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Abstract
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1 Introduction
It is well known that the generalized Hurwitz-Lerch zeta function as well as its extended
version have many applications in various areas of mathematics and physics. In num-
ber theory, the Riemann and Hurwitz zeta functions are closely related to Dedekind
zeta functions and Artin L-functions, which play a central role in the discipline. In ad-
dition, the generalized Hurwitz-Lerch zeta functions, evaluated at negative integers, are
closely related to the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and
the Frobenius-Euler polynomials [–]. These functions are also connected to the gen-
eralized Fermi-Dirac functions and the generalized Bose-Einstein functions []. The gen-
eralized Fermi-Dirac and Bose-Einstein functions, which appear in quantum statistics,
quantum interference and in the theory of quantum entanglement, have been introduced
recently by Srivastava et al. []. Moreover, the generalized Hurwitz-Lerch zeta functions
have interesting applications in geometric function theory []; and finally, Gupta et al. []
investigated the generalized Hurwitz-Lerch zeta distribution and applied this new distri-
bution to reliability.
The generalized Hurwitz zeta function ζ (s,a) is defined by [, p. et seq.]

ζ (s,a) :=
∞∑
n=


(n + a)s

(
Re(s) > ;a ∈C \Z–

;Z
–
 := {,–,–, . . .}), (.)
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where

ζ (s, ) = ζ (s) =


s – 
ζ

(
s,



)
(.)

yields the celebrated Riemann zeta function ζ (s). The Riemann zeta function is contin-
ued meromorphically to the whole complex s-plane except for a simple pole at s =  with
residue .
The Hurwitz-Lerch zeta function �(z, s,a) is defined, as in [, p. et seq.], by

�(z, s,a) :=
∞∑
n=

zn

(n + a)s

(
a ∈C \Z–

; s ∈C when |z| < ;Re(s) >  when |z| = 
)
. (.)

Clearly, we have the following relations:

�(, s,a) = ζ (s,a) and �(, s, ) = ζ (s). (.)

The Hurwitz-Lerch zeta function has the well-known integral representation

�(z, s,a) =


�(s)

∫ ∞



ts–e–at

 – ze–t
dt

(
Re(a) > ;Re(s) >  when |z| ≤  (z �= );Re(s) >  when z = 

)
. (.)

Recently, Lin and Srivastava [] investigated a more general family of Hurwitz-Lerch
zeta functions. Explicitly, they introduced the function �(ρ,σ )

μ,ν (z, s,a) defined by

�(ρ,σ )
μ,ν (z, s,a) :=

∞∑
n=

(μ)ρn
(ν)σn

zn

(a + n)s

(
μ ∈C;a,ν ∈C \Z–

;ρ,σ ∈R
+;ρ < σ when s, z ∈C;

ρ = σ and s ∈C when |z| < ;ρ = σ and Re(s –μ + ν) >  when |z| = 
)
, (.)

where (λ)κ denotes the Pochhammer symbol defined, in terms of the gamma function, by

(λ)κ :=
�(λ + κ)

�(λ)
=

⎧⎨
⎩

λ(λ + ) · · · (λ + n – ) (κ = n ∈N;λ ∈C),

 (κ = ;λ ∈C \ {}).
(.)

It is easily seen that

�(σ ,σ )
ν,ν (z, s,a) =�(,)

μ,ν (z, s,a) =�(z, s,a) (.)

and

�
(,)
μ, (z, s,a) = �∗

μ(z, s,a) :=
∞∑
n=

(μ)n
n!

zn

(n + a)s
. (.)
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The function �∗
μ(z, s,a) is, in fact, a generalized Hurwith-Lerch zeta function investigated

by Goyal and Laddha [, p., equation (.)]. Another family of generalized Hurwitz-
Lerch zeta functions is the one studied by Garg et al. [], that is, �λ,μ;ν(z, s,a) defined as
follows:

�λ,μ;ν(z, s,a) :=
∞∑
n=

(λ)n(μ)n
(ν)nn!

zn

(n + a)s

(
λ,μ ∈C;ν,a ∈C \Z–

; s ∈ C when |z| < ;

Re(s + ν – λ –μ) >  when |z| = 
)
. (.)

