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Abstract

In this article, a low-cost system for 2D eye gaze estimation with low-resolution webcam images is presented. Two
algorithms are proposed for this purpose, one for the eye-ball detection with stable approximate pupil-center and
the other one for the eye movements’ direction detection. Eyeball is detected using deformable angular integral
search by minimum intensity (DAISMI) algorithm. Deformable template-based 2D gaze estimation (DTBGE)
algorithm is employed as a noise filter for deciding the stable movement decisions. While DTBGE employs binary
images, DAISMI employs gray-scale images. Right and left eye estimates are evaluated separately. DAISMI finds the
stable approximate pupil-center location by calculating the mass-center of eyeball border vertices to be employed
for initial deformable template alignment. DTBGE starts running with initial alignment and updates the template
alignment with resulting eye movements and eyeball size frame by frame. The horizontal and vertical deviation of
eye movements through eyeball size is considered as if it is directly proportional with the deviation of cursor
movements in a certain screen size and resolution. The core advantage of the system is that it does not employ
the real pupil-center as a reference point for gaze estimation which is more reliable against corneal reflection.
Visual angle accuracy is used for the evaluation and benchmarking of the system. Effectiveness of the proposed
system is presented and experimental results are shown.

Keywords: low-cost 2D eye gaze estimation, eyeball detection, stable approximate pupil-center detection, robust
eye movement detection, deformable template methods

1. Introduction
Gaze information plays an important role in point of
regard (PoR) which is a proxy for handling the users’
attention or intention as an interaction between human
and the computer where it can be used as a form of
input instead of keyboard and the mouse [1-3]. Every
single eye gaze tracking system has different visual angle
accuracies which are important for the size of selection
targets such as buttons, icons, pictures, and texts [4].
The systems with lower visual angle accuracy are more
robust in terms of selection of targets and visual angle
accuracy is generally used for benchmarking of the eye
gaze systems [5].
Various systems have been described in the literature.

Deng et al. [6] present a local deformable template
method for locating the eye and extracting eye features.

A system based on a dual-state model for eye tracking is
proposed in [7]. Both of these methods require manual
initialization of eye location. Witzner et al. [8] model
the iris as an ellipse, but the ellipse is locally fitted to
the image through an EM and RANSAC optimization
process. A system based on feature detection using one
camera is suggested by Smith et al. [9]. Noureddin et al.
[10] suggest a two-camera solution where a fixed wide-
angled camera with rotating mirror directs the orienta-
tion of the narrow-angled camera. A practical gaze
point detecting system with dual cameras is also pro-
posed by Park et al. [11]. They employ IR-LED illumina-
tors for wide and narrow view camera to overcome the
problem of specula reflection on glasses. They attain the
2.89 cm of RMS error between the computed and the
real positions. A non-intrusive eye gaze estimation sys-
tem is proposed by Yoo et al. [12]. Their system allows
ample head movements and yields quite accurate results
using cross-ratio under large head motion. Artificial
neural network (ANN) is also applied into eye gaze
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estimation in the literature [13]. This method employs
cropped images of eyes for training the activation func-
tions. It requires calibration and training process which
is not applicable in everyday life.
Guestrin et al. [14] claim that the point of gaze (POG)

can be estimated only if the head is completely station-
ary when the system employs one camera and one light
source. Therefore, head-movements are the major pro-
blem of low-cost 2D eye gaze trackers. This article
neglects the head-movements and estimates the approxi-
mate POG using shape- and intensity-based methods.
The remaining part of the article is organized as fol-

lows. In Section 2, insights of the face and eyes socket
detection are presented. In Section 3, deformable angu-
lar integral search by minimum intensity (DAISMI)
algorithm is introduced. In Section 4, deformable tem-
plate-based 2D gaze estimation (DTBGE) algorithm with
mathematical explanation is described. In Section 5, a
dwell-time-based virtual keyboard is employed to mea-
sure the visual angle accuracy of the system. Experimen-
tal evaluation and benchmarking of the system are given
at the end. Section 6 gives some discussion and con-
cludes the paper.

