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Abstract
In this paper, we propose a new fractional sub-equation method for finding exact
solutions of fractional partial differential equations (FPDEs) in the sense of modified
Riemann-Liouville derivative, which is the fractional version of the known (G′/G)
method. To illustrate the validity of this method, we apply it to the space-time
fractional Fokas equation, the space-time fractional (2 + 1)-dimensional dispersive
long wave equations and the space-time fractional fifth-order Sawada-Kotera
equation. As a result, some new exact solutions for them are successfully established.
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1 Introduction
Fractional differential equations are generalizations of classical differential equations of
integer order. In recent decades, fractional differential equations have been the focus of
many studies due to their frequent appearance in various applications in physics, biology,
engineering, signal processing, systems identification, control theory, finance and frac-
tional dynamics. Many articles have investigated some aspects of fractional differential
equations such as the existence and uniqueness of solutions to Cauchy-type problems,
the methods for explicit and numerical solutions, and the stability of solutions [–]. In
[], Jafari et al. applied the fractional sub-equation method to construct exact solutions of
the fractional generalized reaction Duffingmodel and nonlinear fractional Sharma-Tasso-
Olver equation. In [], Baleanu et al. studied the existence and uniqueness of the solution
for a nonlinear fractional differential equation boundary-value problem by using fixed-
point methods. In [], Nyamoradi et al. investigated the existence of solutions for the
multipoint boundary value problem of a fractional order differential inclusion.
Among the investigations for fractional differential equations, research into seeking ex-

act solutions and numerical solutions of fractional differential equations is an important
topic. Many powerful and efficient methods have been proposed to obtain numerical so-
lutions and exact solutions of fractional differential equations so far. For example, these
methods include the Adomian decomposition method [–], the variational iterative
method [–], the homotopy perturbation method [–], the differential transfor-
mation method [], the finite difference method [], the finite element method [],

© 2013 Zheng and Wen; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192855571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.advancesindifferenceequations.com/content/2013/1/199
mailto:zhengbin2601@126.com
http://creativecommons.org/licenses/by/2.0


Zheng and Wen Advances in Difference Equations 2013, 2013:199 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2013/1/199

the fractional Riccati sub-equation method [–] and so on. In these investigations, we
note that many authors have sought exact and numerical solutions for fractional partial
differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative (for
example, see [, , –]). Based on these methods, a variety of fractional differential
equations have been investigated.
In this paper, we propose a new fractional sub-equation method to establish exact

solutions for fractional partial differential equations (FPDEs) in the sense of modified
Riemann-Liouville derivative defined by Jumarie [], which is a fractional version of the
known (G′/G) method [–]. This method is based on the following fractional ODE:

Dα
ξ G(ξ ) + λDα

ξG(ξ ) +μG(ξ ) = , ()

whereDα
ξG(ξ ) denotes themodified Riemann-Liouville derivative of order α forG(ξ ) with

respect to ξ .
The rest of this paper is organized as follows. In Section , we present some defini-

tions and properties of Jumarie’s modified Riemann-Liouville derivative and the expres-
sion for

Dα
ξ G(ξ )
G(ξ ) related to Eq. (). In Section , we give the description of the fractional

sub-equation method for solving FPDEs. Then in Section  we apply this method to es-
tablish exact solutions for the space-time fractional Fokas equation, the space-time frac-
tional ( + )-dimensional dispersive long wave equations and the space-time fractional
fifth-order Sawada-Kotera equation. Some conclusions are presented at the end of the
paper.

2 Jumarie’s modified Riemann-Liouville derivative and general expression for
Dα

ξ
G(ξ )

G(ξ )
Jumarie’s modified Riemann-Liouville derivative of order α is defined by the following
expression []:

Dα
t f (t) =

{


�(–α)
d
dt

∫ t
 (t – ξ )–α(f (ξ ) – f ())dξ ,  < α < ,

(f (n)(t))(α–n), n≤ α < n + ,n≥ .

