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1 Introduction
Solutions of differential equations with smooth enough coefficients cannot have jump

discontinuities, see for instance [1,2]. The situation is quite different for systems

described by differential equations with discontinuous right-hand sides [3]. Examples

of such systems are mechanical systems subjected to dry or Coulomb frictions [4],

optimal control problems where the control parameters are discontinuous functions of

the state [5], impulsive differential equations [6], measure differential equations, pulse

frequency modulation systems or models for biological neural nets [7]. For these sys-

tems the state variables undergo sudden changes at their points of discontinuity. The

mathematical models of many of these systems are described by multivalued differen-

tial equations or differential inclusions [8].

Let X be a Banach space with norm |·|X. Then X is a metric space with the distance

dX defined by

dX(x, y) =
∣∣x − y

∣∣
X , for any x, y ∈ X.

Let I = [0, T] be a compact real interval. We are interested in the study of the fol-

lowing multivalued nonlocal initial value problem⎧⎨
⎩
ẋ (t) ∈ F(t, x(t)), t ∈ I

x(0+) =
T∫
0
g(x(t))dt,

(1)

where F : I × X ® X is a multivalued map and g : X ® X is continuous.
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The investigation of systems subjected to nonlocal conditions started with [9] for

partial differential equations and [10] for Sturm-Liouville problems. For more recent

work we refer the interested reader to [11] and the references therein.

It is clear that solutions of (1) are solutions of the integral inclusion

x(t) ∈
T∫

0

g(x(t))dt +
∫ t

0
F(s, x(s))ds. (2)

2 Preliminaries
Definition 1 We say that f : I ® X is of bounded variation, and we write f Î BV

(I, X), if

VdX(f , I) = sup
�

m∑
i=1

dX(f (τi), f (τi−1)) < +∞,

where Π: τ0 = 0 <τ1 < ... <τm = T is any partition of I. The quantity VdX(f , I) is called

the total variation of f.

We shall denote by BV(I, X) the space of all functions of bounded variations on I

and with values in X. It is a Banach space with the norm |·|b given by∣∣f ∣∣b = ∣∣f (0+)∣∣X + VdX(f , I), for any f ∈ BV(I,X).

In order to discuss the integral inclusion (2) we present some facts from set-valued

analysis. Complete details can be found in the books [8,12,13]. Let (X, |·|X) and (Y, |·|Y)

be Banach spaces. We shall denote the set of all nonempty subsets of X having prop-

erty ℓ by ℘ℓ(X). For instance, A Î ℘c ℓ(X) means A closed in X, when ℓ = b we have

the bounded subsets of X, ℓ = cv for convex subsets, ℓ = cp for compact subsets and ℓ

= cp, cv for compact and convex subsets. The domain of a multivalued map ℜ: X ® Y

is the set domℜ = {z Î X; ℜ(z) ≠ ∅}. ℜ is convex (closed) valued if ℜ(z) is convex

(closed) for each z Î X: ℜ has compact values if ℜ(z) Î ℘cv(Y) for every z Î X; ℜ is

bounded on bounded sets if ℜ(A) = ∪zÎAℜ(z) is bounded in Y for all A Î ℘b(X) (i.e.

supzÎA{sup{|y|Y; y Î ℜ(z)}} <∞): ℜ is called upper semicontinuous (u.s.c.) on X if for

each z Î X the set ℜ(z) Î ℘cl(Y) is nonempty, and for each open subset Λ of Y con-

taining ℜ(z), there exists an open neighborhood Π of z such that ℜ(Π) ⊂ Λ. In terms

of sequences, ℜ is u.s.c. if for each sequence (zn) ⊂ X, zn ® z0, and B a closed subset

of Y such that ℜ(zn) ∩ B ≠ ∅, then ℜ(z0) ∩ B ≠ ∅. The set-valued map ℜ is called

completely continuous if ℜ(A) is relatively compact in Y for every A Î ℘(X). If ℜ is

completely continuous with nonempty compact values, then ℜ is u.s.c. if and only if ℜ

has a closed graph (i.e. zn ® z, wn ® w, wn Î ℜ(zn) ⇒ w Î ℜ(z)). When X ⊂ Y then

ℜ has a fixed point if there exists z Î X such z Î ℜ(z). A multivalued map ℜ: J ® ℘cl