2. Face and eyes socket detection
The fundamental requirement of a simultaneous eye
tracking and gaze detection system is to accurately
detect the eye sockets, which can easily be achieved by
Haar-like object detectors which is formerly proposed
by Paul Viola [15] and latterly extended by Rainer Lien-
hart [16]. It allows a classifier trained with sample views
of a particular object to be detected in a whole image.
The advantages of this method are that when imple-
mented correctly it is fast, efficient, and accurate. It is
also effective in detecting objects which are either par-
tially occluded or if the video frame is noisy. By applying
it in a multistep detection approach, it is possible to
detect precisely the eye region by first recognizing the
face and then by setting a region of interest on it. It
needs the correct Haar-cascade descriptors for front
face and two-eye region. Santana et al. [17] present fully
trained Haar-cascade descriptors which are employed in
our system and classified by means of Intel OpenCV
library. Figure 1 shows a successful screenshot for face
and eye socket detection.
The detected eye sockets contain eyeball, eye brow,

and eyelashes together. However; in most of the inten-
sity-based trackers, eye brows and eyelashes are
described as an obstacle for robust eyeball detection. It
is physically known that pupil is the darkest contour in
an eye-socket; however, eye brows and eyelashes are
also dark and have similar intensity values with pupil.
This makes everything difficult and prevents developing
robust eye tracking systems.

The mass-center of an eye-socket is considered as the
most probable pupil location in terms of the less
weighted intensities [18]. If the mass-center of an eye-
socket is consecutively updated, then the resulting cen-
ter of mass will be much closer to the pupil-center in
each loop-step. From this point of view, the mass-center
of an eye-socket is derived in x number of steps in
terms of size and position. Gaussian blurring is
employed before the processing. Size of the socket is
reduced by p percentage rate in each step. Our system
employs x as 2 and p as 15%. Finally, eye-socket is
reduced in size which mostly excludes the eye-brows.
Equation 1 describes the center of mass estimation as
follows:

C =

∑n
k=0 Pk × (255 − Ik)∑n

k=0 (255 − Ik)
(1)

where c is the position of mass-center, P is the posi-
tion, and I is the intensity of each pixel within the eye-
socket which contains n number of pixels. Figure 2
shows screenshots from the socket reduction process.
The sockets derived from the original ones show more

precise location of the eyeball. However, center of mass
mostly overlaps on the eyelashes which are still very
close to the eyeball. Finally, the derived sockets are
employed as eye estimates in which DAISMI is
employed to detect the stable approximate pupil-center
position by averaging the positions of eyeball border
vertices which is necessary for initial template orienta-
tion of DTBGE and the final movement displacement
vector.

Figure 1 Face with eyes sockets detected by OpenCV
AdaBoost classifier.
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3. Deformable angular integral search algorithm
by minimum intensity
The shape of eyeball is the most commonly used feature
because it is a perfect circle by its nature. Shape-based
methods are considered good at handling shape, scale,
and rotation changes [19]. Another concern is the inten-
sity features of the eyeball in an eye model. Color fea-
ture of an eyeball is known as it is the densest dark
contour in an eye estimate. This article proposes
DAISMI algorithm which searches the densest dark con-
tour in an eye estimate. Linear-search algorithms are
used conventionally in color-trackers. However, they are
weak in eyeball detection because of the corneal reflec-
tion and varying illumination. Since eyeball is circular,
the noise distribution due to varying illumination avoids
success when linear-search is applied to the color-track-
ing system. DAISMI models the shape information of
the eyeball and tracks the possible eyeball contours in
an angular way by means of deformable template win-
dows. Figure 3 shows the basic configuration of the eye-
ball template. Eyeball shape is modeled as the eyeball
borders are the locations where there is the maximum

amount of variance in the intensity and the intensity
distribution in the entire template is homogenous.
Model also assumes that border pixels have lower inten-
sity values than the average intensity of the derived eye-
socket. First, template is oriented on each derived eye-
socket. Literally, the center of the eyeball template
should locate over the eyeball contour. Therefore,

Figure 2 Socket-size reduction by center of mass approach(blue rectangle shows the original socket and green rectangle shows the derived
form after two steps. Yellow circle shows the position of mass-center).