We list some important properties for the modified Riemann-Liouville derivative as fol-
lows (see [, Eqs. (.)-(.)]):

Dα
t t

r =
�( + r)

�( + r – α)
tr–α , ()

Dα
t
(
f (t)g(t)

)
= g(t)Dα

t f (t) + f (t)Dα
t g(t), ()

Dα
t f

[
g(t)

]
= f ′

g
[
g(t)

]
Dα

t g(t) =Dα
g f

[
g(t)

](
g ′(t)

)α . ()

In order to obtain the general solutions for Eq. (), we suppose G(ξ ) =H(η) and a non-
linear fractional complex transformation η = ξα

�(+α) . Then by Eq. () and the first equality
in Eq. (), Eq. () can be turned into the following second ordinary differential equation

H ′′(η) + λH ′(η) +μH(η) = . ()
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By the general solutions of Eq. (), we have

H ′(η)
H(η)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

– λ
 +

√
λ–μ

 (C sinh

√
λ–μ

 η+C cosh

√
λ–μ

 η

C cosh

√
λ–μ

 η+C sinh

√
λ–μ

 η

), λ – μ > ,

– λ
 +

√
μ–λ

 ( –C sin

√
μ–λ
 η+C cos

√
μ–λ
 η

C cos

√
μ–λ
 η+C sin

√
μ–λ
 η

), λ – μ < ,

– λ
 +

C
C+Cη

, λ – μ = ,

()

where C, C are arbitrary constants.
Since Dα

ξG(ξ ) =Dα
ξH(η) =H ′(η)Dα

ξ η =H ′(η), we obtain

Dα
ξG(ξ )
G(ξ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

– λ
 +

√
λ–μ

 (
C sinh

√
λ–μ

�(+α) ξα+C cosh

√
λ–μ

�(+α) ξα

C cosh

√
λ–μ

�(+α) ξα+C sinh

√
λ–μ

�(+α) ξα

), λ – μ > ,

– λ
 +

√
μ–λ

 (
–C sin

√
μ–λ

�(+α) ξα+C cos

√
μ–λ

�(+α) ξα

C cos

√
μ–λ

�(+α) ξα+C sin

√
μ–λ

�(+α) ξα

), λ – μ < ,

– λ
 +

C�(+α)
C�(+α)+Cξα , λ – μ = .

()

3 Description of the fractional sub-equationmethod
In this section we describe the main steps of the fractional sub-equation method for find-
ing exact solutions of FPDEs.
Suppose that a fractional partial differential equation, say in the independent variables

t,x,x, . . . ,xn, is given by

P
(
u, . . .uk ,Dα

t u, . . . ,D
α
t uk ,D

α
xu, . . . ,D

α
xuk , . . . ,

Dα
xnu, . . . ,D

α
xnuk ,D

α
t u, . . . ,Dα

t uk ,Dα
x u, . . .

)
= , ()

where ui = ui(t,x,x, . . . ,xn), i = , . . . ,k, are unknown functions, P is a polynomial in ui
and their various partial derivatives include fractional derivatives.
Step . Suppose that

ui(t,x,x, . . . ,xn) =Ui(ξ ), ξ = ct + kx + kx + · · · + knxn + ξ. ()

Then by the second equality in Eq. (), Eq. () can be turned into the following fractional
ordinary differential equation with respect to the variable ξ :

P̃
(
U, . . . ,Uk , cαDα

ξU, . . . , cαDα
ξUk ,kα

 D
α
ξU, . . . ,kα

 D
α
ξUk , . . . ,kα

nD
α
ξU, . . . ,

kα
nD

α
ξUk , cαDα

ξ U, . . . , cαDα
ξ Uk ,kα Dα

ξ U, . . .
)
= . ()

Step . Suppose that the solution of () can be expressed by a polynomial in (
Dα

ξ G
G ) as

follows:

Uj(ξ ) =
mj∑
i=

aj,i
(Dα

ξG
G

)i

, j = , , . . . ,k, ()
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where G = G(ξ ) satisfies Eq. (), and aj,i, i = , , . . . ,m, j = , , . . . ,k, are constants to be
determined later with aj,m �= . The positive integer m can be determined by consider-
ing the homogeneous balance between the highest order derivatives and nonlinear terms
appearing in ().
Step . Substituting () into () and using (), collecting all terms with the same order

of (
Dα

ξ G
G ) together, the left-hand side of () is converted into another polynomial in (

Dα
ξ G
G ).

