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Abstract

Background: Protein-DNA interactions are important for many cellular processes, however structural knowledge for
a large fraction of known and putative complexes is still lacking. Computational docking methods aim at the
prediction of complex architecture given detailed structures of its constituents. They are becoming an increasingly
important tool in the field of macromolecular assemblies, complementing particularly demanding protein-nucleic
acids X ray crystallography and providing means for the refinement and integration of low resolution data coming
from rapidly advancing methods such as cryoelectron microscopy.

Results: We present a new coarse-grained force field suitable for protein-DNA docking. The force field is an extension
of previously developed parameter sets for protein-RNA and protein-protein interactions. The docking is based on
potential energy minimization in translational and orientational degrees of freedom of the binding partners. It allows
for fast and efficient systematic search for native-like complex geometry without any prior knowledge regarding
binding site location.

Conclusions: We find that the force field gives very good results for bound docking. The quality of predictions in the
case of unbound docking varies, depending on the level of structural deviation from bound geometries. We analyze
the role of specific protein-DNA interactions on force field performance, both with respect to complex structure
prediction, and the reproduction of experimental binding affinities. We find that such direct, specific interactions only
partially contribute to protein-DNA recognition, indicating an important role of shape complementarity and
sequence-dependent DNA internal energy, in line with the concept of indirect protein-DNA readout mechanism.

Background
Protein-DNA interactions regulate many cellular pro-
cesses involving gene expression, DNA replication and
repair. The recognition process can either be specific
or non-specific depending on functional requirements
[1-6]. Although several structural studies have been per-
formed to understand the specificity of the recognition
process, the mechanism is still elusive and a simple code
for DNA recognition by proteins does not seem to exist
[7-10]. Despite the active interest in the field of experi-
mental determination of the atomic structure of protein-
DNA complexes in the last few decades, protein-DNA
complexes represent only 3% of all the macromolecular
structures submitted in the Protein Data Bank (PDB) [11].
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For a large fraction of known and putative interac-
tions structural knowledge is still lacking. In addition,
gene regulatory processes often involve weak and tran-
sient protein-DNA interactions for which experimental
structure determination using X-ray crystallography can
be difficult or impossible. It is desirable to be eventu-
ally able to answer the question if a protein may interact
with DNA and how, without performing the experimental
structure determination.
Computational docking methods can provide structural

models of complexes in cases where it is difficult or impos-
sible to obtain an experimental complex structure. It is a
predictive method based on the structures of the individ-
ual partners. Several methods for protein-protein docking
have been developed and used extensively for the predic-
tion of protein-protein complexes [12,13]. Their perfor-
mance is frequently assessed in the Critical Assessment of
PRedicted Interactions (CAPRI) [14] challenge. However,
much fewer methods for systematic docking to predict

© 2012 Setny et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192856838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Setny et al. BMC Bioinformatics 2012, 13:228 Page 2 of 12
http://www.biomedcentral.com/1471-2105/13/228

the structure of protein-DNA complexes have been pub-
lished so far. This includes Fast Fourier correlation tech-
niques that detect mainly shape complementarity and are
widely used in the protein-protein docking field [15]. The
geometric hashing method to detect locally matching sur-
faces has also been recently expanded for the prediction
of protein-DNA complexes [16]. In addition, methods
that include conformational changes at some stage of a
multi-start docking search (program HADDOCK) have
been applied to tackle the prediction of protein-DNA
complexes [17,18]. The latter method requires as input
additional data on the putative interaction regions of the
partners [17], which is included as restraints during the
docking search. The same authors have also developed
benchmark sets for protein-DNA docking including part-
ner structures in bound or unbound conformations [18].
One major challenge to any docking algorithm is to

handle the size of the macromolecules, as the computa-
tional time for evaluating all relevant binding geometries
increases rapidly with the number of involved atoms. The
computational demand can be reduced by the use of a
simplified representation of the macromolecules. In such
approach, biomolecules are represented by pseudo atoms
that represent geometric centers of complete chemical
groups instead of single atoms. Such approach has already
been successfully used for the analysis and prediction of
biomolecule complexes [19-21].
One possibility to obtain the necessary interaction