Figure 3 Deformable template windows (rectangular boxes).
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darkest pixel in the derived eye-socket is searched by
simple linear-search algorithm. The resulting pixel loca-
tion is considered as initial pupil-center location in
derived eye-socket. However, the position of the darkest
pixel in derived eye-socket is noisy which means it var-
ies by position due to varying illumination. This is
known as the basic problem of all the low-cost eye
trackers. DAISMI does not aim to find the real pupil-
center, but rather; it finds the mass-center of border
vertices by constructing a deformable template which
originates from the initial pupil-center position that is
estimated by finding the darkest pixel in derived eye-
socket with simple linear-search algorithm. Considering
the particular conditions of the model, proposed algo-
rithm finds the locations of border vertices which have
the maximum integral of average low-intensities through
a template window. However, DAISMI does not start
searching from the template origin, but rather it starts
searching from the last index of the template window to
the origin’s index. In other words; it searches from
outer to inner in each window. After all, the index of
the pixel which makes the maximum variation with the
previous index through each window in terms of inten-
sity is calculated using a cut-off parameter. Cut-off para-
meter determines the place of initial possible index
which makes the maximum variation with the previous
index. This parameter is used for getting rid of eye-
brows. In each step of this process, the maximum inte-
gral of the average low intensities of the pixels from the
resulting index to the origin’s index is found. The index
number with the maximum integral of average low
intensities is considered as a vertex point of the eyeball
border. The same process is employed for all other win-
dows in the template. It is expected that model fits to
the real eyeball in the derived eye-socket depending on
the number of windows. Usage of more windows yields
more matching probabilities between the model and real
eyeball. Finally, mass-center of resulting border vertices
is calculated in terms of low-intensities. The resulting
mass-center position is considered as stable approximate
pupil-center position and four border vertices which
locate at the farthest distance from the mass-center,
horizontally, and vertically are considered as the end-
points of minor and major axis of the ellipse. Table 1
shows the pseudo-code of the algorithm.
Figure 4 shows successful snapshots of eyeball detec-

tion by DAISMI in which number of windows is
employed as 80 and window size is employed as the
25% of the derived eye-socket’s height while the toler-
ance value is set to 0.15f. The cut-off ratio is set to
1.25f.
The success rate of fitting depends on four para-

meters: number of windows, window size, tolerance, and
cut-off ratio for the arbitrary model. The larger window

Table 1 Pseudo code of DAISMI

LET S be the rectangular socket region consists of P number of
pixels: S1 ... SP
LET A be a two-dimensional array of pixels

LET O be the position of the template’s origin

LET AVG be the average intensity of socket region

LET W be the deformable eyeball model involves N number of
template windows: W1 ... WN

LET Z be the size of the template window

LET L be the template window consists of Z number of pixels: L1 ...
LZ
LET V be the index number of the window where window has the
highest intensity variance between current index and previous
index.

LET WIDTH be the width of the input camera image

LET alpha be the angle between windows

LET cutOffRatio be the ratio determines the initial index with the
highest variance

in a window which is used for getting rid of eyebrows

LET epsilon be the tolerance value for eyeball detection
LET B be the index of vertex over the border of eyeball

SET minIntensity TO 256.0f

FOR EACH i = 1 TO P

//Start of pixels

IF BRIGHTNESS( Si ) <minIntensity THEN

SET minIntensity TO BRIGHTNESS( Si )

SET Ox TO POSITION( Si )–> x

SET Oy TO POSITION( Si )–> y

END IF

//End of pixels

END LOOP

SET alpha TO 0.0f

SET integralIndices TO 0.0f

SET integralBrightness TO 0.0f

FOR EACH j = 1 TO N

//Start of windows

INCREASE alpha BY ( TWO_PI/N )

SET maxVariance TO 0.0f

SET maxAverageIntensity TO 0.0f

FOR EACH k = Z TO 1

//Start of indices in windows

SET point_x TO Ox + k * COS( alpha )

SET point_y TO Oy + k * SIN( alpha )

SET index TO point_y * WIDTH + point_x

SET A[j,k] TO COLOR( Sindex )

SET variance TO ABS( BRIGHTNESS( A[j,k] ) - BRIGHTNESS( A[j,k-
1] ) )

SET V TO Integer.MAX_VALUE//highest possible value of an
integer.

