the
Appendix.
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2 Model and assumptions
In the following, we concentrate ourselves on the model as follows:

Yt = μ(t) + Xt , μ(t) =

{
μ, t ≤ k,
μ, t > k,

()

where k is the change point.
In order to obtain the weak convergence and the convergence rate, X(t) satisfies the

following.

Assumption 
. The Xj are strictly stationary random variables, and μ̃ is the unique population

median of {Xt ,  ≤ t ≤ T}.
. The Xj are strong (α-) mixing, and for some finite r >  and C > , and for some

η > , α(m) ≤ Cm–r/(r–)–η .
. Xj – μ̃ has a continuous density f (x) in a neighborhood [–η,η] of  for some η > ,

and infx∈[–η,η] f (x) > .
. σ  ∈ (,∞), where σ  is defined as follows:

σ  = lim
T→∞ E

(
T–/

T∑
t=

sgn(Xt – μ̃)

)

.

To derive the CLT of sign-transformed data, we need a kernel estimator, so we make the
following assumption on the kernel function.

Assumption 
. k(·) satisfies

∫ ∞
–∞ |ψ(ξ )|dξ < ∞, where

ψ(ξ ) dξ = (π )–
∫ ∞

–∞
k(x) exp(–itξ ) dx.

. k(x) is continuous at all but a finite number of points, k(x) = k(–x), |k(x)| ≤ l(x)
where l(x) is nondecreasing and

∫ ∞
 |l(x)|dx ≤ ∞, and k() = .

. γT /T → , and γT → ∞ as T → ∞.

Remark  De Jong et al. [] test the stationarity of a sequence under Assumption . We
detect change in the mean of a sequence, so Assumption  holds under the null hypothesis
and the alternative one. Since there is no moment condition for Xt in Assumption , even
Cauchy series are allowed. The α-mixing sequences can include many time series, such
as autoregressive or heteroscedastic series under some conditions. Assumption  allows
some choices such as the Bartlett, quadratic spectral, and Parzen kernel functions.

3 Main results
Let mT = med{Y, . . . , YT }. Then we transform the data Y, . . . , YT into the indicator data
sgn(Yt – mT ), where sgn(x) =  if x > , sgn(x) = – if x < , sgn(x) =  if x = . Based on
these indicator data, De Jong et al. [] replace ε̂t = Yt – ȲT with sgn(Yt – mT ) in the usual
KPSS test and their simulations show that the new KPSS test exhibits some robustness for
the heavy-tailed series.
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The popularly used test to detect a mean change is based on the CUSUM type as follows:


T (τ ) =
[Tτ ][T( – τ )]

T

{


[Tτ ]

[Tτ ]∑
t=

Yt –


[T( – τ )]

T∑
t=[Tτ ]+

Yt

}
. ()

We rewrite 
T (τ ) under H as


T (τ ) =
[Tτ ][T( – τ )]

T

{


[Tτ ]

[Tτ ]∑
t=

(Yt – ȲT ) –


[T( – τ )]

T∑
t=[Tτ ]+

(Yt – ȲT )

}
, ()

According to the idea of De Jong et al. [], replace ε̂t = Yt – ȲT with sgn(Yt – mT ) in ();
then we get a robust version of CUSUM as follows:


T =
[Tτ ][T( – τ )]

T

{


[Tτ ]

[Tτ ]∑
t=

sgn(Yt – mT ) –


[T( – τ )]

T∑
t=[Tτ ]+

sgn(Yt – mT )

}
. ()

Then the test statistic proposed in this paper is

�T = T /σ – max
τ∈(,)

∣∣
T (τ )
∣∣. ()

Under Assumptions , , we can obtain two asymptotic results as follows.

Theorem  If Assumptions ,  hold, then under the null hypothesis H, we have

T /σ – max
τ∈(,)

|
T | �⇒ sup
τ∈(,)

∣∣W (τ ) – τW ()
∣∣, as T → ∞, ()

where ‘�⇒’ stands for the weak convergence.

Under the alternative hypothesis H, a change in the mean happens at some time, we
denote the time as [Tτ]. Let F(·) be the common distribution function of Xt and μ∗ be
the median of

F∗(·) = τF(· – μ) + ( – τ)F(· – μ). ()

Then we have the following.

Theorem  If Assumptions ,  hold, then under the alternative hypothesis H, we have

max
τ∈(,)

∣∣
T (τ )
∣∣ P→ τ( – τ)||, ()

where  = F(μ∗ – μ) – F(μ∗ – μ).

Remark  By Theorem , we reject H if �T > cp, where the critic value cp is the ( – p)
quantile of the Kolmogorov-Smirnov distribution. By Theorem , �T is consistent asymp-
totically as the sample size T P→ ∞.
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In order to apply the test in (), we employ the HAC estimator instead of the unknown
σ  as

σ̂ 
T = T–

T∑
i=

T∑
j=

k
(
(i – j)/γT

)
sgn(Yi – mT ) sgn(Yj – mT ), ()

then the following theorem proves two results of the estimator σ̂ 
T under H and HA, re-

spectively.