parameters is to relate them to the propensities of the
considered pseudo atoms to stick together extracted from
experimentally known structures. Gathering statistics for
all possible pairs of the introduced atom types and using
Boltzmann inversion to convert the probability of their
finding together to (pseudo) energy functions, one can
construct so called knowledge-based force field. In princi-
ple, such force field can not provide a valid representation
of the free energy [22]: the structures gathered in Pro-
tein Databank (PDB) do not constitute an ensemble in the
sense of statistical mechanics, the considered probabili-
ties, and hence (pseudo) energies depend on an arbitrary
definition of a reference state, and the thermodynamics
of complex formation can not be dissected into pairwise
additive terms. On the other hand, however, knowledge-
based potentials are useful due to their simplicity. They
implicitly incorporate many otherwise difficult to quan-
tify effects such as solvent mediated interactions, shifts in
protonation states, or the contributions of local confor-
mational entropy (actually including any explicit, physical
terms to knowledge based potential is not straightforward,
as a) to some, unknown, extent they will double implicitly
present contributions, b) it is no clear what energy scale
to use). In contrast, physically based atomistic approaches
either require enormous computational efforts to obtain
the necessary sampling or quickly loose their fidelity when

merged with approximate methods. As an effect, in the
context of macromolecular complexes they do not pro-
vide better overall accuracy than current knowledge based
approaches [23].
In the present study we have developed a distance-

dependent, knowledge-based coarse grained force field
for evaluating protein-DNA interactions during dock-
ing. The scoring function is compatible with the coarse-
grainedmodels for proteins and RNA, implemented in the
ATTRACT docking program [19,21], and is parametrized
based on 119 non-redundant structures of protein-DNA
complexes derived from the PDB. The force field was
extensively tested in systematic docking searches on
bound and unbound protein and DNA partner struc-
tures. The applicability for employing the approach to
evaluate the sequence specificity and the effect of protein
mutations on protein-DNA binding was also investigated.

Methods
Force field parametrization
The force field is an extension of previously parametrized
knowledge based potential for protein-RNA docking [21].
The interaction model is based on distance-dependent
Lennard-Jones type potential, with an additional form
allowing for repulsive interactions:

Uattr
ij (r) = εij
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σ 8
ij
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ij
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Pairwise specific parameters σij and εij govern bead-
bead interaction range and strength respectively. The
above potentials are assumed to account for all effective
protein – nucleic acid interactions, hence no additional
electrostatic terms are introduced.
The coarse-graining scheme (Figure 1) and interaction

parameters for all DNA components shared with RNA
remained intact. New bead types and parameters were
introduced for thymine base (3 beads) and a part of ribose
ring, containing C2’ carbon atom (GS2 bead).
In line with protein-RNA force field development

scheme, the new parameters were obtained using a two
stage procedure. First, starting from the existing values of
their RNA counterparts (uracil beads in case of thymine,
and ribose GS2 bead for deoxyribose GS2), σ parameters
were optimized to provide possibly low root mean square
deviation (RMSD) of protein Cα atoms after rigid body
energy minimization of native complexes. The optimiza-
tion was performed using Monte Carlo-like approach in
which trial parameter changes were accepted or rejected
based on changes in RMSD score. Such score increas-
ingly favored minimized solutions with low RMSD, but
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Figure 1 Coarse-grained representation for DNA nucleotides. Beads (dashed circles) are either placed on particular atoms or at geometric
centers of a few atoms (denoted as dots).

deemed unimportant RMSD variations, if RMSD was
below 1 Å. The optimization procedure was repeated until
no further change was observed among the optimized σ

values.
The second optimization stage involved adjustments of

ε parameters, and was performed in a similar manner.
Here, the goal was to enhance scoring of native-like com-
plexes with respect to generated decoys (200 for each
training set structure). The acceptance of new ε values
was driving towards the maximum number of properly
ranked (i.e. with rank 1) native-like complexes, and maxi-
mum score favoring possibly high ranks of the remaining,
non-optimal cases. After every 10 cycles of trial changes
covering each ε value, a systematic docking search was
performed for the test set structures. ε optimization was
stopped after no further improvement in docking results
was observed.

In order to disentangle the role of specific bead-bead
interactions from the effect of shape complementarity in
docking experiments, a non-specific force field variant
was also prepared. The values of all ε parameters, gov-
erning the interaction strength between two given pseu-
doatoms, were equalized to an average ε value from the
full protein-DNA force field. At the same time, σ parame-
ters, governing the interaction range, were left unchanged.