END IF

IF variance >maxVariance AND V >Z /cutOffRatio THEN

SET maxVariance TO variance

SET V TO k

END IF

END LOOP

SET integralIntensity TO 0.0f
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size causes larger elliptical fittings with higher accuracy
in terms of pupil-center detection while the center of
the ellipse is considered as the pupil-center. In addition,
it is more probable to attain more fittings for the model
when the number of windows is increased. Figure 5
shows successful snapshots of DAISMI after ellipse
completion.

4. DTBGE algorithm
In this section, a binary deformable eyeball template is
modeled and 2D gaze estimation is performed depend-
ing on the displacement in eye movements. At any hori-
zontal and vertical eye movement, the displacement
vector is estimated with respect to the previous frame.
The algorithm consists of four steps as follows:

4.1 The basic configuration
The algorithm aims to decide on the direction of the
eyeball movement using a deformable template as
shown in Figure 3. In other words; DTBGE is a kind of
noise filter which avoids incorrect decisions caused by
noisy pupil-center coordinates. DAISMI finds the
approximate window size which is basically considered
as the Euclidean distance between template origin and
eyeball border vertices. DTBGE creates another template
for gaze direction detection using the window size esti-
mated by DAISMI and converts the source image into
binary using p-tile thresholding algorithm which auto-
mates the thresholding ratio frame-by-frame depending
on the varying density ratio between black and white
pixels over the detected eyeball. Figure 6 shows the
orientation of windows on binary source image.
Template is created with eight windows though it may

vary depending on the desired accuracy rate. Consider-
ing the memory workload and speed of the system, the
best results are taken with eight windows though higher
number of windows is more precise for decision making.

Table 1 Pseudo code of DAISMI (Continued)

FOR EACH l = V TO 1
//Integrate from the index with the highest variance to the origin’s index

INCREASE integralIntensity BY ( 255 - BRIGHTNESS( A[j, l] ) )

END LOOP

SET averageIntensity TO ( integralIntensity /l)

IF averageIntensity >maxAverageIntensity THEN

SET maxAverageIntensity TO averageIntensity

SET B TO V

END IF

//End of indices in windows

END LOOP

INCREASE integralIndices BY B;

INCREASE integralBrightness BY BRIGHTNESS( A[j,B] )

IF integralIndices/j >epsilon AND integralBrightness /j <AVG THEN

ADD B TO ARRAYLIST

END IF

//End of windows

END LOOP

Figure 4 Eyeball detection by DAISMI. Red points are the border vertices and purple circle is the location of mass-center of border vertices in
terms of low-intensities.
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In this regard; the internal energy of a single window
is defined as follows:

Ew =

∑
(intensity value of each pixel within the window)

number of pixels in the window
− 255

2
(2)

According to Equation 2, black pixels with ‘0’ intensity
has a negative impact on the internal energy of a single
window while the white pixels with ‘255’ intensity affect
the result positively.

4.2 Adjustment of template size
According to the definition of internal energy of a single
window in Equation 2, the size of the template varies
depending on the angular integral of window energies
with angle θ.

Eresize =

2π∫

0

Ew(θ)dθ (3)

According to the Equation 3, the size of the template
increases when the angular integral of window energies
is less than ‘0’ and decreases when it is greater than ‘0’.
Figure 7 shows a deforming eyeball model in two

cases: shrinking and expanding. Decision is made
according to Equation 3. In both cases; eyeball size is
updated and a new template is created in each frame
using the updated window size.