Theorem  (i) Assuming that the conditions of Theorem  hold, then we have, as T → ∞,

σ̂ 
T

P→ σ . ()

(ii) Assuming that the conditions of Theorem  hold, then we have, as T → ∞,

σ̂ 
T

P→ σ 
 , ()

where σ 
 is defined as follows:

σ 
 = lim

T→∞ E

(
T–/

T∑
t=

sgn
(
Yt – μ∗))

.

4 Simulation and empirical application
4.1 Simulation
In this section, we present Monte Carlo simulations to investigate the size and the power
of the robust CUSUM and the ordinary CUSUM tests. Since a lot of information has been
lost during the inference by using the indicator data instead of the original data, so we
are concerned whether the indicator CUSUM test is robust to the heavy-tailed sequences;
moreover, we may ask: how large is the loss in power in using indicators when the data
has a nearly normal distribution? The HAC estimator σ̂  in the robust CUSUM test is a
kernel estimator, so it is important to analyze whether the performance is affected by the
choice of the kernel function k(·) and the bandwidth γT .

We consider the model as follows:

Yt =

{
 + Xt , t ≤ Tτ,
μ + Xt , t > Tτ,

()

Xt is an autoregressive process Xt = .Xt– + et , where the {et} are independent noise
generated by the program from JP Nolan. We vary the tail thickness of {et} by the different
characteristic indices α = ., ., ., ., respectively. Accordingly the break times are
τ = ., ., respectively. During the simulations, we adopt . as the asymptotic critical
value of supτ∈(,) |W (τ ) – τW ()| at % for the various sample sizes T = , , ,.

First, we consider the size of the tests. Tables  and  report the results when σ  are
estimated by the Bartlett kernel and the quadratic spectral kernel with the bandwidth
γT = [(T/)/] and γT = [(T/)/], respectively, in , repetitions. From Tables 
and , the ordinary CUSUM test based on the Bartlett kernel has better sizes, however,
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Table 1 The empirical levels of the robust CUSUM test and the CUSUM test for dependent
innovations

CUSUM RCUSUM

T = 300 T = 500 T = 1,000 T = 300 T = 500 T = 1,000

The tests based on the Bartlett kernel function
α = 1.97 0.045 0.026 0.036 0.042 0.046 0.059
α = 1.83 0.028 0.028 0.033 0.037 0.032 0.043
α = 1.41 0.010 0.010 0.025 0.030 0.036 0.044
α = 1.14 0.005 0.010 0.008 0.045 0.049 0.048

The tests based on the quadratic spectral kernel function
α = 1.97 0.471 0.491 0.489 0.068 0.048 0.050
α = 1.83 0.428 0.462 0.478 0.062 0.077 0.063
α = 1.41 0.458 0.449 0.486 0.066 0.072 0.053
α = 1.14 0.474 0.476 0.507 0.083 0.073 0.055

The values in Table 1 are based on the bandwidth γT = [4(T/100)1/4].

Table 2 The empirical levels of the robust CUSUM test and the CUSUM test for dependent
innovations

CUSUM RCUSUM

T = 300 T = 500 T = 1,000 T = 300 T = 500 T = 1,000

The tests based on the Bartlett kernel function
α = 1.97 0.028 0.032 0.034 0.034 0.033 0.046
α = 1.83 0.019 0.032 0.023 0.034 0.037 0.037
α = 1.41 0.009 0.013 0.021 0.035 0.038 0.048
α = 1.14 0.004 0.008 0.01 0.038 0.036 0.047

The tests based on the quadratic spectral kernel function
α = 1.97 0.425 0.447 0.470 0.037 0.043 0.040
α = 1.83 0.414 0.444 0.456 0.026 0.043 0.048
α = 1.41 0.484 0.463 0.483 0.040 0.035 0.041
α = 1.14 0.459 0.490 0.454 0.028 0.048 0.042

The values in Table 2 are based on the bandwidth γT = [8(T/100)1/4].

the one based on the quadratic spectral kernel has a severe problem of overrejection, so
we can conclude that the choice of the kernel function has higher impact on the sizes of
the two CUSUM tests than the selection of the bandwidth. Comparing the two tests based
on the Bartlett kernel, the ordinary CUSUM test becomes underrejecting as the tail index
α changes from  to , and the sizes of the robust test are closer to the nominal size ..
Furthermore, the size is closer to . as the sample size T increases, which is consistent
with Theorem .

Now we shall show the power of the two tests through empirical powers. The empirical
powers are calculated based on the rejection numbers of the null hypothesis H in ,
repetitions when the alternative hypothesis H holds. The results are included in Tables ,
, , . On the basis of Tables , , , , we can draw some conclusions. (i) The two CUSUM
tests based on the Bartlett kernel and the quadratic spectral kernel become more powerful
as the sample size T becomes larger. (ii) As the tail of the innovations gets heavier, the
ordinary CUSUM test becomes less powerful, especially, the test hardly works, while the
CUSUM test based on indicators is rather robust to the heavy-tailed innovations. (iii) The
selection of the bandwidth has lower impact on the powers of the two CUSUM tests.