Equating each coefficient of this polynomial to zero yields a set of algebraic equations for
aj,i, i = , , . . . ,m, j = , , . . . ,k.
Step . Solving the equation system in Step  and using (), we can construct a variety

of exact solutions for Eq. ().

Remark  If we set α =  in Eq. (), then it becomesG′′(ξ )+λG′(ξ )+μG(ξ ) = ,which is the
foundation of the known (G′/G) method for solving partial differential equations (PDEs).
So, in this way, the described fractional sub-equationmethod above is the extension of the
(G′/G) method to fractional case.

Remark  The idea of the transformation from n independent variables to one indepen-
dent variable denoted in Eq. () is similar to that in [, Eq. ()], [, Eq. ()], and [,
Eq. ()]. After applying this transformation to Eq. (), by use of the second equality of Eq.
(), the original fractional partial differential equation can be transformed into another
fractional ordinary differential equation in one independent variable.

4 Applications of themethod
4.1 Space-time fractional Fokas equation
We consider the space-time fractional Fokas equation


∂αq

∂tα ∂xα

–

∂αq
∂xα ∂xα


+

∂αq
∂xα ∂xα


+ 

∂αq
∂xα



∂αq
∂xα


+ q

∂αq
∂xα

 ∂xα

– 

∂αq
∂yα

 ∂yα


= ,  < α ≤ . ()

In [], the authors solved Eq. () by a fractional Riccati sub-equation method and ob-
tained some exact solutions for it. Now we will apply the method described in Section 
to Eq. ().
Suppose that q(x, y, t) =U(ξ ), where ξ = ct + kx + kx + ly + ly + ξ, k, k, l, l, c,

ξ are all constants with k,k, l, l, c �= . Then by use of the second equality in Eq. (), Eq.
() can be turned into

cαkα
 D

α
ξ U – kα kα

D
α
ξ U + kα kα

 D
α
ξ U

+ kα
 k

α

(
Dα

ξU
) + kα

 k
α
UDα

ξ U – lα l
α
D

α
ξ U = . ()

Suppose that the solution of Eq. () can be expressed by

U(ξ ) =
m∑
i=

ai
(Dα

ξG
G

)i

, ()
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where G =G(ξ ) satisfies Eq. (). By balancing the order between the highest order deriva-
tive term and nonlinear term in Eq. (), we can obtain m = . So, we have

U(ξ ) = a + a
(Dα

ξG
G

)
+ a

(Dα
ξG
G

)

. ()

Substituting () into () and collecting all the terms with the same power of (
Dα

ξ G
G )

together, equating each coefficient to zero, yield a set of algebraic equations. Solving these
equations yields

a =
kα kα

 λ – kα
 kα λ + kα kα

μ – kα
 kα μ – cαkα

 + lα lα
kα

 kα


,

a = λ
(
kα – kα

)
,

a = kα – kα .

Substituting the result above into Eq. () and combining with (), we can obtain the
following exact solutions to Eq. ().
When λ – μ > ,

q(t,x,x, y, y)

=
kα kα

 λ – kα
 kα λ + kα kα

μ – kα
 kα μ – cαkα

 + lα lα
kα

 kα


+ λ
(
kα – kα

)[
–

λ


+

√
λ – μ



(C sinh
√

λ–μ

�(+α) ξα +C cosh
√

λ–μ

�(+α) ξα

C cosh
√

λ–μ

�(+α) ξα +C sinh
√

λ–μ

�(+α) ξα

)]

+
(
kα – kα

)[
–

λ


+

√
λ – μ



(C sinh
√

λ–μ

�(+α) ξα +C cosh
√

λ–μ

�(+α) ξα

C cosh
√

λ–μ

�(+α) ξα +C sinh
√

λ–μ

�(+α) ξα

)]

,

()

where ξ = ct + kx + kx + ly + ly + ξ.
When λ – μ < ,

q(t,x,x, y, y)

=
kα kα

 λ – kα
 kα λ + kα kα

μ – kα
 kα μ – cαkα

 + lα lα
kα

 kα


+ λ
(
kα – kα

)[
–

λ


+

√
μ – λ



(–C sin
√

μ–λ

�(+α) ξα +C cos
√

μ–λ

�(+α) ξα

C cos
√

μ–λ

�(+α) ξα +C sin
√

μ–λ

�(+α) ξα

)]