4.3 Horizontal movement of the object
Decision on the horizontal movement of deformable
template is made by cosine functions (Figure 8). Cosine
functions produce negative values when the angle θ is
between 90° and 270°. Using Equation 4, the direction
of the horizontal movement is determined.

Figure 5 Ellipse completion by DAISMI.

Figure 6 Orientation of template windows in DTBGE.

        

           (a)          (b)  

Figure 7 Resizement of the deformable template: a) Shrinking
eyeball b) Expanding eyeball from left to right, respectively
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Emove(x) =

2π∫

0

Ew(θ) cos θ dθ (4)

According to Equation 4, the decision on the hori-
zontal movement is made as to the right-hand side
when the angular integral of cosine functions of each
window’s internal energy is less than ‘0’, conversely
(Figure 9); it is to the left-hand side when it is greater
than ‘0’.
Emove (x ) > 0, the decision is made to (¬) direction.
Emove (x ) < 0, the decision is made to (®) direction.
Finally, horizontal movement is pumped.

4.4 Vertical movement of the object
Decision on the vertical movement of deformable tem-
plate is made by sine functions (Figure 10). Sine func-
tions produce positive values when the angle θ is
between 0° and 180°. Using Equation 5, the direction of
the vertical movement is determined.

Emove(y) =

2π∫

0

Ew(θ) sin θ dθ (5)

According to Equation 5, the decision on the vertical
movement (Figure 11) is made as to up-direction when
the angular integral of sine functions of each window’s
internal energy is less than ‘0’; conversely, it is to down-
direction when it is greater than ‘0’.
Emove (y) > 0, the decision is made to (↓) direction.
Emove (y) < 0, the decision is made to (↑) direction.

Finally, vertical movement is pumped.
The calibration procedure is performed as a promise

between users and system. All the users are asked to
look at the center of screen before the tracking starts.
After the tracking starts, displacement vector in terms
of stable approximate pupil-center position is created by
DAISMI. DTBGE decides on the reliable movements in
case of noisy displacement vectors. When the users
move their eyes, the amount of pixel-wise pupil displa-
cement filtered by means of DTBGE is oriented to the
screen relative to the initial gaze point and screen size.
The system assumes that the initial position of gaze is
the center of screen.

5. Experimental results
The system is primarily developed and tested on a Win-
dows XP PC with an Intel Pentium Dual CPU (T2390)
with 1.86 GHz processor and 1.75 GB RAM. The moni-
tor size is 12.1’’ (307 mm) with 9.72’’ (247 mm) width
and 7.28’’ (185 mm) height with 4:3 aspect ratios. Video
is captured with a Logitech Quickcam Pro 4000 webcam
at 30 frames per second. Video is processed as binary
images of 160 × 120 pixels using various utilities from
the Intel OpenCV library.

5.1 Eye tracking experiment
The experiment is conducted for testing the eye tracking
system whether it can successfully locate the pupils of
the users under different conditions. A dataset

90°

180°
+ -

0°
+ -

270°
Figure 8 Cosine function values in four angular intervals.

Figure 9 Horizontal movement of deformable object.

90°

180°
+ +

0°
- -

270°
Figure 10 Sine function values in four angular intervals

Figure 11 Vertical movement of deformable object
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consisting of 300 images taken under varying lighting
conditions, head positions, and with complex back-
grounds is collected. The experimental results show that
the performance rate can reach 100% at frame per sec-
ond (FPS) = 15 while the camera input image size was
160 × 120. Figure 12 illustrates some of the successful
examples.