Finally, we consider the effects of the skewness in the innovations {et} on the power of
the proposed test through simulations. In order to obtain the results reported in Table ,
we take the e(t) in the model () as chi square distributions with a freedom degree n =



Qin and Liu Journal of Inequalities and Applications  (2015) 2015:48 Page 6 of 19

Table 3 The empirical powers of the robust CUSUM test and the CUSUM test for dependent
innovations

CUSUM RCUSUM

T = 300 T = 500 T = 1,000 T = 300 T = 500 T = 1,000

The change point τ0 = 0.3
α = 1.97 0.849 0.991 0.998 0.951 0.999 1.000
α = 1.83 0.692 0.919 0.977 0.964 1.000 1.000
α = 1.41 0.222 0.361 0.530 0.957 0.995 1.000
α = 1.14 0.047 0.065 0.076 0.964 0.998 1.000

The change point τ0 = 0.5
α = 1.97 0.988 0.997 0.997 0.991 1.000 1.000
α = 1.83 0.913 0.966 0.979 0.985 1.000 1.000
α = 1.41 0.360 0.531 0.651 0.994 1.000 1.000
α = 1.14 0.097 0.108 0.133 0.996 1.000 1.000

The change point τ0 = 0.7
α = 1.97 0.972 0.995 0.999 0.958 0.999 1.000
α = 1.83 0.875 0.944 0.978 0.962 0.997 1.000
α = 1.41 0.300 0.446 0.542 0.964 0.999 1.000
α = 1.14 0.063 0.080 0.104 0.972 1.000 1.000

The values in Table 3 are based on the Bartlett kernel and the bandwidth γT = [4(T/100)1/4].

Table 4 The empirical powers of the robust CUSUM test and the CUSUM test for dependent
innovations

CUSUM RCUSUM

T = 300 T = 500 T = 1,000 T = 300 T = 500 T = 1,000

The change point τ0 = 0.3
α = 1.97 0.348 0.848 0.995 0.921 1.000 1.000
α = 1.83 0.241 0.676 0.953 0.931 0.993 1.000
α = 1.41 0.111 0.242 0.409 0.944 0.997 0.997
α = 1.14 0.029 0.056 0.080 0.943 1.000 1.000

The change point τ0 = 0.5
α = 1.97 0.931 0.995 0.997 0.993 1.000 1.000
α = 1.83 0.796 0.954 0.985 0.989 1.000 1.000
α = 1.41 0.285 0.456 0.605 0.990 1.000 1.000
α = 1.14 0.057 0.088 0.106 0.989 1.000 1.000

The change point τ0 = 0.7
α = 1.97 0.937 0.997 0.997 0.949 1.000 1.000
α = 1.83 0.783 0.926 0.969 0.934 1.000 1.000
α = 1.41 0.238 0.373 0.553 0.938 0.997 1.000
α = 1.14 0.046 0.068 0.094 0.948 0.997 1.000

The values in Table 4 are based on the Bartlett kernel and the bandwidth γT = [8(T/100)1/4].

,  and , respectively. On the basis of the simulations, the skewness of the innovations
affects the powers the two CUSUM test significantly.

4.2 Empirical application
In this section, we take an empirical application on a series of daily stock price of
LBC (SHANDONG LUBEI CHEMICAL Co., LTD) in the Shanghai Stocks Exchange.
The stock prices in the group are observed from July st,  to December th,
 with samples of  observations (as shown in Figure ) and can be found in
http://stock.business.sohu.com. As in Figure , the logarithm sequence is seen to exhibit
a number of ‘outliers’, which are a manifestation of their heavy-tailed distributions, see
Wang et al. []; the data can be well fitted by stable sequences.

http://stock.business.sohu.com
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Table 5 The empirical powers of the robust CUSUM test and the CUSUM test for dependent
innovations

CUSUM RCUSUM

T = 300 T = 500 T = 1,000 T = 300 T = 500 T = 1,000

The change point τ0 = 0.3
α = 1.97 0.979 1.000 1.000 0.869 0.964 0.999
α = 1.83 0.957 0.995 0.996 0.847 0.957 0.994
α = 1.41 0.824 0.882 0.917 0.729 0.855 0.963
α = 1.14 0.644 0.672 0.652 0.574 0.753 0.895

The change point τ0 = 0.5
α = 1.97 0.998 0.999 1.000 0.939 0.983 1.000
α = 1.83 0.982 0.994 0.992 0.915 0.979 0.998
α = 1.41 0.802 0.826 0.889 0.805 0.929 0.996
α = 1.14 0.604 0.593 0.646 0.670 0.819 0.943

The change point τ0 = 0.7
α = 1.97 0.993 1.000 1.000 0.873 0.961 0.996
α = 1.83 0.736 0.773 0.845 0.820 0.947 0.999
α = 1.41 0.736 0.773 0.845 0.717 0.867 0.972
α = 1.14 0.570 0.556 0.594 0.577 0.731 0.878

The values in Table 5 are based on the quadratic spectral kernel and the bandwidth γT = [4(T/100)1/4].

