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Abstract

In this article, we consider the global bifurcation result and existence of solutions for
the following general Laplacian problem,{−(φ(u′(t)))′ = λψ(u(t)) + f (t, u,λ), t ∈ (0, 1),

u(0) = u(1) = 0,
(P)

where f : [0,1] × ℝ × ℝ ® ℝ is continuous and j, ψ : ℝ ® ℝ are odd increasing
homeomorphisms of ℝ, when j, ψ satisfy the asymptotic homogeneity conditions.

1 Introduction
In this article, we consider the following general Laplacian problem,{−(φ(u′(t)))′ = λψ(u(t)) + f (t, u,λ), t ∈ (0, 1),

u(0) = u(1) = 0,
(P)

where f : [0,1] × ℝ × ℝ ® ℝ is continuous with f(t,u,0) = 0 and j, ψ : ℝ ® ℝ are odd

increasing homeomorphisms of ℝ with j(0) = ψ(0) = 0. We consider the following

conditions;

(F1) limt→0
φ(σ t)
ψ(t) = σ p−1 , for all s Î ℝ+, for some p > 1.

(F2) limt→0
φ(σ t)
ψ(t) = σ q−1 , for all s Î ℝ+, for some q > 1.

(F1) f(t,u,l) = o(|ψ(u)|) near zero, uniformly for t and l in bounded intervals.

(F2) f(t,u,l) = o(|ψ(u)|) near infinity, uniformly for t and l in bounded intervals.

(F3) uf(t,u,l) ≥ 0.

We note that jr(t) = |t|r-2t, r > 1 are special cases of j and ψ. We first prove follow-

ing global bifurcation result.

Theorem 1.1. Assume (F1), (F2), (F1), (F2) and (F3). Then for any j Î N, there exists

a connected component Cj of the set of nontrivial solutions for (P) connecting (0, lj(p))

to (∞, lj(q)) such that (u, λ) ∈ Cj implies that u has exactly j - 1 simple zeros in (0, 1),

where lj(r) is the j-th eigenvalue of (jr(u’(t)))’ + ljr(u(t)) = 0 and u(0) = u(1) = 0.

By the aid of this theorem, we can prove the following existence result of solutions.

Theorem 1.2. Consider problem{−(φ(u′(t)))′ = g(t, u), t ∈ (0, 1),
u(0) = u(1) = 0,

(A)
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where g : [0,1] × ℝ × ℝ ® ℝ is continuous and j is odd increasing homeomorphism of ℝ,

which satisfy (F1) and (F2) with j = ψ. Also ug(t, u) ≥ 0 and there exist positive integers k,

n with k ≤ n such that μ = lims→0
g(t,s)
φ(s) < λk(p) ≤ λn(q) < lim|s|→∞

g(t,s)
φ(s) = ν uniformly in

t Î [0,1]. Then for each integer j with k ≤ j ≤ n, problem (A) has a solution with exactly j -

1 simple zeros in (0, 1). Thus, (A) possesses at least n-k + 1 nontrivial solutions.

In [1], the authors studied the existence of solutions and global bifurcation results

for {−(tN−1φ(u′(t)))′ = tN−1λψ(u(t)) + tN−1f (t, u, λ), t ∈ (0,R),
u′(0) = u(R) = 0.

The main purpose of this article is to derive the same result for N = 1 case with

Dirichlet boundary condition which was not considered in [1].

For p-Laplacian problems, i.e., j = ψ = jp, many authors have studied for the exis-

tence and multiplicity of nontrivial solutions [2-6]. In [2,5,6], the authors used fixed

point theory or topological degree argument. Also global bifurcation theory was mainly

employed in [3,4]. Moreover, there are some studies related to general Laplacian pro-

blems [3,7,8], but most of them are about j = ψ case. In [3], the authors proved some

results under several kinds of boundary conditions and in [7], the authors considered a

system of general Laplacian problems. In [8], the author studied global continuation

result for the singular problem. In this paper, we mainly study the global bifurcation

phenomenon for general Laplacian problem (P) and prove the existence and multipli-

city result for (A).

This article is organized as follows: In Section 2, we set up the equivalent integral

operator of (P) and compute the degree of this operator. In Section 3, we verify the

existence of global bifurcation having bifurcation points at zero and infinity simulta-

neously. In Section 4, we introduce an existence result as an application of the pre-

vious result and give some examples.

2 Degree estimate
Let us consider problem (P) with f ≡ 0, i.e.,{−(φ(u′(t)))′ = λψ(u(t)), t ∈ (0, 1),

u(0) = u(1) = 0.
(P)

We introduce the equivalent integral operator of problem (P) . For this, we consider

the following problem{
(φ(u′(t)))′ = h(t), a.e., t ∈ (0, 1),
u(0) = u(1) = 0,

(AP)

where h Î L1(0, 1). Here, a function u is called a solution of (AP) if u ∈ C1
0[0, 1]

with j(u’) absolutely continuous which satisfies (AP). We note that (AP) is equivalently

written as

u(t) = G(h)(t) =
∫ t

0
φ−1

(
a(h) +

∫ s

0
h(ξ)dξ

)
ds,
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where a : L1(0, 1) ® ℝ is a continuous function which sends bounded sets of L1 into

bounded sets of ℝ and satisfying

∫ 1

0
φ−1

(
a(h) +

∫ s

0
h(ξ)dξ

)
ds = 0. (1)