Obviously, we see that

�,μ;(z, s,a) =�∗
μ(z, s,a). (.)

This family of Hurwitz-Lerch zeta functions will play an important role in the sequel.
The aim of this paper is to make use of three Taylor-like expansions involving frac-

tional derivatives to obtain some relations for the generalized Hurwitz-Lerch zeta func-
tion �∗

μ(z, s,a). One of these Taylor-like expansions has been obtained by Osler [] and
the two others, more recently, by Tremblay et al. [, ]. Finally, interesting special cases
of these new relations involving the Apostol-Bernoulli polynomials and the Apostol-Euler
polynomials are obtained.

2 Pochhammer contour integral representation for fractional derivative and a
new generalized Leibniz rule

The use of contour of integration in the complex plane provides a very powerful tool
in both classical and fractional calculus. The most familiar representation for fractional
derivative of order α of zpf (z) is the Riemann-Liouville integral [–] that is

Dα
z z

pf (z) =


�(–α)

∫ z


f (ξ )ξp(ξ – z)–α– dξ , (.)

which is valid for Re(α) < , Re(p) >  and where the integration is done along a straight
line from  to z in the ξ -plane. By integrating by partm times, we obtain

Dα
z z

pf (z) =
dm

dzm
Dα–m

z zpf (z). (.)

This allows to modify the restriction Re(α) <  to Re(α) <m []. Another used represen-
tation for the fractional derivative is the one based on the Cauchy integral formula widely
used by Osler [–]. These two representations have been used in many interesting re-
search papers. It appears that the less restrictive representation of fractional derivative
according to parameters is Pochhammer’s contour definition introduced in [, ].

Definition . Let f (z) be analytic in a simply connected region R. Let g(z) be regular
and univalent on R, and let g–() be an interior point of R, then if α is not a negative
integer, p is not an integer, and z is in R – {g–()}, we define the fractional derivative of

http://www.advancesindifferenceequations.com/content/2013/1/361
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Figure 1 Pochhammer’s contour.

order α of g(z)pf (z) with respect to g(z) by

Dα
g(z)g(z)

pf (z)

=
e–iπp�( + α)
π sin(πp)

∫
C(z+,g–()+,z–,g–()–;F(a),F(a))

f (ξ )g(ξ )pg ′(ξ )
(g(ξ ) – g(z))α+

dξ . (.)

For non-integers α and p, the functions g(ξ )p and (g(ξ ) – g(z))–α– in the integrand have
two branch lines which begin respectively at ξ = z and ξ = g–(), and both pass through
the point ξ = a without crossing the Pochhammer contour P(a) = {C ∪ C ∪ C ∪ C} at
any other point as shown in Figure . F(a) denotes the principal value of the integrand in
(.) at the beginning and ending point of the Pochhammer contour P(a) which is closed
on the Riemann surface of the multiple-valued function F(ξ ).

Remark . In Definition ., the function f (z) must be analytic at ξ = g–(). However,
it is interesting to note here that we could also allow f (z) to have an essential singularity
at ξ = g–(), and equation (.) would still be valid.

Remark . The Pochhammer contour never crosses the singularities at ξ = g–() and
ξ = z in (.), then we know that the integral is analytic for all p and for all α and for z in
R – {g–()}. Indeed, the only possible singularities of Dα

g(z)g(z)
pf (z) are α = –,–, . . . and

p = ,±,±, . . . which can directly be identified from the coefficient of the integral (.).
However, integrating by parts N times the integral in (.) by two different ways, we can
show that α = –,–, . . . and p = , , , . . . are removable singularities (see []).

It is well known that [, p., equation (.)]