(X) is called measurable if for every x Î X, the function θ : J ® ℝ defined by θ(t) =

dist(x, ℜ(t)) = inf{|x - z|X ; z Î ℜ(t)} is measurable. |ℜ(z)|Y denotes sup{|y|Y; y Î ℜ(z)}.

If A and B are two subsets of X, equipped with the metric dX, such that dX(x, y) = |x

- y|X, the Hausdorff distance between A and B is defined by

dH(A,B) = max{ρ (A,B) ,ρ (B,A)},
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Where

ρ (A,B) = sup
a∈A

dX(a,B), and dX(a,B) = inf
b∈B

dX(a, b).

It is well known that (℘b,cl(X), dH) is a metric space and so is (℘cp(X), dH).

Definition 2 (See [14,15]) Θ: I ® X is of bounded variation (with respect to dH) on I

if

V(�, I) = VdH (�, I) = sup
�

[
m∑
i=1

dH(�(ti),�(ti−1)

]
< ∞,

where the supremum is taken over all partitions Π = {ti; i = 1, 2, ..., m} of the interval

I.

Definition 3 Let XI denote the set of all functions from I into X. The Nemitskii (or

superposition) operator corresponding to F : I × X ® X is the operator

NF : XI → X,

defined by

NF(x)(t) = F(t, x(t)) for every t ∈ I.

Definition 4 The multifunction F : I X ® X is of bounded variation if for any func-

tion × Î BV(I, X) the multivalued map NF(x): I ® X is of bounded variation on I (in

the sense of Definition 2) and

VdH(F(·, x(·)), I) = VdH(NF(x), I).

Definition 5 Let Δ be a subset of I × X. We say that Δ is L ⊗ Bmeasurable if Δ

belongs to the s- algebra generated by all sets of the form J × D where J is Lebesgue

measurable in I and D is Borel measurable in X.

Theorem 6 (Generalized Helly selection principle) [[14], Theorem 5.1 p. 812] Let K be

a compact subset of the Banach space × and let Fbe a family of maps of uniformly

bounded variation from I into K. Then there exists a sequence of maps

(fn)n≥1 ⊂ Fconvergent pointwise on I to a map f : I ® K of bounded variation such

that V(f , I) ≤ supϕ∈FV(ϕ, I).
In the next theorem we shall denote by Ū and ∂U the closure and the boundary of a

set U.

Theorem 7 ([[16], Theorem 3.4, p. 34]) Let U be an open subset of a Banach space Z

with 0 Î U. Let A : Ū → Zbe a single-valued operator and B : Ū → ℘cp,cv(Z)be a mul-

tivalued operator such that

(i) A(Ū) + B(Ū) is bounded,

(ii) A is a contraction with constant k Î (0, 1/2),

(iii) B is u.s.c and compact.

Then either

(a) the operator inclusion lx Î Ax + Bx has a solution for l = 1, or

(b) there is an element u Î ∂U such that lu Î Au + Bu for some l > 1.
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3 Main results
In this section we state and prove our main result. We should point out that no semi-

continuity property is assumed on the multifunction F, which is usually the case in the

literature. We refer the interested reader to the nice collection of papers in [17] and

the references therein.

Theorem 8 Assume that the following conditions hold.