Data sets
The PDB was scanned for entries representing protein-
DNA complexes. About 588 entries reporting X-ray struc-
tures at resolution 3.0 Å or better and including both a
polypeptide chain of 50 or more amino acid residues and
a polyribonucleotide of 5 or more nucleotides were found.
In order to remove redundancy, when the protein com-
ponents in two entries had more than 30% identity, we



Setny et al. BMC Bioinformatics 2012, 13:228 Page 4 of 12
http://www.biomedcentral.com/1471-2105/13/228

kept the one having better resolution and more structural
completeness for further analysis. We have also visually
checked each structure with molecular visualization soft-
ware, and when there were two identical molecules in one
asymmetric unit we kept only the one.
The final list of 117 complexes is reported in Additional

file 1: (Table S1), and is used for the development of the
force filed. The set was randomly divided into training (88
complexes) and test (29 complexes) sets.

Docking protocols
All docking simulations were carried out with the
ATTRACT program [19]. Both binding partners: recep-
tor (DNA) and ligand (protein) were considered in coarse
grained representation, and were treated as rigid bodies.
Docking runs were based on the minimization of ligand
potential energy in translational and rotational degrees
of freedom, in the field of a fixed receptor. No addi-
tional information regarding distance constraints nor the
location of binding region was used.
Systematic docking search was performed as series of

energy minimization runs, starting from positions evenly
distributed around the receptor at distances precluding
receptor-ligand overlaps. For each such position, a set of
multiple initial ligand orientations was considered. For
the results presented herein, a spacing of ∼12 Å between
starting points, and 208 orientations per starting point
were used, providing a reasonable compromise between
sampling accuracy and computational time. Each energy
minimization was divided into 5 stages, with distance
cutoff for pairwise interactions decreased in a stepwise
manner from 50 to 8 Å.
Converged solutions were clustered according to their

pairwise RMSD, and scored according to their poten-
tial energy. The evaluation of docking results quality was
based on interface RMSD (iRMSD) between the assem-
bled and native complex, and the fraction of reproduced
native contacts (fNC). The native interface was defined as
consisting of protein and DNA beads found within 8 Å
to each other in the crystal structure. A docked geom-
etry was considered as a “hit”, with iRMSD ≤ 2 Å and
fNC ≥ 0.3, or iRMSD ≥ 1 Å with fNC ≥ 0.5. Such criteria
are equivalent to “hit” being “high” or “medium” quality
solution according to the CAPRI challenge [24] guidelines.
Separately, the statistics for hits of only ”high” quality (i.e.
with iRMSD≤ 1.0Å and fNC ≥ 0.5) was determined.

Experimental data
Binding free energies
Experimentally derived protein-DNA affinities, used for
comparison with calculated binding energies, were taken
from ProNIT database [25]. In order to gather thermo-
dynamic data corresponding to comparable experimental
conditions, database records were filtered to contain only

measurements carried out in temperature ranging from
20 to 25◦C, pH from 6.0 to 8.5, and ionic concentra-
tion below 200 mM. For each such database record, that
matched an available crystallographic structure, an iden-
tity level between the provided DNA sequence and the
sequence actually represented in PDB file was calculated.
A required identity level for overlapping sequence parts
was assumed to be at least 0.8 for each DNA strand.
Finally, as the total length of DNA double strand may crit-
ically affect binding affinity, even if only part of it makes
direct contacts with protein, a Tanimoto similarity coef-
ficient, tc = Nid/(N1 + N2 − Nid) (where Nid is a total
number of identical nucleotides, N1 and N2 are lengths
of compared sequences), was calculated between exper-
imental and crystallographic sequences, and cases with
similarity lower than 0.5 were excluded.
Such procedure resulted in 15 crystallographic protein-

DNA complexes with matching experimental binding free
energies [26-43] (Table 1). If more than one measurement
was available for a given structure, an average �G was
calculated.
A set including crystallographic structures of protein-

DNA complexes with corresponding binding affinities
provided by Zhang et al. [44] was considered as an alter-
native source of data. After removing structures that were
determined by NMR, included modified bases or uracil,
or contained only a single DNA chain, still the adopted
selection criteria (especially those referring to sequence
similarity) were not met in many cases. Nonetheless, the
results for this set are provided to enable comparison with
other studies.