Dα
z z

p =
�( + p)

�( + p – α)
zp–α

(
Re(p) > –

)
, (.)

but adopting the Pochhammer-based representation for the fractional derivative, this last
restriction becomes p not a negative integer. In viewofDefinition ., the fractional deriva-
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tive formula for the generalized Hurwitz-Lerch zeta function �(ρ,σ )
μ,ν (z, s,a) with ρ = σ [,

p., equation ()] is

Dμ–ν
z zμ–�

(
zσ , s,a

)
=

�(μ)
�(ν)

zν–�(σ ,σ )
μ,ν

(
zσ , s,a

)
(.)

with σ +μ –  not a negative integer.
A very interesting special case is obtained when setting ν = σ = , equation (.) reduces

to the following form:

�∗
μ(z, s,a) =


�(μ)

Dμ–
z zμ–�(z, s,a) (.)

with μ not a negative integer.
As remarked by Lin and Srivastava [], the function �∗

μ(z, s,a) is essentially a fractional
derivative of the classical Hurwitz-Lerch function �(z, s,a). Many other interesting ex-
plicit representations for �∗

μ(z, s,a) have been proven by Lin and Srivastava [].

3 Fractional calculus theorems
In this section, we recall three important theorems related to fractional calculus that will
play central roles in this work. These theorems are Taylor-like expansions in terms of dif-
ferent types of functions. First of all, we state the theorem obtained in  by Osler [].

Theorem . Let f (z) be an analytic function in a simply connected region R. Let α, γ

be arbitrary complex numbers and θ (z) = (z – z)q(z) with q(z) be a regular and uni-
valent function without zero in R. Let a be a positive real number and K = {, , . . . ,
[c], [c] being the largest integer not greater than c}. Let b, z be two points in R such that
b �= z, and let ω = exp(π i/a), then the following relationship

∑
k∈K

c–ω–γ kf
(
θ–(θ (z)ωk))

=
∞∑

n=–∞

Dcn+γ

z–b [f (z)θ ′(z)[(z – z)/θ (z)]cn+γ+]|z=zθ (z)cn+γ

�(cn + γ + )
(.)

holds true for |z – z| = |z|.

In particular, if  < c≤  and θ (z) = (z – z), then k =  and the formula (.) reduces to

f (z) = c
∞∑

n=–∞

Dcn+γ

z–b f (z)|z=z (z – z)cn+γ

�(cn + γ + )
. (.)

This last formula is usually called the Taylor-Riemann formula, and it has been studied in
several papers [, –].
Recently, Tremblay et al. [] obtained the power series of an analytic function f (z) in

terms of the rational expression ( z–zz–z
), where z and z are two arbitrary points inside the

region of analyticityR of f (z). In particular, they proved the next theorem.

http://www.advancesindifferenceequations.com/content/2013/1/361
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Theorem . (i) Let c be real and positive, and let ω = eπ i/c. (ii) Let f (z) be analytic in
the simply connected region R with z and z being interior points of R. (iii) Let the set of
curves {C(t) |  < t ≤ r}, C(t) ⊂R, defined by

C(t) = C(t)∪C(t) =
{
z | ∣∣λt(z, z; z)

∣∣ = ∣∣λt
(
z, z; (z + z)/

)∣∣}, (.)

where

λt(z, z; z) =
[
z – (z + z)/ + t(z – z)/

][
z – (z + z)/ – t(z – z)/

]
, (.)

which are lemniscates of Bernoulli type with center located at (z + z)/ and with double-
loops (as seen in Figure ); one loopC(t) leads around the focus point (z +z)/+t(z –z)/
and the other loop C(t) encircles the focus point (z + z)/ – t(z – z)/, for each t such
that  < t ≤ r. (iv) Let ((z – z)(z – z))λ = exp{λ ln(θ ((z – z)(z – z)))} denote the principal
branch of that functionwhich is continuous and inside C(r), cut by the respective two branch
lines L± defined by

L± =

⎧⎨
⎩

{z | z = (z + z)/± t(z – z)/} for  ≤ t ≤ ,

{z | z = (z + z)/± it(z – z)/} for t < 
(.)

such that ln((z–z)(z–z)) is real where ((z–z)(z–z)) > . (v)Let f (z) satisfy the conditions
of Definition . for the existence of the fractional derivative of (z – z)pf (z) of order α for
z ∈R– {L+ ∪L–}, noticed by Dα

z–z (z–z)
pf (z),where α and p are real or complex numbers.