+
(
kα – kα

)[
–

λ


+

√
μ – λ



(–C sin
√

μ–λ

�(+α) ξα +C cos
√

μ–λ

�(+α) ξα

C cos
√

μ–λ

�(+α) ξα +C sin
√

μ–λ

�(+α) ξα

)]

, ()

where ξ = ct + kx + kx + ly + ly + ξ.
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When λ – μ = ,

q(t,x,x, y, y)

=
kα kα

 λ – kα
 kα λ + kα kα

μ – kα
 kα μ – cαkα

 + lα lα
kα

 kα


+ λ
(
kα – kα

)[
–

λ


+

C�( + α)
C�( + α) +Cξα

]

+
(
kα – kα

)[
–

λ


+

C�( + α)
C�( + α) +Cξα

]

, ()

where ξ = ct + kx + kx + ly + ly + ξ.

Remark  As one can see, the established solutions for the space-time fractional Fokas
equation above are different from the results in [] and are new exact solutions so far to
our best knowledge.

Remark  Themethod used above in solving Eq. () can also be used to obtain solutions
to initial or boundary value problems. For example, if we add the initial value condition

q(,x,x, y, y) = tan
(√

x + x + y + y
�(.)

)
,

then, after substituting this initial value condition to the trigonometric solutions obtained
in Eq. () and fulfilling some basic comparison and computation, one can see that α = .,
k = , k = , l = l = , ξ = ,C = , λ = ,μ = , c = 

 +
√
. So, we obtain the solution

to the initial value problem as

q(t,x,x, y, y) = tan
(√

x + x + y + y + (  + 
√
)t

�(.)

)
.

4.2 Space-time fractional (2 + 1)-dimensional dispersive long wave equations
We consider the following space-time fractional ( + )-dimensional dispersive long wave
equations⎧⎨⎩ ∂αu

∂yα ∂tα + ∂αv
∂xα + ∂α (u ∂αu

∂xα )
∂yα = ,

∂αv
∂tα + ∂αu

∂xα + ∂α (uv)
∂xα + ∂αu

∂xα ∂yα = ,
 < α ≤ , ()

which are the known ( + )-dimensional dispersive long wave equations [–]:{
uyt + vxx + (uux)y = ,
vt + ux + (uv)x + uxxy = .

()

Some types of exact solutions for Eqs. () have been obtained in [–] by use of vari-
ous methods including the Riccati sub-equation method [, , ], the nonlinear trans-
formation method [], the Jacobi function method [, , ], the (G′/G)-expansion
method [], the modified CK’s direct method [], the EXP-function method [],
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the Hopf-Cole transformation method [], the modified extended Fan’s sub-equation
method [, ], the generalized algebraic method []. But we notice that so far no re-
search has been pursued for Eqs. (). In the following, we will apply the proposed frac-
tional sub-equation method to Eqs. ().
To begin with, we suppose u(x, y, t) =U(ξ ), v(x, y, t) = V (ξ ), where ξ = kx+ ky+ ct + ξ,

k, k, c, ξ are all constants with k,k, c �= . Then by use of the second equality in Eq. (),
Eqs. () can be turned into{

cαkα
Dα

ξ U + kα Dα
ξ V + kα

 kα
 (UDα

ξ U + (Dα
ξU)) = ,

cαDα
ξV + kα

 Dα
ξU + kα

 Dα
ξ (UV ) + kα kα

Dα
ξ U = .

()

Suppose that the solution of Eqs. () can be expressed by

{
U(ξ ) =

∑m
i= ai(

Dα
ξ G
G )i,

V (ξ ) =
∑m

i= bi(
Dα

ξ G
G )i.

()

Balancing the order ofDα
ξ V andUDα

ξ U ,Dα
ξ (UV ) andDα

ξ U in (), we can obtainm = ,
m = . So, we have{

U(ξ ) = a + a(
Dα

ξ G
G ),

V (ξ ) = b + b(
Dα

ξ G
G ) + b(

Dα
ξ G
G ).