Table 1 Crystallographic protein-DNA complexes
(designated by PDB id) withmatching experimental
binding free energies extracted from ProNIT database

PDB Chains �G/kcal mol−1

1AAY A/BC −11.5 [26]

1AZ0 AB/CD −17.4 [27]

1B72 AB/DE −9.0 [28]

1BHM AB/CD −11.7 [29]

1CEZ A/TN −10.8 [30]

1CMA AB/CD −5.4 [31]

1D02 AB/CD −8.1 [32]

1ECR A/BC −15.6 [33]

1IHF AB/CD −10.3 [34,35]

1PUE E/AB −9.7 [36]

1QRV A/CD −7.4 [37,38]

1YSA CD/AB −9.5 [39]

1PUF A/DE −9.2 [28]

1TRO AC/IJ −12.6 [40-42]

1UBD C/AB −8.5 [43]
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Free energy differences
Thermodynamic data describing differences in binding
affinities for sets of DNA mutants targeting their specific
protein partners was taken from the work of Morozov
et al. [45]. Two of the structures (6CRO and 1CKQ) were
removed from the data set because of missing residues,
and other two (1PUE and 1BHM) were not considered
in calculations because binding specificity in their case is
achieved predominantly owing to indirect readout mech-
anism [45].
All complexes considered for comparison with experi-

mental data were prepared in the same way as structures
used for training and testing. DNA mutants were con-
structed by isosteric replacement of the relevant base
pairs, with no further refinement of DNA backbone
geometry.

Results and discussion
Parametrization
Parametrization process started with the adjustments of
σ parameters. After three rounds of optimization, during
which trial increments and decrements were examined for
each considered parameter, no more improvement in the
adopted RMSD score was observed.
During the second parametrization stage ε parameters

were adjusted. After 10 optimization rounds, each includ-
ing 10 trial changes for each considered parameter, new
values were still being accepted. In order to avoid over-
fitting, systematic docking searches were performed for
both training and test sets after each optimization round.
Force field scoring performance was evaluated for each
set by considering the percentage of hits found within n
lowest energy solutions and calculating an area under the
resulting curve (AUC) for n ∈ {1..100}. The AUC of 1.0
would be equivalent to all native-like solutions having the
best rank (the lowest energy) among their corresponding
decoys, and AUC of 0.0 would mean no hits at all within
100 lowest energy solutions.
As expected based on the continuous acceptance of trial

ε parameter changes, AUC for the training set was still
increasing after 10 optimization rounds (Figure 2, inset,
red line). At the same time, however, AUC for the test set
(blue line) reached a plateau and started to drop, indicat-
ing a likely overfitting problem. Thus, the parameter set
obtained after round 5 was selected as optimal and used
in the following.

The efficacy of newly obtained parameter set was
evaluated based on its ability to provide stable energy
minima consistent with experimental binding modes, and
on its performance in systematic docking search. During
potential energy minimization of crystallographic com-
plexes, all structures remained stable in the sense that
the converged energy minimum met the adopted crite-
ria for a ”hit”. Furthermore, most (90%) of the optimized
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Figure 2 Fractions of “hits” among 100 best ranking docked
geometries for the original protein-RNA parameter set (P:R),
optimized protein-DNA parameter set (P:D), and non-specific
protein-DNA parameter set (ns). Dotted lines show the respective
fractions for all obtained geometries for P:D parameters. Inset:
changes in AUC (see text for description) for the training set (red) and
the test set (blue) during ε parameters optimization.

geometries in both training and test sets corresponded to
high-quality solutions (Table 2).
Systematic docking search resulted in 55% of best

ranked hits, and 75% of hits found within 10 best scor-
ing solutions (Table 2). Again, no significant difference
was found between training and test sets (Figure 2). When
compared to the performance of original protein-RNA
force field on the same structures, it is apparent that the
parameter optimization process mainly improved scoring
efficacy (increased the number of preferably ranked hits),
while not affected the ability to find native-like geometries
(did not change the number of generally found hits).