(vi) Let K = {k | k ∈ N and arg(λt(z, z, (z + z)/)) < arg(λt(z, z, (z + z)/)) + πk/a <
arg(λt(z, z, (z + z)/)) + π}. Then, for arbitrary complex numbers μ, ν , γ and for z on
C() defined by ξ = z+z

 + z–z


√
 + eiθ , –π < θ < π , we have

∑
k∈K

c–ω–γ kf (φ–(φ(z)ωk))(φ–(φ(z)ωk) – z)ν(φ–(φ(z)ωk) – z)μ

(z – z)

=
∞∑

n=–∞

eiπc(n+) sin((μ + cn + γ )π )D–ν+cn+γ
z–z (z – z)μ+cn+γ–f (z)|z=z

sin((μ – c + γ )π )�( – ν + cn + γ )
φ(z)cn+γ , (.)

where φ(z) = ( z–zz–z
).

The case  < c≤  reduces to

c–f (z)(z – z)ν(z – z)μ

(z – z)

=
∞∑

n=–∞

eiπc(n+) sin((μ + cn + γ )π )
sin((μ – c + γ )π )�( – ν + cn + γ )

×D–ν+cn+γ
z–z (z – z)μ+cn+γ–f (z)

∣∣∣∣
z=z

(
z – z
z – z

)cn+γ

. (.)

Finally, in , Tremblay and Fugère [] obtained the power series of an analytic func-
tion f (z) in terms of an arbitrary function (z– z)(z– z), where z and z are two arbitrary
points inside the analyticity regionR of f (z). Explicitly, they found the following relation-
ship.

http://www.advancesindifferenceequations.com/content/2013/1/361
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Figure 2 Multi-loops contour.

Theorem . Assuming the assumptions of Theorem ., the following expansion

∑
k∈K

c–ω–γ k
[
f
(
z + z +

√
�k



)(
z – z +

√
�k



)α(
z – z +

√
�k



)β

– eiπ (α–β) sin((α + c – γ )π )
sin((β + c – γ )π )

f
(
z + z –

√
�k



)

×
(
z – z –

√
�k



)α(
z – z –

√
�k



)β]

=
∞∑

n=–∞

sin((β – cn – γ )π )
sin((β – c – γ )π )

e–iπc(n+)θ (z)cn+γ

× D–α+cn+γ
z–z [(z – z)β–cn–γ–( θ (z)

(z–z)(z–z)
)–cn–γ–θ ′(z)f (z)]|z=z

�( – α + cn + γ )
, (.)

where

�k = (z – z) + V
(
θ (z)ωk), (.)

V (z) =
∞∑
r=

Dr–
z

(
q(z)–r

)|z=zr/r!, (.)

θ (z) = (z – z)(z – z)q
(
(z – z)(z – z)

)
, (.)

holds true.

As a special case, if we set  < c ≤ , q(z) =  (θ (z) = (z – z)(z – z)) and z =  in (.),
we obtain

f (z) = cz–β (z – z)–α

∞∑
n=–∞

sin((β – cn – γ )π )
sin((β + c – γ )π )

eiπc(n+)
[
z(z – z)

]cn+γ

× D–α+cn+γ
z

�( – α + cn + γ )
zβ–cn–γ–(z +w – z)f (z)

∣∣∣∣ z=z
w=z

. (.)

http://www.advancesindifferenceequations.com/content/2013/1/361
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4 Main expansions involving the generalized Hurwitz-Lerch zeta function
�∗

μ(z, s,a)
In this section, we present and prove three different expansion formulas involving the
generalized Hurwitz-Lerch zeta functions obtained from Theorem . to Theorem ..
Also, the conditions of existence are explicitly given for each expansion.

Theorem . Assuming the assumptions of Theorem ., the following expansion holds
true for the generalized Hurwitz-Lerch zeta function �∗

μ(z, s,a):

�∗
μ(z, s,a) = c

∞∑
n=–∞

(z)–cn(z – z)cn

�(cn + )�( – cn)
�

(,)
μ,–cn(z, s,a)

(
μ ∈C;a ∈C \Z–

; s ∈C
)

(.)

for z such that |z – z| = |z|, |z| <  and |z| < .