5.2. 2D gaze estimation and mouse control experiment
The second experiment is performed by asking six users
to move cursor on virtual keyboard buttons (Figure 13)
which are generated relative to the screen size. Each
user is given a brief introduction about how the system
works and starts the experiment without any practice.
Each user conducts the experiment five times (Table 2).
When the users are asked to gaze expected buttons,

they might look at any pixel over the button. Therefore,
it is impossible to measure the gaze accuracy in pixel-
wise paradigm. Besides, the accuracy rate depends on
the size of the selection targets which are buttons in
this case. If the size of buttons is increased, then it is
easier to hit the button, and then the accuracy of the
system increases. In order to overcome this challenge,
the relative unit error distance values which are

calculated with respect to the true hits on buttons are
used. If the unit error distance is ‘0’, then it means that
user hits the expected button successfully. If it is ‘1’,
then it means that user hits the neighbour button of the
expected button. Then, the gaze error is assumed as 1
button. And if the unit error distance is ‘

√
2 ’, then it

means that user hits the button which is at the corner
of expected button (horizontally: 1 and vertically: 1 but-
ton far from the expected button). Lastly, if the unit
error distance is ‘

√
3 ’, then it means that user hits the

button which is also at the corner of expected button
but in this case it is horizontally: 1 and vertically: 2 (or
the reverse) button far from the expected button.
According to the experimental results in Table 2 users
can hit the expected button in different durations. Dura-
tions do not show the elapsed time between initial gaze
button and expected gaze button, but rather they show
the total elapsed time starting from the tracking system,
move the cursor to initial gaze, and move to expected
button. In fact, the elapsed time between initial gaze
button and expected button is in millisecond which is
ignored. Users are observed that they are in difficulty to
bring the cursor to initial gaze button. However, even
they cannot succeed in the true hit, their resulting gaze

Figure 12 Results of DAISMI and DTBGE algorithms.
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is so close to the expected gaze in terms of unit error
distance. Therefore, unit error distance values are not
employed in terms of gaze accuracy evaluation. That’s
why most of the gaze trackers are evaluated with respect
to their visual angle accuracy. The visual angle is the
angle a viewed object subtends at the eye, usually stated
in degrees of arc [20]. Figure 14 shows how to measure
the visual angle of a subject’s eye looking at an object
has a certain distance from the eye.
The visual angle V is measured directly using a theo-

dolite placed at point O and is calculated using the for-
mula [20]:

V = 2 × arctan(S/2D) (6)

In order to measure the visual angle accuracy for
the system, the minimum true saccadic displacement
depending on users’ eye movements is needed. For
our system, according to the experimental results in
Table 2, minimum saccadic displacement is 1 unit
button.
In our virtual keyboard application, 1 unit button’s

size is 75 (px) × 75 (px). However, this size is relative to
the screen size and the resolution. In order to find the
real size in millimetre, the pixel unit is converted to
millimetre unit, firstly.
According to the system settings in Table 3 and the

formulas in Equations 6-8, visual angle is estimated. It
cannot be calculated precisely because it is assumed
that users’ distance to the monitor is 400 mm and the
minimum saccadic displacement is 1 unit button.
These inputs are not precise but very close to the
reality.
Finally, horizontal and vertical visual angle are esti-

mated. According to Table 4, the horizontal visual angle
is 2.07° while the vertical visual angle is 2.48°.

Horizontal Visual Angle = arctan(((minimum horizontal saccade displacement/2)/

(distance to the monitor × screen resolution width/screen dimensions width))) × 2 (7)

Vertical Visual Angle = arctan(((minimum vertical saccade dispalcement/2)/

(distance to the monitor × screen resolution height/screen dimensions height))) × 2 (8)

Finally, the visual angle accuracy of the system is con-
sidered as around 2°.

6. Conclusions and discussions
In this article, a shape- and intensity-based deformable eye
pupil-center detection and movement decision algorithms

Figure 13 Dwell-time-based virtual keyboard employed in 2D
gaze estimation and cursor control experiment. White circles are
the saccades showing the gaze projectory path.