(H1) g : X ® X is continuous, g(0) = 0 and there exists θ : [0, + ∞) ® [0, + ∞) con-

tinuous and θ(r) ≤ br, with b < 1/2 and bT ≠ 1, such that

|g(u) − g(v)|X < θ(|u − v|X),

(H2) F : I × X ® ℘cp,cv(X) is of bounded variation such that

(i) (t, x) ↦ F(t, x) is L ⊗ B measurable,

(ii) there exists an integrable function q : I ® [0, + ∞) with

|F(t, x)|X ≤ q(t) for (t, x) ∈ I × X,

(iii) xk ® x as k ® ∞ pointwise implies dH (F(t, xk), F(t, x)) ® 0, k ® ∞.

Then problem (1) has at least one solution in BV(I, X).

Proof. Let Q = sup
t∈I

∫ t

0
q(s)ds. We show that there exists M > 0 such that all possible

solutions of (2) in BV(I, X), satisfy

|x|b ≤ M.

Recall that solutions of (1) satisfy

x(t) ∈
T∫

0

g(x(t))dt +
∫ t

0
F(s, x(s))ds =

T∫
0

g(x(t))dt +
∫ t

0
NF(x)(s)ds. (3)

Since the multivalued map NF(x): I ® X is of bounded variation it admits a selector f

: I ® X of bounded variation such that

VdX(f , I) ≤ VdH(NF(x), I),

see [[18], Theorem A, p. 250].

It follows from (3) that

x(t) =
T∫
0
g(x(t))dt +

∫ t
0 f (s)ds, t ∈ I. (4)

This implies

∣∣x(t)∣∣X ≤
∣∣∣∣∣∣

T∫
0

g(x(t))dt

∣∣∣∣∣∣
X

+

∣∣∣∣
∫ t

0
f (s)ds

∣∣∣∣
X

≤
T∫

0

∣∣g(x(t))∣∣Xdt +
∫ t

0

∣∣f (s)∣∣Xds.
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The condition on g and (H2) (ii) imply

|x(t)|X ≤ β

T∫
0

|x(t)|Xdt +
∫ t

0
q(s)ds.

Hence

T∫
0

|x(t)|Xdt ≤ βT

T∫
0

|x(t)|Xdt +
T∫

0

∫ t

0
q(s)dsdt.

This last inequality yields

T∫
0

|x(t)|Xdt ≤ 1
1 − βT

T∫
0

∫ t

0
q(s)dsdt.

Since

T∫
0

∫ t

0
q(s)dsdt =

T∫
0

(T − s)q(s)ds,

we obtain

T∫
0

|x(t)|Xdt ≤ 1
1 − βT

T∫
0

(T − s)q(s)ds,

so that

T∫
0

|x(t)|Xdt ≤ 2T
1 − βT

Q. (5)

Inequality (5) and the condition on g imply that

T∫
0

|g(x(t))|Xdt ≤ 2βT
1 − βT

Q.

Hence any possible solution x of (2) in BV(I, X), satisfies

|x(0+)|X ≤ 2βT

1 − βT
Q.

Let Π = {ti; i = 1, 2, ..., m} be any partition of the interval I, and let x Î BV(I, X) be

any possible solution of (2). It follows from (4) that

x(ti) − x(ti−1) =
∫ ti
ti−1

f (s)ds, i = 1, . . . ,m.

It is easily shown that

VdX(x, I) ≤ VdX(f , I) ≤ sup
�

[
m∑
i=1

∫ τi

τi−1

q(s)ds

]
≤ Q.
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Therefore

|x|b ≤ 2βT

1 − βT
Q +Q.

Letting M :=
1 + βT

1 − βT
Q,, we see that

|x|b ≤ M.

Let


 := {x ∈ BV(I,X); |x|b < M + 1}.

Define two operators

A : 
 → X, B : 
 → X

by

Ax(t) =

T∫
0

g(x(t))dt,

and

Bx(t) =
∫ t

0
F(s, x(s))ds =

∫ t

0
NF(x) (s) ds.

First, we show that A(
̄) + B(
̄) is bounded, i.e.

sup x∈
̄{sup{∣∣y∣∣b; y ∈ A(x) + B(x)}} < ∞.