Table 2 Docking results – percent of hits and high quality
solutions (in parentheses) – for protein-RNA (p-R),
optimized protein-DNA (p-D) and non-specific
protein-DNA (n.s.) parameter sets

Native Top Top All

Set minimized scored ten docked

training set

p-R 100(90) 47(42) 61(53) 84(70)

p-D 100(92) 55(51) 75(64) 86(70)

n.s. 98(86) 34(31) 44(39) 73(57)

test set

p-R 100(87) 41(41) 60(55) 90(62)

p-D 100(97) 55(55) 76(76) 86(86)

n.s. 80(47) 41(38) 52(41) 86(69)
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This can be understood, as probably the most impor-
tant difference between RNA and DNA, contributing
to specific protein-DNA recognition, is the additional
methyl group of thymine. Its main effect relies on pro-
viding a unique hydrophobic interaction patch within
the major groove of DNA, rather than on affecting
local shape complementarity. Indeed, the comparison
of optimized parameters for thymine with their uracil
counterparts indicates significant increase (more than
1.5 standard deviation of all differences between DNA
and RNA parameters) in attraction towards nonpolar
amino acids such as Val, Leu, Ala, and Trp. Second
important difference between RNA and DNA – the
absence of C2’ ribose hydroxyl group – also led to
the expected changes in interaction parameters for GS2
bead: an increase in attraction towards hydrophobic Leu,
Cys, and Trp, and a stronger repulsion towards hydro-
gen bond acceptors such as His or Asp. It should be
noted, that the actual physical nature of interactions was
not taken into account in our knowledge-based poten-
tial, and the observed changes in interaction preferences
resulted solely from the selection pressure towards effi-
cient scoring imposed in the force field optimization
procedure.
Systematic docking searches were not able to find any

hit for around 15% of structures (Table 2) from both train-
ing and test sets. In most of those cases (75%), the energy
of best ranked solution was less favorable than the min-
imized energy of native complex. It suggests that more
extensive sampling, for example by increasing the num-
ber of initial ligand placements and orientations for energy
minimization, would allow finding some additional well
scoring native-like structures and improve the results,
similarly as it was observed in the case of protein-RNA
docking [21].

Comparison with experimental binding affinities
In principle, a reliable docking method should not only
allow distinguishing between bound geometries and their
corresponding decoys, but should also provide proper
ranking of native complexes according to their absolute
binding free energies. In order to test this ability, force
field energy values obtained upon energy minimization
of native complexes were compared with experimental
affinities. Such data is available for a number of protein-
DNA interactions [25], however, a meaningful association
of thermodynamic parameters with relevant crystallo-
graphic structures is not a trivial task.
One needs to standardize multiple factors affecting

experimental results such as: temperature, pH, ionic con-
ditions, the presence of cofactors, or experimental method
used. Furthermore, one should bear in mind that struc-
tures depicted by X-ray crystallography usually repre-
sent only fragments of macromolecules used for in vitro

assays. Even, if a complete binding site is preserved,
the influence of missing parts, such as flanking DNA
segments, is impossible to estimate, albeit substantial
in some cases. In an effort to minimize those effects,
a strict selection process was introduced for matching
structural and experimental data (see Methods). The
already available dataset [44], used to date by several
other groups, occurred to violate the adopted rules in
most of the cases, nonetheless the results are provided for
comparison.
The correlation (Pearson’s correlation measure is used

here and in the following) between calculated and exper-
imental binding free energies was at the level of 0.69
(Figure 3, A). This is certainly too low to gain quantita-
tive insight into binding thermodynamics, and provides
only a limiting accuracy level to distinguish between par-
ticularly strong and weak complexes. In addition, simi-
lar calculations with the use of non-specific force field
(see Methods) resulted in correlation coefficient of 0.71.
Furthermore, similar correlation (0.69) was obtained for
the most crude estimate of binding free energy, based
on the number of native contacts (receptor-ligand pseu-
doatom pairs closer than 8 Å to each other). Similar trend
was observed for the alternative dataset (Figure 3, B),
in which average sequence similarity between structures
with known binding affinities and their geometric repre-
sentations used in calculations was typically lower. Here,
the correlation coefficient obtained for energy minimiza-
tion in full protein-DNA force field was 0.68, and raised
through 0.76 for minimization with non-specific param-
eter set, up to 0.80 for energy estimate based on native
contacts.
Such results indicate that the correlation to experimen-