Table 6 The empirical powers of the robust CUSUM test and the CUSUM test for dependent
innovations

CUSUM RCUSUM

T = 300 T = 500 T = 1,000 T = 300 T = 500 T = 1,000

The change point τ0 = 0.3
α = 1.97 0.467 0.881 1.000 0.808 0.941 0.999
α = 1.83 0.521 0.874 0.993 0.764 0.920 0.995
α = 1.41 0.658 0.770 0.893 0.582 0.788 0.961
α = 1.14 0.565 0.629 0.668 0.440 0.642 0.847

The change point τ0 = 0.5
α = 1.97 0.974 0.999 1.000 0.891 0.967 0.997
α = 1.83 0.958 0.987 0.994 0.866 0.969 0.999
α = 1.41 0.792 0.860 0.897 0.726 0.876 0.992
α = 1.14 0.594 0.640 0.631 0.568 0.720 0.921

The change point τ0 = 0.7
α = 1.97 0.992 1.000 1.000 0.782 0.924 0.997
α = 1.83 0.974 0.981 0.992 0.802 0.924 0.990
α = 1.41 0.749 0.800 0.881 0.604 0.756 0.942
α = 1.14 0.544 0.580 0.590 0.448 0.598 0.838

The values in Table 6 are based on the quadratic spectral kernel and the bandwidth γT = [8(T/100)1/4].

Table 7 The empirical powers of the two CUSUM test for the skewed dependent innovations

CUSUM RCUSUM

χ2(1) χ2(2) χ2(10) χ2(1) χ2(2) χ2(10)

τ0 = 0.3 0.9400 0.6690 0.3550 0.0 0.6760 0.2090
τ0 = 0.5 0.9940 0.8130 0.4270 0.0350 0.8280 0.2880
τ0 = 0.7 0.9900 0.7140 0.3480 0.0150 0.7530 0.2250

The values in Table 7 are based on the Bartlett kernel and the bandwidth γT = [4(T/100)1/4].
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Figure 1 Stock prices of LBC in Shanghai Stock Exchange.

Figure 2 The logarithm return rates of LBC in Shanghai Stock Exchange.

Fitting a mean and computing the test proposed in this paper � = . > ., which
indicates that a change in mean occurred, and 
T (k) attains its maximum at k =  (st,
March, ) (as shown in Figure ). Recall that LBC issued an announcement that its
net profits in  would decrease to % of that in , in the rd Session Board of
Directors’ th Meeting on March th,  (k = ). The influence of the bad news
was so strong that the stock price fell immediately in the following nine days, the mean of
the logarithm return rate has a significant change after k = .

5 Concluding remarks
In this paper, we construct a nonparametric test based on the indicators of the data minus
the sample median. When there exists no change in the mean of the data, the test has
the usual distribution of the sup of the absolute value of a Brownian bridge. As Bai []
pointed out, it is a difficult task in applications of autoregressive models. First, the order
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Figure 3 The robust CUSUM values of LBC in Shanghai Stock Exchange.

of an autoregressive model is not assumed to be known a priori and has to be estimated.
Second, the often-used way to determine the order via the Akaike information criterion
(AIC) and the Bayes information criterion (BIC) tends to overestimate its order if a change
exists. However, the proposed test does not rely on the precise autoregressive models and
the prior knowledge on the tail index α, so the proposed test is more applicable, although
there exists a little distortion in its size for dependent sequences.

Appendix: Proofs of main results
The proof of Theorem  is based on the following four lemmas.

Lemma  For Lr-bounded strong (α-) mixing random variables yTt ∈ R, for which the mix-
ing coefficients satisfy α(m) ≤ Cm–r/(r–)–η for some η > ,

E max
≤i≤T

( i∑
t=

(yTt – EyTt)

)

≤ C′
T∑

t=

‖yTt‖
r ()

for constants C and C′, where ‖X‖ = (E|X|r)/r .

This lemma is Lemma  in De Jong et al. []; it is crucial for the proof of the following
lemmas and theorems.

Lemma  Let

yj(φ) = sgn
(
Yj – μ – μ̃ – φT–/) – sgn(Yj – μ – μ̃). ()

If the null hypothesis H holds, then under Assumption , for all K , ε > ,

lim
δ→

lim sup
T→∞

P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

t=

∣∣yj(φ) – yj
(
φ′) – Eyj(φ) + Eyj

(
φ′)∣∣ > ε

)
= .