Let y ∈ A
(

̄

)
+ B

(

̄

)
. Then there exists x ∈ 
̄ such that

y ∈ A(x) + B(x).

It follows from (3) that
∣∣y∣∣b ≤ M.

(H1) implies that the single-valued operator A is a contraction with constant k Î (0,

1/2).

Claim 1. The multivalued operator B has compact and convex values. For, since F : I

× X ® ℘cp,cv(X) it follows that NF : XI ® ℘cp,cv(X), i.e. has compact and convex

values. This implies that the Aumann integral∫ t

0
NF(x) (s) ds

has compact and convex values. See for instance [5].

Claim 2. B is completely continuous, i.e. B (Ω) is a relatively compact subset of BV(I,

X). Let q Î Ω be arbitrary. Then for every f Î NF (q) the function u : I ® X defined by

u(t) =
∫ t

0
f (s)ds,

satisfies

u̇ (t) = f (t), u(0 + ) = 0.

Agarwal and Boucherif Advances in Difference Equations 2011, 2011:17
http://www.advancesindifferenceequations.com/content/2011/1/17

Page 6 of 10



If we write

u = ϒf ,

then the operator ϒ: X ® X is continuous and

B = ϒ ◦ NF.

Let (Bxk)k≥1 be a sequence in B (Ω). Then the sequence (xk)k≥1 is uniformly bounded

and is of bounded variation. Theorem 4 shows that there exists a subsequence, which

we label the same, and which converges pointwise to y Î Ω. We have

∣∣Bxk − By
∣∣
b ≤ sup

�

[
m∑
i=1

∫ τi

τi−1

∣∣F(s, xk(s)) − F(s, y(s))
∣∣
Xds

]
.

Assumption (H2) (iii) implies that∣∣Bxk − By
∣∣
b → 0 as k → 0.

This proves the claim.

Claim 3. B is u.s.c. Since B is completely continuous it is enough to show that its

graph is closed. Let {(xn, yn)}n≥1 be a sequence in graph(B) and let (x, y) = limn®∞ (xn,

yn). Then yn Î B(xn), i.e yn (t) ∈
∫ t

0
F(s, xn(s))ds, t Î I. This implies that

yn (t) ∈
∫ t

0
F(s, x(s))ds +

∫ t

0
[F(s, xn(s)) − F(s, x(s))] ds.

Since xn ® x in X it follows from (H2)(ii) that

lim
n→∞ yn (t) ∈

∫ t

0
F(s, x(s))ds,

which shows that

y ∈ B(x).

Hence (x, y) Î graph(B), and B has a closed graph.

Finally, alternative (b) in Theorem 5 cannot hold due to (3) and the choice of Ω.

By Theorem 5 the inclusion

x ∈ Ax + Bx,

has at least one solution in BV(I, X). This completes the proof of the theorem.

For our second result we consider the case when

T∫
0

g(x(t))dt =

T∫
0

ψ (t) x(t)dt, where

ψ : I ® ℝ is continuous. Let

ψ0 =

T∫
0

ψ(t)dt and λ (s) =

T∫
s

ψ(t)dt
1 - ψ0

.

From the definition of the function l we infer that, if ψ* = maxtÎI |ψ(t)|,

∣∣λ(s)∣∣ ≤ 2T
1 − ψ0

ψ∗ for any s ∈ I.
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Theorem 9 Assume that the following conditions hold

(H3) ψ : I ® ℝ is continuous and ψ0 ≠ 1,

(H4) F : I × X ® ℘cp,cv(X) is of bounded variation such that

(i) (t, x) ↦ F(t, x) is L ⊗ B measurable,

(ii) there exists ω : I × [0, ∞) ® (0, ∞) continuous, nondecreasing with respect

to its second argument and

lim sup
ρ→∞

1
ρ

(
1 − ψ0 + 2ψ∗T

1 − ψ0

) T∫
0

ω (s,ρ) ds < 1, (6)

such that |F(t, x) |X ≤ ω ® (t, |x|b).