tal binding free energy is generally a poor measure of
force field performance, in line with similar observations
from other studies [23]. It may be understood, provided
gross simplifications applied in computational approach.
To name a few: all internal degrees of freedom, important
for energetic and entropic effects due to conformational
changes upon binding, are neglected along with the exis-
tence of solvent and ions, the available atomic coordinates
in most cases represent only a part of the considered
system, and finally, pairwise statistical potentials do not
describe any physically sound free energy contributions
[22]. Moreover, on the experimental side, affinity esti-
mates for a given system provided by different sources can
sometimes vary by few kcal/mol. In such circumstances,
it seems reasonable that the interface size appears as the
mostmeaningful estimate of binding free energy – after all
binding strength should be on average proportional to the
number of contacts between protein and DNA. The influ-
ence of “higher order corrections”, hopefully conveyed by
force field details seems to be obscured by random effects
of the aforementioned simplifications.
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A more indicative estimate of the actual force field per-
formance can be obtained by analyzing differences in
affinities for a number of DNAmutants targeting the same
protein partner. Here, one can assume limited variability
of uncontrollable factors within each system of interest,
and hence, the cancellation of their effect on relative free
energies. A set of experimentally determined binding free
energies with matching structural data was taken from
the work of Morozov at al. [45]. It comprised 13 protein-
DNA complexes, with a total of 293�Gmeasurements for
different mutants (see Methods).
An average correlation between experimental free

energy differences and estimates obtained upon potential
energy minimization in protein-DNA force field was 0.20
(Figure 4). This is certainly too low to claim that calcula-
tions can capture sequence specificity. It is important to
note, however, that only rigid structures were considered
for this test, thus no conformational changes in response
to DNA mutations were allowed (indeed, including pro-
tein and DNA flexibility improved correlation – data not
shown). Moreover, the differences in experimental bind-
ing free energies for closely related mutants were usually
smaller than 0.5 kcal/mol, which is well below accuracy
that can be reasonably expected for a coarse grained rep-
resentation. Interestingly, only slightly better correlation
(0.23) was observed in a similar test for the full atom
Amber force field [23], indicating that achieving high
sequence specificity is a formidable task even for more
detailed models.
The non specific potential and contact-based estimate

of interaction energy showed no predictive power in
sequence specificity test, yielding average correlations
with experimental data at levels of −0.05 and −0.17,
respectively (Figure 4). It demonstrates that a positive
correlation observed for the full protein-DNA poten-
tial, albeit small, was indeed due to sequence specificity.
Apparently other factors, such as interface size or shape
complementarity, had no predictive value. A negative cor-
relation observed for contact-based predictions was most
likely due to non-resolved sterical clashes being counted

as favorable interactions. Energy minimizations were not
performed in that case, and hence interfaces had adequate
geometries only for DNA sequences found in crystallo-
graphic structures.

Docking of unbound structures
Proper docking of macromolecules based on their
unbound conformations requires the prediction of local
and global structural rearrangements that likely occur
upon binding. Several approaches have been adopted in
order to tackle this problem, such as the use of multiple
starting conformations [18], multiple copies of loops [46]
or side chains [19], or the inclusion of global flexibility by
considering low frequency normal modes [47]. All those
methods are technically available within the framework
of ATTRACT docking program [19,46,47]. Nonetheless,
as the current report is focused predominantly on the
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development of interaction potential, only rigid body
docking was considered to provide a baseline estimate of
force field efficacy, not affected by additional factors.
A set of benchmark structures, containing 47 pairs of

binding partners in their unbound conformations along
with the corresponding assembled complexes, was taken
from the work by van Dijk and Bonvin [48]. This set cov-
ers all major groups of protein-DNA complexes according
to the classification of Luscombe at all [49], and provides
cases with RMSD between bound and unbound confor-
mations ranging from ∼ 1, up to ∼ 10 Å, both on protein
and DNA side. The benchmark is non-redundant within
itself in terms of sequence similarity, however, some struc-
tures (1RVA, 1K79, 1CMA, 1EMH, and 1KC6) are close to
those already present in the training set. Due to relatively
small size of the benchmark set, as well as the fact that
the observed results for training and test sets were no dif-
ferent (Table 2, Figure 2), those structures were included
into the study of unbound docking. The criteria used so
far to define a ”hit” were extended to account also for
“acceptable” solutions, that is having iRMSD ≤ 4.0 Å and
fNC ≤ 0.3, or fNC ≥ 0.3, in line with CAPRI classification.
As a reference, bound-bound docking of all bench-

mark structures was also performed. “Hits” were found for
almost all complexes (98%), and in 72% of the cases they
corresponded to the best-ranked solutions (Figure 5). The
statistics for “acceptable” solutions was only marginally
better. This could be expected, provided that high or
medium quality solutions were found in almost all cases,
but just some of them were unfavorably scored – in such