()
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Proof Since the proof is similar to Lemma  of De Jong et al. [], we omit it. �

Lemma  Let yj(φ) be as in (), and let

GT (τ ,φ) = T–/
[Tτ ]∑
j=

yj(φ). ()

If the null hypothesis H holds, then under Assumption , for any K > ,

sup
τ∈[,]

sup
φ∈[–K ,K ]

∣∣GT (τ ,φ) – EGT (τ ,φ)
∣∣ P→ . ()

Proof The proof is similar to Lemma  of De Jong et al. [], so we omit it. �

Lemma  If the null hypothesis H holds, then under Assumption ,

T /(mT – μ – μ̃) = –f ()–σWT () + oP(). ()

Proof The proof is similar to Lemma  of De Jong et al. [], so we omit it. �

Proof of Theorem  According to Lemma , we can find a large K so that –K ≤ T /(mT –
μ – μ̃) ≤ K . Then

T–/ST ,[Tτ ] = T–/
[Tτ ]∑
j=

sgn(Yj – mT ) = T–/
[Tτ ]∑
j=

sgn
(
(Yj – μ – μ̃) – (mT – μ – μ̃)

)

= GT
(
τ , T /(mT – μ – μ̃)

)
– EGT

(
τ , T /(mT – μ – μ̃)

)

+ T–/
[Tτ ]∑
j=

sgn(Yj – μ – μ̃) – T–/[Tτ ](mT – μ – μ̃)f (m̃T – μ – μ̃)

= I + I – I, ()

where m̃T is on the line between mT and μ+ μ̃ and m̃T –μ – μ̃ = oP() by Lemma . Then
I = oP() holds uniformly for all τ ∈ [, ] by Lemmas , . By definition, I = σWT (τ ).
I = τσWT () + oP() by Lemma . So we have

T–/ST ,[Tτ ] = σ
(
WT (τ ) – τWT ()

)
+ oP(). ()

Noting that |T–/ ∑T
j= sgn(Yj – mT )| ≤ T–/, we have

√
T

ST ,[T(–τ )] = T–/
T∑

j=[Tτ ]+

sgn(Yj – mT )

= T–/
T∑

j=

sgn(Yj – mT ) – T–/
[Tτ ]∑
j=

sgn(Yj – mT )

= O
(
T–/) –

{
GT

(
τ , T /(mT – μ – μ̃)

)
– EGT

(
τ , T /(mT – μ – μ̃)

)
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+ T–/
[Tτ ]∑
j=

sgn(Yj – μ – μ̃)

– T–/[Tτ ](mT – μ – μ̃)f (m̃T – μ – μ̃)

}

= O
(
T–/) – oP() –

{
σWT (τ ) – τσWT ()

}
. ()

Based on (), (), by the functional central limit theorem,

T /σ – max
τ∈(,)

|
T | �⇒ sup
τ∈(,)

∣∣W (τ ) – τW ()
∣∣, as T → ∞. ()

If we can show σ̂  P→ σ , the proof of Theorem  is completed. Under the null hypothesis
H, μ remains as a constant, so we can prove the consistency of σ̂  just as De Jong et al.
[]. �

The proof of Theorem  is based on Lemmas , , ,  as follows.

Lemma  If the alternative hypothesis H holds and k = [Tτ] is the change point, let yj(φ)
be as follows:

yj(φ) = sgn
(
Yj – μ∗ – φT–/) – sgn

(
Yj – μ∗), ()

then under Assumption , for all K , ε > ,

lim
δ→

lim sup
T→∞

P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=

∣∣yj(φ) – yj
(
φ′) – Eyj(φ) + Eyj

(
φ′)∣∣ > ε

)
= .

()

Proof For yj(φ) as in (), we have

Eyj(φ) =

{
F(μ∗ – μ) – F(μ∗ + φT–/ – μ), j ≤ k,
F(μ∗ – μ) – F(μ∗ + φT–/ – μ), t > k.

()

Then for T large enough such that KT–/ ≤ η, under the alternative hypothesis H,

sup
φ,φ′ :|φ–φ′|<δ

T–/
T∑

j=

∣∣Eyj(φ) – Eyj
(
φ′)∣∣

≤ sup
φ,φ′ :|φ–φ′|<δ

T–/
k∑
j=

∣∣Eyj(φ) – Eyj
(
φ′)∣∣ + sup

φ,φ′ :|φ–φ′|<δ

T–/
T∑

j=k+

∣∣Eyj(φ) – Eyj
(
φ′)∣∣

= I + I, ()

I =  sup
φ,φ′ :|φ–φ′|<δ

T–/
k∑
j=

∣∣Eyj(φ) – Eyj
(
φ′)∣∣
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=  sup
φ,φ′ :|φ–φ′|<δ

T–/
k∑
j=

∣∣F(
μ∗ + φT–/ – μ

)
– F

(
μ∗ + φ′T–/ – μ

)∣∣

≤  sup
φ,φ′ :|φ–φ′|<δ

T–/
k∑
j=

sup
x∈[–η,η]

f (x)T–/∣∣φ – φ′∣∣ ≤ δ sup
x∈[–η,η]

f (x), ()