()

Substituting () into (), using Eq. () and collecting all the terms with the same power
of (

Dα
ξ G
G ) together, equating each coefficient to zero, yield a set of algebraic equations. Solv-

ing these equations yields

a =
±kα λ – cα

kα


, a = ±kα
 , b = –kα

 k
α
μ – ,

b = –kα
 k

α
λ, b = –kα

 k
α
 .

Substituting the result above into Eq. () and combining with (), we can obtain the
following exact solutions to Eqs. ().
When λ – μ > ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t) =
±kα λ–cα

kα


± kα
 [–

λ
 +

√
λ–μ

 (
C sinh

√
λ–μ

�(+α) ξα+C cosh

√
λ–μ

�(+α) ξα

C cosh

√
λ–μ

�(+α) ξα+C sinh

√
λ–μ

�(+α) ξα

)]

– 
k

α
 [– λ

 +
√

λ–μ

 (
C sinh

√
λ–μ

�(+α) ξα+C cosh

√
λ–μ

�(+α) ξα

C cosh

√
λ–μ

�(+α) ξα+C sinh

√
λ–μ

�(+α) ξα

)],

v(x, y, t) = –kα
 kα

μ – 

– kα
 kα

λ[– λ
 +

√
λ–μ

 (
C sinh

√
λ–μ

�(+α) ξα+C cosh

√
λ–μ

�(+α) ξα

C cosh

√
λ–μ

�(+α) ξα+C sinh

√
λ–μ

�(+α) ξα

)]

– kα
 kα

 [–
λ
 +

√
λ–μ

 (
C sinh

√
λ–μ

�(+α) ξα+C cosh

√
λ–μ

�(+α) ξα

C cosh

√
λ–μ

�(+α) ξα+C sinh

√
λ–μ

�(+α) ξα

)],

()

where ξ = kx + ky + ct + ξ.
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When λ – μ < ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t) =
±kα λ–cα

kα


± kα
 [–

λ
 +

√
μ–λ

 (
–C sin

√
μ–λ

�(+α) ξα+C cos

√
μ–λ

�(+α) ξα

C cos

√
μ–λ

�(+α) ξα+C sin

√
μ–λ

�(+α) ξα

)]

– 
k

α
 [– λ

 +
√

μ–λ

 (
–C sin

√
μ–λ

�(+α) ξα+C cos

√
μ–λ

�(+α) ξα

C cos

√
μ–λ

�(+α) ξα+C sin

√
μ–λ

�(+α) ξα

)],

v(x, y, t) = –kα
 kα

μ – 

– kα
 kα

 λ[– λ
 +

√
μ–λ

 (
–C sin

√
μ–λ

�(+α) ξα+C cos

√
μ–λ

�(+α) ξα

C cos

√
μ–λ

�(+α) ξα+C sin

√
μ–λ

�(+α) ξα

)]

– kα
 kα

 [–
λ
 +

√
μ–λ

 (
–C sin

√
μ–λ

�(+α) ξα+C cos

√
μ–λ

�(+α) ξα

C cos

√
μ–λ

�(+α) ξα+C sin

√
μ–λ

�(+α) ξα

)],

()

where ξ = kx + ky + ct + ξ.
When λ – μ = ,

⎧⎪⎪⎨⎪⎪⎩
u(x, y, t) =

±kα λ–cα

kα


± kα
 [–

λ
 +

C�(+α)
C�(+α)+Cξα ] – 

k
α
 [– λ

 +
C�(+α)

C�(+α)+Cξα ],

v(x, y, t) = –kα
 kα

μ –  – kα
 kα

λ[– λ
 +

C�(+α)
C�(+α)+Cξα ]

– kα
 kα

 [–
λ
 +

C�(+α)
C�(+α)+Cξα ],

()

where ξ = kx + ky + ct + ξ.

Remark  The established solutions in Eqs. ()-() are new exact solutions for the
space-time fractional ( + )-dimensional dispersive long wave equations.