Proof Setting f (z) = �∗
μ(z, s,a) in Theorem . with b = γ = ,  < c ≤  and θ (z) = z – z,

we have

�∗
μ(z, s,a) = c

∞∑
n=–∞

Dcn
z �∗

μ(z, s,a)|z=z (z – z)cn

�( + cn)
(.)

for z �=  and z such that |z – z| = |z|.
Using relation (.), we find

Dcn
z �∗

μ(z, s,a)|z =Dcn
z

∞∑
k=

(μ)k
k!

zk

(k + a)s

∣∣∣∣
z=z

=
∞∑
k=

(μ)k
k!

�( + k)zk–cn
�( + k – cn)(k + a)s

=
z–cn �

(,)
μ,–cn(z, s,a)

�( – cn)
. (.)

Combining (.) and (.) yields (.). With the help of (.), we see that equation (.)
holds true if it satisfies the conditions of Theorem . as well as the following conditions:
|z| < , |z| < , μ ∈ C, s ∈ C, a ∈ C \ Z–

 . Moreover, the condition  – cn ∈ C \ Z–
 is now

unnecessary because of the presence of the term 
�(–cn) . �

Theorem. Assuming the hypotheses of Theorem ., the following expansion holds true
for the generalized Hurwitz-Lerch zeta function �∗

μ(z, s,a):

�∗
μ(z, s,a) = cz–α(z – z)–νzα+ν



∞∑
n=–∞

eiπc(n+) sin((α + cn + γ )π )�(α + cn + γ )
sin((α – c + γ )π )�( – ν + cn + γ )�(α + ν)

× �μ,α+cn+γ ;α+ν(z, s,a)
(
z – z
z

)cn+γ

(
μ,ν,γ ,α ∈C;a,α + cn + γ ∈ C \Z–

; s ∈ C
)

(.)

for z on C() (defined by z = z
 + z



√
 + eiθ , –π < θ < π ), z �= , |z| <  and |z| < .

http://www.advancesindifferenceequations.com/content/2013/1/361


Gaboury Advances in Difference Equations 2013, 2013:361 Page 9 of 13
http://www.advancesindifferenceequations.com/content/2013/1/361

Proof Taking f (z) = �∗
μ(z, s,a) in Theorem . with z = , μ = α and  < c ≤  gives

�∗
μ(z, s,a) = c(z – z)–νz–αz

∞∑
n=–∞

eiπc(n+) sin((α + cn + γ )π )
sin((α – c + γ )π )�( – ν + cn + γ )

×D–ν+cn+γ
z zα+cn+γ–�∗

μ(z, s,a)
∣∣∣∣
z=z

(
z – z
z

)cn+γ

. (.)

With the help of relations (.) and (.), we have

D–ν+cn+γ
z zα+cn+γ–�∗

μ(z, s,a)|z=z

=
∞∑
k=

(μ)k
k!

D–ν+cn+γ
z zk+α+cn+γ–

(a + k)s

∣∣∣∣
z=z

= zα+ν


∞∑
k=

(μ)k
k!

�(α + cn + γ + k)
�(α + ν + k)

zk
(a + k)s

= zα+ν


�(α + cn + γ )
�(α + ν)

�μ,α+cn+γ ;α+ν(z, s,a). (.)

Combining (.) and (.) gives (.). Using (.) and (.), we find that equation (.)
holds true if it satisfies the conditions of Theorem . as well as the following conditions:
|z| < , |z| < , μ,ν,γ ,α ∈ C, s ∈ C, a ∈ C \ Z–

 . Moreover, the condition α + ν ∈ C \ Z–
 is

nowunnecessary because of the presence of the term 
�(α+ν) , butwemust add the condition

α + cn + γ ∈C \Z–
 because of the presence of the term �(α + cn + γ ). �

Theorem. Assuming the hypotheses of Theorem ., the following expansion holds true
for the generalized Hurwitz-Lerch zeta function �∗

μ(z, s,a):

�∗
μ(z, s,a) = cz–β+γ (z – z)–α+γ zβ+α–cn–γ–



∞∑
n=–∞

sin((β – cn – γ )π )eiπc(n+)

sin((β + c – γ )π )�( – α + cn + γ )

× �(β – cn – γ )[z(z – z)]cn

�(β + α – cn – γ )

[
(z – z)�μ,β–cn–γ ;α+β–cn–γ (z, s,a)

+
(β – cn – γ )

(α + β – cn – γ )
z�μ,+β–cn–γ ;+α+β–cn–γ (z, s,a)

]

(
μ,β ,γ ,α ∈C;a,β – cn – γ ∈ C \Z–

; s ∈ C
)

(.)

for z on C() (defined by z = z
 + z



√
 + eiθ , –π < θ < π ), z �= , |z| <  and |z| < .