I =  sup
φ,φ′ :|φ–φ′|<δ

T–/
T∑

j=k+

∣∣Eyj(φ) – Eyj
(
φ′)∣∣

=  sup
φ,φ′ :|φ–φ′|<δ

T–/
T∑

j=k+

∣∣F(
μ∗ + φT–/ – μ

)
– F

(
μ∗ + φ′T–/ – μ

)∣∣

≤  sup
φ,φ′ :|φ–φ′|<δ

T–/
T∑

j=k+

sup
x∈[–η,η]

f (x)T–/∣∣φ – φ′∣∣ ≤ δ sup
x∈[–η,η]

f (x), ()

where η stands for different constants at different equations. This establishes equiconti-
nuity of I and I. Similar to (), we have

sup
φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=

∣∣yj(φ) – yj
(
φ′)∣∣

≤ sup
φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
k∑
j=

∣∣yj(φ) – yj
(
φ′)∣∣

+ sup
φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=k+

∣∣yj(φ) – yj
(
φ′)∣∣

= I + I. ()

Since yj(φ) is non-increasing in φ,

I = sup
φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
k∑
j=

∣∣yj(φ) – yj
(
φ′)∣∣

= sup
–[K/δ]–≤i≤[K/δ]

sup
φ,φ′∈[–K ,K ]∩[iδ,(i+)δ]

T–/
k∑
j=

∣∣yj(φ) – yj
(
φ′)∣∣

≤ sup
–[K/δ]–≤i≤[K/δ]

T–/
k∑
j=

∣∣yj(iδ) – yj
(
(i + )δ

)∣∣

= oP() + sup
–[K/δ]–≤i≤[K/δ]

T–/
k∑
j=

E
∣∣yj(iδ) – yj

(
(i + )δ

)∣∣

≤ oP() + sup
φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
k∑
j=

E
∣∣yj(φ) – yj

(
φ′)∣∣, ()

and the last term has been proved earlier to be equicontinuous. Similarly yj(φ) is non-
increasing in φ, we have
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I = sup
φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=k+

∣∣yj(φ) – yj
(
φ′)∣∣

= sup
–[K/δ]–≤i≤[K/δ]

sup
φ,φ′∈[–K ,K ]∩[iδ,(i+)δ]

T–/
T∑

j=k+

∣∣yj(φ) – yj
(
φ′)∣∣

≤ sup
–[K/δ]–≤i≤[K/δ]

T–/
T∑

j=k+

∣∣yj(iδ) – yj
(
(i + )δ

)∣∣

= oP() + sup
–[K/δ]–≤i≤[K/δ]

T–/
k∑
j=

E
∣∣yj(iδ) – yj

(
(i + )δ

)∣∣

≤ oP() + sup
φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=k+

E
∣∣yj(φ) – yj

(
φ′)∣∣, ()

and the last term has been proved earlier to be equicontinuous too. By the triangle in-
equality, for all ε > ,

P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=

∣∣yj(φ) – yj
(
φ′) – Eyj(φ) + Eyj

(
φ′)∣∣ > ε

)

≤ P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
k∑
j=

∣∣yj(φ) – yj
(
φ′) – Eyj(φ) + Eyj

(
φ′)∣∣ > ε/

)

+ P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=k+

∣∣yj(φ) – yj
(
φ′) – Eyj(φ) + Eyj

(
φ′)∣∣ > ε/

)

= I + I, ()

I = P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
k∑
j=

∣∣yj(φ) – yj
(
φ′) – Eyj(φ) + Eyj

(
φ′)∣∣ > ε/

)

≤ P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
k∑
j=

∣∣yj(φ) – yj
(
φ′)∣∣ > ε/

)

+ P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
k∑
j=

∣∣Eyj(φ) – Eyj
(
φ′)∣∣ > ε/

)

≤ oP() + P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
k∑
j=

∣∣Eyj(φ) – Eyj
(
φ′)∣∣ > ε/

)
, ()

the last term converges to  as δ →  by the equicontinuity of (). Similarly, we can show

I = P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=k+

∣∣yj(φ) – yj
(
φ′) – Eyj(φ) + Eyj

(
φ′)∣∣ > ε/

)

≤ P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=k+

∣∣yj(φ) – yj
(
φ′)∣∣ > ε/

)
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+ I

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=k+

∣∣Eyj(φ) – Eyj
(
φ′)∣∣ > ε/

)

≤ oP() + P

(
sup

φ,φ′∈[–K ,K ]:|φ–φ′|<δ

T–/
T∑

j=k+

∣∣Eyj(φ) – Eyj
(
φ′)∣∣ > ε/

)
, ()

the last term converges to  as δ →  by the equicontinuity of () too. Now, we have
completed the proof of Lemma . �

Lemma  If the alternative hypothesis H holds, let yj(φ) be as in (), and

GT (τ ,φ) = T–/
[Tτ ]∑
j=

yj(φ), ()

then under Assumption , for any K > ,

sup
τ∈[,]

sup
φ∈[–K ,K ]

∣∣GT (τ ,φ) – EGT (τ ,φ)
∣∣ P→ . ()

Proof Just as De Jong et al. [], we can obtain from Kim and Pollard [, Theorem .]

sup
τ∈[,]

sup
φ∈[–K ,K ]

∣∣GT (τ ,φ) – EGT (τ ,φ)
∣∣ P→  ()

through the arguments for the finite-dimensional convergence for each φ ∈ [–K , K] and
the stochastic equicontinuity of supτ∈[,] |GT (τ ,φ) – EGT (τ ,φ)|. For every φ ∈ [–K , K], by
Lemma , for T large enough such that KT–/ ≤ η, we have

E sup
τ∈[,]

∣∣GT (τ ,φ) – EGT (τ ,φ)
∣∣

≤ CT–
T∑

j=

∥∥sgn
(
Yj – μ∗ – φT–/) – sgn

(
Yj – μ∗)∥∥

r

= CT–
k∑
j=

∥∥sgn
(
Xj + μ – μ∗ – φT–/) – sgn

(
Xj + μ – μ∗)∥∥

r

+ CT–
T∑

j=k+

∥∥sgn
(
Xj + μ – μ∗ – φT–/) – sgn

(
Xj + μ – μ∗)∥∥

r

≤ C′τ
∣∣F(

μ∗ – μ + KT–/) – F
(
μ∗ – μ – KT–/)∣∣/r

+ C′( – τ)
∣∣F(

μ∗ – μ + KT–/) – F
(
μ∗ – μ – KT–/)∣∣/r

≤ C′′τ

(
sup

x∈[–η,η]
f (x)KT–/

)/r

+ C′′( – τ)
(

sup
x∈[–η,η]

f (x)KT–/
)/r

, ()
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where constants C, C′, C′′ > . Now we have shown the finite-dimensional convergence for
each φ ∈ [–K , K]. By the triangle inequality,

∣∣∣ sup
τ∈[,]

∣∣GT (τ ,φ) – EGT (τ ,φ)
∣∣ – sup

τ∈[,]

∣∣GT
(
τ ,φ′) – EGT

(
τ ,φ′)∣∣∣∣∣

≤ sup
τ∈[,]

∣∣GT (τ ,φ) – EGT (τ ,φ) – GT
(
τ ,φ′) + EGT

(
τ ,φ′)∣∣

≤ T–/
T∑

j=

∣∣yj(φ) – yj
(
φ′) – Eyj(φ) + Eyj

(
φ′)∣∣. ()

Now stochastic equicontinuity follows from Lemma . �

Lemma  If the alternative hypothesis H holds, then under Assumption ,

T /(mT – μ∗) = OP(), ()

where μ∗ is defined as the median of ().

Proof For T large enough such that T ≥ Kη–,

sup
φ>K

T–/
T∑

j=

sgn
(
Yj – μ∗ – φT–/)

≤ T–/
T∑

j=

sgn
(
Yj – μ∗ – KT–/)

= T–/
k∑
j=

sgn
(
Xj + μ – μ∗ – KT–/)

+ T–/
T∑

j=k+

sgn
(
Xj + μ – μ∗ – KT–/)

≤ oP() + T–/
k∑
j=

(
 – F

(
KT–/ + μ∗ – μ

))

+ oP() + T–/
T∑

j=k+

(
 – F

(
KT–/ + μ∗ – μ

))

= oP() + T /( – F∗(μ∗ + KT–/))
= oP() – K inf

–η<(x–μ∗)<η
f ∗(x), ()

which implies that lim supT→∞ P(T /(mT – μ∗) > K) can be made arbitrarily small by
choosing K large enough under the alternative hypothesis H. For P(T /(mT – μ∗) < –K),
a similar result can be derived, which proves that mT – μ∗ = OP(T–/) under the alterna-
tive hypothesis H. �

Proof of Theorem  We just consider the case k = [Tτ ] ≥ k = [Tτ], the case k ≤ k can
be analyzed similarly. According to Lemma , we can find K large enough so that –K ≤
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T–/(mT – μ∗) ≤ K will happen with arbitrarily large probability. Then

T–ST ,[Tτ ] = T–
[Tτ ]∑
j=

sgn(Yj – mT )

= T–
[Tτ]∑

j=

sgn
((

Xj + μ – μ∗) –
(
mT – μ∗))

+ T–
[Tτ ]∑

j=[Tτ]+

sgn
((

Xj + μ – μ∗) –
(
mT – μ∗))

= T–/(GT
(
τ , T /(mT – μ∗)) – EGT

(
τ , T /(mT – μ∗)))

+ T–
[Tτ ]∑
j=

sgn
(
Yj – μ∗) + T–/EGT

(
τ , T /(mT – μ∗))

= I + I + I. ()

Then I = oP() by Lemma , I = oP() by (), with Proposition . of Fan and Yao [],
we have

T–ST ,[Tτ ]
P→ τF

(
μ∗ – μ

)
+ (τ – τ)F

(
μ∗ – μ

)
.