4.3 Space-time fractional fifth-order Sawada-Kotera equation
We consider the space-time fractional fifth-order Sawada-Kotera equation

Dα
t u +Dα

x u + uDα
x u + 

(
Dα

x uD
α
x u + uDα

x u
)
= ,  < α ≤ , ()

which is the variation of the fifth-order Sawada-Kotera equation []

ut + uxxxxx + uxu + (uxuxx + uuxxx) = . ()

Now we apply the proposed method to Eq. (). To begin with, we suppose u(x, t) =U(ξ ),
where ξ = kx + ct + ξ, k, c, ξ are all constants with k, c �= . Then, by use of the second
equality in Eq. (), Eq. () can be turned into

cαDα
ξU + kαDα

ξ U + kαUDα
ξU + kα

(
Dα

ξUDα
ξ U +UDα

ξ U
)
= . ()

Suppose that the solution of Eq. () can be expressed by

U(ξ ) =
m∑
i=

ai
(Dα

ξG
G

)i

. ()
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Balancing the order of U () and UDα
ξ U in Eq. (), we havem = . So,

U(ξ ) = a + a
(Dα

ξG
G

)
+ a

(Dα
ξG
G

)

. ()

Substituting () into (), using Eq. () and collecting all the terms with the same power
of (

Dα
ξ G
G ) together, equating each coefficient to zero, yield a set of algebraic equations. Solv-

ing these equations yields

a = –
kαμ + kαλ ± √

kαμ – kαμλ + kαλ – kαcα

kα
,

a = –kαλ, a = –kα .

Substituting the result above into Eq. () and combining with (), we can obtain corre-
sponding exact solutions to Eq. ().
When λ – μ > ,

u(x, t) = –
kαμ + kαλ ± √

kαμ – kαμλ + kαλ – kαcα

kα

– kαλ

[
–

λ


+

√
λ – μ



(C sinh
√

λ–μ

�(+α) ξα +C cosh
√

λ–μ

�(+α) ξα

C cosh
√

λ–μ

�(+α) ξα +C sinh
√

λ–μ

�(+α) ξα

)]

– kα
[
–

λ


+

√
λ – μ



(C sinh
√

λ–μ

�(+α) ξα +C cosh
√

λ–μ

�(+α) ξα

C cosh
√

λ–μ

�(+α) ξα +C sinh
√

λ–μ

�(+α) ξα

)]

, ()

where ξ = kx + ct + ξ.
When λ – μ < ,

u(x, t) = –
kαμ + kαλ ± √

kαμ – kαμλ + kαλ – kαcα

kα

– kαλ

[
–

λ


+

√
μ – λ



(–C sin
√

μ–λ

�(+α) ξα +C cos
√

μ–λ

�(+α) ξα

C cos
√

μ–λ

�(+α) ξα +C sin
√

μ–λ

�(+α) ξα

)]

– kα
[
–

λ


+

√
μ – λ



(–C sin
√

μ–λ

�(+α) ξα +C cos
√

μ–λ

�(+α) ξα

C cos
√

μ–λ

�(+α) ξα +C sin
√

μ–λ

�(+α) ξα

)]

, ()

where ξ = kx + ct + ξ.
When λ – μ = ,

u(x, t) = –
kαμ + kαλ ± √

kαμ – kαμλ + kαλ – kαcα

kα

– kαλ

[
–

λ


+

C�( + α)
C�( + α) +Cξα

]

– kα
[
–

λ


+

C�( + α)
C�( + α) +Cξα

]

, ()

where ξ = kx + ct + ξ.
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Remark  The established solutions in Eqs. ()-() are new exact solutions for the
space-time fractional fifth-order Sawada-Kotera equation.

5 Conclusions
We have proposed a new fractional sub-equation method for solving FPDEs success-
fully, which is the fractional version of the known (G′/G) method. As one can see, the
two nonlinear fractional complex transformations for ξ and η used here are very impor-
tant. The first transformation ensures that a certain fractional partial differential equa-
tion can be turned into another fractional ordinary differential equation, the solutions
of which can be expressed by a polynomial in (

Dα
ξ G
G ), where G satisfies the fractional ODE

Dα
ξ G(ξ )+λDα

ξG(ξ )+μG(ξ ) = . The general expression for (
Dα

ξ G
G ) related to this fractional

ODE can be obtained due to the second fractional complex transformations for η. Finally,
we note that with this kind of nonlinear fractional complex transformations, it is worth
to investigate the applications of other algebraic methods to fractional partial differential
equations such as the Exp-function method, F-expansion method, Jacobi elliptic function
method and so on.
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