Proof Putting f (z) = �∗
μ(z, s,a) in Theorem . with z = ,  < c ≤ , q(z) =  and θ (z) =

(z – z)(z – z) yields

�∗
μ(z, s,a) = cz–β (z – z)–α

∞∑
n=–∞

sin((β – cn – γ )π )
sin((β + c – γ )π )

eIπc(n+)
[
z(z – z)

]cn+γ

× D–α+cn+γ
z

�( – α + cn + γ )
zβ–cn–γ–(z +w – z)�∗

μ(z, s,a)
∣∣∣∣ z=z
w=z

. (.)

http://www.advancesindifferenceequations.com/content/2013/1/361
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With the help of relations (.) and (.), we have

D–α+cn+γ
z zβ–cn–γ–(z +w – z)�∗

μ(z, s,a)| z=zw=z

=D–α+cn+γ
z zβ–cn–γ �∗

μ(z, s,a)|z=z + (z – z)D–α+cn+γ
z zβ–cn–γ–�∗

μ(z, s,a)|z=z
= zβ+α–cn–γ


�( + β – cn – γ )

�( + β + α – cn – γ )
�μ,+β–cn–γ ;+β+α–cn–γ (z, s,a)

+ (z – z)zβ+α–cn–γ–


�(β – cn – γ )
�(β + α – cn – γ )

�μ,β–cn–γ ;β+α–cn–γ (z, s,a). (.)

Combining (.) and (.) gives (.). Using (.) and (.), we find that equation (.)
holds true if it satisfies the conditions of Theorem . as well as the following conditions:
|z| < , |z| < ,μ,β ,γ ,α ∈C, s ∈C, a ∈C\Z–

 .Moreover, the conditions α+β –cn–γ ∈
C\Z–

 and +α+β–cn–γ ∈C\Z–
 are now unnecessary because of the presence of the

terms 
�(α+β–cn–γ ) and


�(+α+β–cn–γ ) , but we must add the condition β – cn– γ ∈C \Z–



because of the presence of the term �(β – cn – γ ). �

5 Special cases
This section is devoted to special cases of Theorem . to Theorem .. We first recall
definitions of Apostol-Bernoulli and Apostol-Euler polynomials and their connections to
the generalized Hurwitz-Lerch zeta function �∗

μ(z, s,a). Next, we give some expansion
formulas involving these polynomials.

Definition . The generalized Apostol-Bernoulli polynomials B(α)
n (z;λ) are defined, for

λ, z ∈C, by the following generating function [, ]:

(
t

λet – 

)α

ezt =
∞∑
n=

B(α)
n (z;λ)

tn

n!
,

∣∣t + log(λ)
∣∣ < π

(α ∈C, if λ = ;α ∈N,n≥ α, if λ �= ). (.)

Definition . The generalized Apostol-Euler polynomials E (α)
n (z;λ) are defined, for λ, α

and z ∈C, by the following generating function []:

(


λet + 

)α

ezt =
∞∑
n=

E (α)
n (z;λ)

tn

n!
,

∣∣t + log(λ)
∣∣ < π . (.)

Recently, Bayad and Chikhi [] established the following relationship between the
Apostol-Euler polynomials E (α)

n (z;λ) and the generalized Hurwitz-Lerch zeta function
�∗

μ(z, s,a).