situation it was hardly possible that an alternative solution
of only “acceptable” quality would achieve a better score.
In mixed bound-unbound docking, two scenarios were

considered: unbound DNA - bound protein (UD:BP), and
bound DNA - unbound protein (BD:UP). The total frac-
tions of generally found “hits” and “acceptable” solutions
were very similar in both cases:∼ 50%, and∼ 75% respec-
tively (Figure 5). A closer inspection of the fraction of gen-
erally found “acceptable” solutions as a function of RMSD
for the unbound component revealed, however, that at
higher deformation levels significantly more native-like
solutions were found in the UD:BP case (Figure 6, Nall).
On the contrary, scoring in this scenario was less effi-
cient, with no top ranked “hits” nor “acceptable” solu-
tions at all (Figure 5). To some extent, better scoring in
BD:UP case was due to the fact that mildly deformed
(with RMSD ∼ 1 Å), and hence easier to dock, structures
were more abundant among unbound proteins (Figure 6,
N1). Nonetheless, there was a group of complexes with
unbound protein components having an average RMSD
of 3.5 Å, and the fraction of top ranked “acceptable” solu-
tions still around 30%, while none of UD:BP cases, with
even lower RMSD for unbound DNA, had a top ranked
native-like solution.
It indicates that structural distortions of the two bind-

ing components may have different effects on the docking
process. Unbound DNA appears to be generally more
effectively recognized by a protein binding partner pre-
served in its bound conformation, but scoring of the
resulting complexes among the very best solutions (with
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rank up to 10) is less frequent. It may be a consequence
of the fact that regular DNA secondary structure, with
exposed phosphate backbone, may provide enough con-
tacts to find a native-like binding mode, but its favorable
scoring among other backbone-driven geometries may
require some degree of sequence dependent deformation
[10]. In such situations, all information necessary for spe-
cific recognition is lost when regular B-DNA is used for
docking. On the unbound protein side, the lack of generic
regular form, such as double helix, makes the ability to
generally find a solution more dependent on the level
of structural deviation from the bound geometry. At the
same time, however, due to greater variability of protein
building blocks, their unique constellation responsible
for specific recognition is more likely to be preserved in
unbound conformation, resulting inmore efficient scoring
for native-like BD:UP complexes.
The statistics for unbound - unbound docking was

expectedly worse than for mixed cases. High or medium
quality solutions were generally found for 20% of cases
(“acceptable” solutions for 60%) and for only ∼ 10% of
cases “hits” were among 100 top ranking geometries
(“acceptable” solutions for 35% of cases). Interestingly, the
overall performance with respect to high or medium qual-
ity solutions for the same unbound benchmark set was
quite similar to the one of the HADDOCK docking pro-
gram working in rigid docking mode. Two-star solutions
(equivalent to “high or medium” quality used here) were

generally found for 20% of cases, and roughly half of them
(11% of the total number of cases) was scored preferably,
that is with at least 10% two-star geometries among the
considered best ranking 400 (please note that HADDOCK
is based on a different docking approach and that differ-
ent criteria were used for the evaluation of results). The
reported results for “acceptable” solutions were somewhat
better in the case of HADDOCK (76% of generally found
and 60% of preferably scored solutions), however, it should
be noted that an ensemble of 5 rigid protein geometries
(obtained with the use of simulated annealing and refine-
ment in explicit water) was submitted to docking for each
complex, instead of a single, crystallographic geometry
used here.
The analysis of results as a function of average RMSD

for the two binding partners (Figure 6), indicates a fast ini-
tial drop in the number of well ranked solutions, followed
by a plateau extending for RMSD between 2 and 4 Å, and
further drop for larger RMSD values. This justifies the dis-
tinction of three groups of complexes with qualitatively
different success rates, in line with designation of easy,
intermediate and difficult cases in other studies [17,18].
A comparison with the results obtained for non-specific

force field (Figure 5, dotted lines) underlines an impor-
tant role of shape complementarity, at least for rigid body
docking considered here. In case of bound - bound dock-
ing, shape complementarity alone seemed to be enough
to provide favorable ranking in roughly two third of
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complexes. It’s role was greater in bound-unbound dock-
ing scenarios, and increased even further in unbound-
unbound docking. At first sight it seems counterintuitive,
as one would expect that the recognition of unbound cases
should benefit more from specific interactions, in favor to
geometric fit. It is important to note, however, that cer-
tain level of shape complementarity is required for specific
contacts to occur. Apparently, docking of structures that
need such specific contacts for proper ranking is partic-
ularly challenging, as first, a proper geometry needs to
be found, and second, specific interactions need to be
favorably accounted for by the force field. As a result,
proper ranking of such cases is relatively less frequent in
bound-unbound, or unbound-unbound rigid docking.