Table 2 Results of 2D gaze estimation and cursor control
experiment

Button ID EG RG UED Duration(s)

User 1

1st Button L B 1 38.7

2nd Button 2 2 0 23.4

3rd Button 4 V √2 12.9

4th Button P P 0 54.2

5th Button X Z 1 43.5

User 2

1st Button F F 0 23.3

2nd Button O Z 1 24.7

3rd Button 4 4 0 46.1

4th Button SBAR SBAR 0 14.3

5th Button 3 ¬ 1 25.8

User 3

1st Button R G √2 49.1

2nd Button V A √5 34.7

3rd Button 9 SBAR 1 15.3

4th Button 4 W √5 21.9

5th Button D D 0 19.3

User 4

1st Button 8 7 1 57.6

2nd Button M W 1 38.8

3rd Button 5 5 0 42.2

4th Button T 1 √5 19.5

5th Button E F 1 26.7

User 5

1st Button X X 0 35.1

2nd Button F F 0 24.0

3rd Button I R √2 34.6

4th Button Y N 1 33.9

5th Button 6 7 1 25.3

User 6

1st Button C M 1 31.1

2nd Button R Q 1 28.6

3rd Button S H √2 13.8

4th Button W V 1 18.7

5th Button O P 1 47.7

EG, expected gaze; RG, resulting gaze; UED. unit error distance; SBAR,
spacebar.
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are introduced in terms of developing a low-cost 2D gaze
estimation and cursor control system regardless of the real
position of pupil-center. In many other algorithms which
are based on PoR information, real pupil-center position is
required to get rid of noisy eye movements. However,
unlikely, DTBGE employs a new deformable template
model which decides on the eye movements’ directions in
binary source images regardless of knowing the real pupil-
center. DAISMI finds the stable approximate pupil-center
location by searching deformable eyeball models which
includes low-intensity pixels within the template windows.
It finds that the position of the eyeball with border vertices
and the mass-center of vertices are considered as the
stable approximate pupil-center position. Even the origin
of the template is vibrating and noisy, the border vertices
are almost stable and less vibrating. The stable approxi-
mate position of pupil is enough for getting robust eye
movement detection and corresponding pupil-center dis-
placement. This system is very useful for those who want
to build 2D gaze estimation and mouse control systems
with low-resolution source images such as simple web-
cams without infra-red filter. Experimental results show
very encouraging results such that the visual angle accu-
racy is around 2° while the speed is 15 fps.
The comparison of the system with other systems in

the same category is as follows:
As seen in Table 5, our system has no calibration, no

training process, no infra-red filtering with head-
mounted camera, and it is the only system which does

not need real pupil-center position for 2D gaze estima-
tion. Even the system employs low-resolution webcam
images (160 × 120), the success rates are so close to
each other. For this reason, this system is an ideal
option for those who cannot afford expensive trackers,
does not like calibration, and wants to get high accuracy
even the system is with a simple webcam. Finally, this
system can be used with more performance if the auto-
thresholding can be provided more robustly. The ratio
between white and black pixels in template windows is
the only decider parameter which determines the perfor-
mance of the system. However, this ratio depends on
the thresholding algorithm only. Better thresholding
algorithms can yield better results.
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Figure 14 Visual angle measurement [20].

Table 3 System settings for the experiment

Screen resolution

Width 1280 pixels

Height 800 pixels

Screen dimensions (1 inch = 2.54 cm)

Width 247 mm

Height 185 mm

Subject

Distance to the monitor 400 mm

Table 4 Calculation of visual angle accuracy

What is the angle for minimum saccade displacement?

Horizontal Saccade width 75 pixels

Angle 2.072829°

Vertical Saccade height 75 pixels

Angle 2.48392°

Table 5 Comparison of the system with several main-
stream 2D gaze estimation systems

Infra
red

Training
and

calibration

Real pupil-
center
based

Camera
and
video
size

Accuracy
(deg)

Algorithms

Yes No-No Yes Head-
mounted
(320 ×
240)

2-4 Active
contours [8]

Yes No-Yes Yes Head-
mounted
(320 ×
240)

2.9 Image
processing

[10]

No Yes-No Yes Head-
mounted
(320 ×
240)

1.5 ANN [13]

No No-No No Webcam
(160 ×
120)

2 DAISMI
DTBGE
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