Theorem . Let λ be a complex number such that |λ| ≤  and λ �= –. Let μ and z be two
complex numbers such that Re(μ) >  and Re(z) > , then for all non-negative integers n,
we have

E (μ)
n (z;λ) = μ�∗

μ(–λ, –n, z). (.)

http://www.advancesindifferenceequations.com/content/2013/1/361
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From the generating function of Apostol-Euler polynomials (.), we can find, after sim-
ple calculations, the following relationship between the Apostol-Euler polynomials and
the Apostol-Bernoulli polynomials:

B(l)
n (z;λ) = l!

(
n
l

)(
–


)l

E (l)
n–l(z; –λ) (l ∈N,n≥ l). (.)

Thus, combining (.) and Theorem ., we obtain the next connection between the
Apostol-Bernoulli polynomialsB(α)

n (z;λ) and the generalizedHurwitz-Lerch zeta function
�∗

μ(z, s,a)

B(l)
n (z;λ) = l!

(
n
l

)
(–)l�∗

l (λ, l – n, z)
(|λ| ≤ ;λ �= ;Re(z) > ; l ∈N;n ≥ l

)
. (.)

Now let us shift our focus to some special cases of Theorems ., . and Theorem .
given in the forms of corollaries.

Corollary . Assuming the assumptions of Theorem ., the following expansion holds
true for the Apostol-Bernoulli polynomials B(l)

n (z;λ):

B(l)
n (z;λ) = cl!

(
n
l

)
(–)l

∞∑
k=–∞

(z)–ck(λ – z)ck

�(ck + )�( – ck)
�

(,)
l,–ck(z, l – n, z)

(
 < c≤ ; l ∈N;Re(z) > ;n ∈N;n≥ l

)
(.)

for z such that |λ – z| = |z|, |λ| <  and |z| < .

Proof Making the substitutions μ = l (l ∈ N), s = l – n (n ∈ N), a = z (Re(z) > ), z = λ

(λ ∈C) in Theorem . and with the use of (.), the result follows. �

Corollary . Assuming the assumptions of Theorem ., the following expansion holds
true for the Apostol-Bernoulli polynomials B(l)

n (z;λ):

B(l)
n (z;λ) = cl!

(
n
l

)
(–)lλ–α(λ – z)–νzα+ν



∞∑
k=–∞

eiπc(k+) sin((α + ck + γ )π )
sin((α – c + γ )π )�(α + ν)

× �(α + ck + γ )
�( – ν + ck + γ )

�l,α+ck+γ ;α+ν(z, l – n, z)
(

λ – z
λ

)ck+γ

(
 < c ≤ ; l ∈ N;ν,γ ,α ∈C;Re(z) > ;

α + cn + γ ∈C \Z–
;n ∈N;n≥ l

)
(.)

for λ on C() (defined by λ = z
 + z



√
 + eiθ , –π < θ < π ), λ �= , |λ| <  and |z| < .

Proof Settingμ = l (l ∈N), s = l–n (n ∈N), a = z (Re(z) > ), z = λ (λ ∈ C) in Theorem.
and using (.), the result follows. �

http://www.advancesindifferenceequations.com/content/2013/1/361
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Corollary . Assuming the assumptions of Theorem ., the following expansion holds
true for the Apostol-Euler polynomials E (μ)

n (z;λ):

E (μ)
n (z;λ) = cμ(–λ)–β+γ (–λ – z)–α+γ zβ+α–γ–



×
∞∑

k=–∞

sin((β – ck – γ )π )
sin((β + c – γ )π )

�(β – ck – γ )eiπc(k+)[λ(λ + z)]ck

�(β + α – ck – γ )�( – α + ck + γ )

× z–ck

[
–(λ + z)�μ,β–ck–γ ;α+β–ck–γ (z, –n, z)

+
(β – ck – γ )

(α + β – ck – γ )
z�μ,+β–ck–γ ;+α+β–ck–γ (z, –n, z)

]

(
Re(μ) > ;β ,γ ,α ∈C;Re(a) > ,β – cn – γ ∈ C \Z–

;n ∈N
)

(.)

for –λ on C() (defined by λ = –z
 – z



√
 + eiθ , –π < θ < π ), λ �= , |λ| <  and |z| < .

Proof Replacing z by –λ (λ ∈ C), s by –n (n ∈ N), a = z (Re(z) > ) in Theorem . and
appealing to (.) gives the result. �
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