(iii) xk ® x pointwise as k ® ∞ implies dH (F (t, xk), F (t, x)) ® 0 as k ® ∞.

Then problem (1) has at least one solution in BV(I, X).

Proof. Since the multivalued map NF (x): I ® X is of bounded variation it admits a

selector h : I ® X of bounded variation such that

VdX(h, I) ≤ VdH(NF(x), I),

see [[18], Theorem A, p. 250].

Solutions of (2) satisfy

x(t) = x(0+) +
∫ t

0
h(s)ds, h ∈ NF(x). (7)

Substituting the initial condition in (7) we obtain

x(t) =

T∫
0

ψ (t) x(t)dt +
∫ t

0
h(s)ds, h ∈ NF(x)

Since ψ0 ≠ 1 it follows that

x(t) =

T∫
0

ψ (t)
1 − ψ0

∫ t

0
h(s)dsdt +

∫ t

0
h(s)ds, h ∈ NF(x).

Thus, solutions of (2) are solutions of

x(t) =

T∫
0

λ(s)h(s)ds +
∫ t

0
h(s)ds, h ∈ NF(x), (8)

and vice versa. It follows from (8)

∣∣x(t)∣∣X ≤
T∫

0

|λ (s)|ω (s, |x|b) ds +
∫ t

0
ω (s, |x|b) ds.

The upper bound on |l (s)| implies

∣∣x(t)∣∣X ≤ 2T
1 − ψ0

ψ∗
T∫

0

ω (s, |x|b) ds +
∫ t

0
ω (s, |x|b) ds, (9)
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which gives

∣∣x(0+)∣∣X ≤ 2T
1 − ψ0

ψ∗
T∫

0

ω (s, |x|b) ds.

Let Π = {ti; i = 1, 2, ..., m} be any partition of the interval I, and let x Î BV(I, X) be

any possible solution of (2). Then, it follows from (7) that

x(ti) − x(ti−1) =
∫ ti

ti−1

h(s)ds, i = 1, . . . ,m,

which leads to

VdX(x, I) ≤ VdX(h, I) ≤
T∫

0

ω (s, |x|b) ds.

Since |x|b =
∣∣x(0+)∣∣X + VdX(x, I), we have

|x|b ≤ 2T
1 − ψ0

ψ∗
T∫

0

ω (s, |x|b) ds +
T∫

0

ω (s, |x|b) ds.

Finally, we see that

|x|b ≤ 1 − ψ0 + 2ψ∗T
1 − ψ0

T∫
0

ω (s, |x|b) ds. (10)

Let

ρ0 = |x|b.

Then (10) yields

1 ≤ 1
ρ0

(
1 − ψ0 + 2ψ∗T

1 − ψ0

) T∫
0

ω (s,ρ0) ds. (11)

The condition on the function ω implies that there exists r* > 0 such that for all r >

r*

1
ρ

(
1 − ψ0 + 2ψ∗T

1 − ψ0

) T∫
0

ω (s,ρ) ds < 1. (12)

Comparing inequalities (11) and (12) we see that

ρ0 = |x|b ≤ ρ∗.

Let

� = {x ∈ BV(I,X); |x|b ≤ ρ∗}.

Then Σ is nonempty, closed, bounded and convex.

Define a multivalued operator

� : BV(I,X) → ℘cp, cv(X),
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by

�x (t) =

T∫
0

λ(s)NF(x)(s)ds +
∫ t

0
NF(x)(s)ds. (13)

Then solutions of (2) are fixed point of the multivalued operator � : � → ℘cp, cv(X).

It is clear that � (�) ⊂ �. Proceeding as in the above claims we can show that � is

u.s.c. and � (�) is compact. By the Theorem of Bohnenblust and Karlin (see Corollary

11.3 in [8]) � has a fixed point in Σ, which is a solution of the inclusion (2), and there-

fore a solution of (1).
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