Sequence-dependence in systematic docking
The results presented in previous sections bring into
question the importance of direct sequence readout for
the efficacy of systematic docking searches performed
here. In order to test it, docking results for bound geome-
tries were rescored at different levels of sequence identity
to native DNA. In total, 41 complexes from the bench-
mark set, with “hit” foundwithin top 10 docking solutions,
were used for this task.
The observed scoring efficacy apparently dropped with

the increasing level of noise introduced to DNA sequences
(Figure 7). “Hits” shifted towards lower ranks in around
50% of cases after being rescored with random DNA
sequences. Still, however, in almost all cases (95%) they
remained within 100 top solutions. The observed effect,
although nonnegligible, indicates a limited role of direct
sequence readout for scoring efficacy, at least with respect
to an “average” complex from the analyzed pool.
One should bear in mind, however, that some protein-

DNA complexes are naturally sequence non-specific.
Indeed, at least 5 complexes (1AZP [50], 1QRV [51],
1DIZ [52], 1VAS [53], 4KTQ [54]), i.e. roughly 10% of
the considered group, seem to belong to such category.
Accordingly, ranking of their native-like geometries did
not depend on DNA sequence (Figure 7, inset). Fur-
thermore, the origin of sequence specificity among the
remaining, “specific” complexes, likely involves a combi-
nation of direct and indirect (geometry dependent) read-
out mechanisms in varying proportions [10]. For example,
at least 3 out of 15 complexes, that are regarded as “spe-
cific” but had their native-like geometries ranked among
10 top docking solutions for random DNA sequences, are
known to formmainly due to indirect readout mechanism
(these are: 1QNE [55], 1TRO [56], 1ZME [57]).
Unfortunately, no general correlation (with |R| > 0.2)

was found between the tendency of “hit” rank to remain
unchanged in spite of sequence perturbation (which could
indicate the domination of indirect readout mechanism)
and descriptors such as deviation from ideal B-DNA
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conformation, the amount DNA backbone involved in
complex formation, or interface size. Nonetheless, the
observed “limited” role of direct sequence readout at least
to some extent reflects the complex nature of protein-
DNA recognition, and thus should not be attributed solely
to force field deficiencies.

Conclusions
A coarse grained force field for protein-DNA docking
was presented. It is compatible with previously devel-
oped parameter sets for protein-protein and protein-
RNA docking, all suitable to use within the ATTRACT
docking protocol. The force field was parametrized in a
knowledge-based manner on a set of available protein-
DNA complexes. Its ability to reconstruct native com-
plexes based on systematic docking of bound components
was tested on an independent test set, yielding very good
results. The quality of predictions in bound-unbound
and unbound-unbound docking scenarios was expectedly
worse, depending on the level of structural deformation of
the binding partners. It is worth stressing, however, that
the overall performance was similar to the one acheived
by methods relying on the knowledge of the true interface,
even though no such information was utilized here.
The energy score for docked complexes was shown to

correlate with experimental binding free energies, how-
ever, the correlation could be likely explained solely by
taking into account the number of protein-DNA con-
tacts, without truly meaningful input from specific amino
acid - nucleotide interactions. The role of such specific
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interactions was further investigated by comparing exper-
imental and calculated effects of DNAmutations on bind-
ing free energy, as well as monitoring the sensitivity of
docking results on random DNA sequence alterations.
Both tests revealed certainly notable, yet relatively lim-
ited importance of sequence specific interactions both for
the reproduction of experimental effects and favorable
scoring of native sequences.
The extent to which it reflects true aspects of

protein-DNA recognition, in which considerable effect is
attributed to sequence specific DNA deformation and not
only to specific intermolecular contacts, remains an open
question. Certainly, however, the above findings pose a
serious challenge to flexible protein-DNA docking algo-
rithms. In order to avoid false positive shape complemen-
tarity the allowed conformational changes would have to
remain strictly in physically sound regime, and further-
more, their associated free energy change would have to
be adequately quantified and included into the scoring
scheme. Addressing those challenges is within the scope
of our current efforts.
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