Similarly, we can obtain

T–S
T ,[Tτ ] = T–

T∑
j=[Tτ ]+

sgn(Yj – mT )

P→ ( – τ )F
(
μ∗ – μ

)
. ()

By the definition of 
T (τ ),


T (τ ) P→ ( – τ )τ
∣∣F(

μ∗ – μ
)

– F
(
μ∗ – μ

)∣∣ ()

as T → ∞, and τ ≥ τ, so

sup
τ∈(,)

∣∣
T (τ )
∣∣ P→ τ( – τ)

∣∣F(
μ∗ – μ

)
– F

(
μ∗ – μ

)∣∣. ()
�

Proof of Theorem  Under the hypothesis H, there is no shift in the mean, so the proof
of (i) is nearly similar to the proof of the consistency of σ̂T , so we just gave the details of
the proof of (ii).

Noting that for yj defined in (),

sgn(Yj – mT ) =
(
yj

(
T /(mT – μ∗)) – Eyj

(
T /(mT – μ∗)))

+ Eyj
(
T /(mT – μ∗)) + sgn

(
Yj – μ∗)

= aTj + bTj + cj, ()
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so

σ̂  = T–
T∑

i=

T∑
j=

k
(
(i – j)/γT

)
(aTi + bTi + ci)(aTj + bTj + cj). ()

Under the assumption that γT → ∞, γT /T → , γ 
T /T →  as T → ∞, for yj(φ) defined

in (), by Lemma , we have bTi = OP(T–/), then

T–
T∑

i=

T∑
j=

k
(
(i – j)/γT

)
bTiaTj ≤ T–/

T∑
j=

|aTj|
T∑

t=–T

k(t/γT ) × OP() = OP(γT /T),

T–
T∑

i=

T∑
j=

k
(
(i – j)/γT

)
bTibTj ≤ CT–

T∑
i=

T∑
j=

k
(
(i – j)/γT

)
= OP

(
T–γT

)
,

and that

T–
T∑

i=

T∑
j=

k
(
(i – j)/γT

)
bTicj ≤ T–/

T∑
j=

cj

T∑
i=

k
(
(i – j)/γT

) × OP()

and

E

(
T–/

T∑
j=

cj

T∑
s=

k
(
(j – s)/γT

))

≤ CT–
T∑

j=

∥∥∥∥∥ct

T∑
s=

k
(
(j – s)/γT

)∥∥∥∥∥


r

≤ C′T–
T∑

j=

( T∑
s=

k
(
(j – s)/γT

))

≤ C′′T–
T∑

j=

( T∑
t=–T

k(t/γT )

)

≤ C′′T–γ 
T .

Therefore under Assumption  and the alternative hypothesis H, σ̂  is asymptotically
equivalent to

T–
T∑

t=

T∑
s=

k
(
(t – s)/γT

)
(aTt + cs)(aTs + cs).

Furthermore,

T–
T∑

t=

T∑
s=

k
(
(t – s)/γT

)
aTtcs

=
∫ ∞

–∞

(
T–

T∑
t=

T∑
s=

aTtcs exp
(
iξ (t – s)

))
ψ(ξ ) dξ

≤ T–/
T∑

t=

|aTt|
∫ ∞

–∞

(
T–/

T∑
s=

cs exp(–isξ /γT )

)
ψ(ξ ) dξ ,
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and T–/ ∑T
t= |aTt| = oP() by Lemma  under Assumption , and the second term is OP()

because

E

∣∣∣∣∣
∫ ∞

–∞

(
T–/

T∑
s=

cs exp(–isξ /γT )

)
ψ(ξ ) dξ

∣∣∣∣∣
≤

∫ ∞

–∞

∣∣ψ(ξ )
∣∣dξ sup

ξ∈R

∥∥∥∥∥T–/
T∑

s=

cs exp(–isξ /γT )

∥∥∥∥∥


< ∞.

Finally,

T–
T∑

t=

T∑
s=

k
(
(t – s)/γT

)
aTtaTs ≤

∫ ∞

–∞

∣∣ψ(ξ )
∣∣dξ

(
T–/

T∑
t=

|aTt|
)

by the last term is oP() by Lemma  and Assumptions , , so we have shown that σ̂ 

asymptotically equals

T–
T∑

i=

T∑
j=

k
(
(i – j)/γT

)
cicj. ()

Under Assumptions ,  and the alternative hypothesis H, {sgn(Yj – μ∗)} satisfies the as-
sumptions of Theorem . in De Jong and Davidson [], so

T–
T∑

i=

T∑
j=

k
(
(i – j)/γT

)
cicj

P→ σ 
 , ()

so the proof of Theorem  has been completed. �
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