It is known that G : L1(0, 1) → C1
0[0, 1] is continuous and maps equi-integrable sets

of L1(0, 1) into relatively compact sets of C1
0[0, 1]. One may refer Manásevich-Mawhin

[4,3] and Garcia-Huidobro-Manásevich-Ward [7] for more details. If we define the

operator Tλ
φψ : C1

0[0, 1] → C1
0[0, 1] by

Tλ
φψ(u)(t) = G(−λψ(u))(t) =

∫ t

0
φ−1

(
a(−λψ(u)) +

∫ s

0
−λψ(u(ξ))dξ

)
ds, (2)

then (P) is equivalently written as u = Tλ
φψ(u) . Now let us consider p-Laplacian pro-

blem {−(φp(u′(t)))′ = λφp(u(t)), t ∈ (0, 1),
u(0) = u(1) = 0.

(Ep)

By the similar argument, we can also get the equivalent integral operator of problem

(Ep), which is known by Garcia-Huidobro-Manásevich-Schmitt [1]. Let us define

Tλ
p : C1

0[0, 1] → C1
0[0, 1] by

Tλ
p (u)(t) =

∫ t

0
φ−1
p

(
ap

(−λφp(u)
))

+
∫ s

0
−λφp(u(ξ))dξ)ds, (3)

where ap : L1(0, 1) ® ℝ is a continuous function which sends bounded sets of L1

into bounded sets of ℝ and satisfying

∫ 1

0
φ−1
p

(
ap(h) +

∫ s

0
h(ξ)dξ

)
ds = 0, for all h ∈ L1(0, 1).

Note that ap has homogineity property, i.e., ap(lt) = lap(t). Problem (Ep) can be

equiva-lently written as u = Tλ
p (u) . Obviously, Tλ

φψ and Tλ
p are completely continuous.

The main purpose of this section is to compute the Leray-Schauder degree of

I − Tλ
φψ . Following Lemma is for the property of j and ψ with asymptotic homogene-

ity condition (F1) and (F2), which is very useful for our analysis. The proof can be

modified from Proposition 4.1 in [9].

Lemma 2.1. Assume that j, ψ are odd increasing homeomorphisms of ℝ which satisfy

(F1) and (F2). Then, we have

(i) lim
t→0

φ−1(σ t)
ψ−1(t)

= φ−1
p (σ ), for all σ ∈ R+, for some p > 1, (4)

and

(ii) lim
|t|→∞

φ−1(σ t)
ψ−1(t)

= φ−1
p (σ ), for all σ ∈ R+, for some q > 1. (5)

To compute the degree, we will make use of the following well-known fact [10].
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Lemma 2.2. If l is not an eigenvalue of (Ep), p > 1 and r > 0, then

deg
(
I − Tλ

p ,B(0, r), 0
)
=

{
1 ifλ < λ1(p),
(−1)k ifλ ∈ (λk(p),λk+1(p)).

(6)

Now, let us compute deg
(
I − Tλ

φψ ,B(0, r), 0
)
when l is not an eigenvalue of (Ep).

Theorem 2.3. Assume that j, ψ are odd increasing homeomorphisms of ℝ which

satisfy (F1) and (F2). then,

(i) The Leray-Schauder degree of I − Tλ
φψ is defined for B(0, ε), for all sufficiently small

ε.

Moreover, we have

deg
(
I − Tλ

φψ ,B(0, ε), 0
)
=

{
1 ifλ < λ1(p),
(−1)m ifλ ∈ (λm(p),λm+1(p)).

(7)

(ii) The Leray-Schauder degree of I − Tλ
φψ is defined for B(0, M), for all sufficiently

large M, and

deg
(
I − Tλ

φψ ,B(0,M), 0
)
=

{
1 ifλ < λ1(q),
(−1)l ifλ ∈ (λl(q),λl+1(q)).

(8)

Proof: We give the proof for assertion (i). Proof for the latter case is similar. Define

Tλ : C1
0[0, 1] × [0, 1] → C1

0[0, 1] by Tλ(u, τ ) = τTλ
φψ(u) + (1 − τ )Tλ

p (u) . We claim that

the Leray-Schauder degree for I - Tl(·, τ) is defined for B(0, ε) in C1
0[0, 1] for all small

ε. Indeed, suppose there exist sequences {un}, {τn} and {εn} with εn ® 0 and ∥un∥0 = εn
such that un = Tl(un, τn), i.e.,

un(t) = τn

∫ t

0
φ−1

(
a(−λψ(un)) +

∫ s

0
−λψ(un(ξ))dξ

)
ds

+ (1 − τn)
∫ t

0
φ−1
p

(
ap

(−λφp(un)
)
+

∫ s

0
−λφp(un(ξ))dξ

)
ds.

Setting vn(t) =
un(t)
εn

, we have ∥vn∥0 = 1,

vn(t) =
τn

εn

∫ t

0
φ−1

(
a(−λψ(un)) +

∫ s

0
−λψ(un(ξ))dξ

)
ds

+ (1 − τn)
∫ t

0
φ−1
p

(
ap

(−λφp(vn)
)
+

∫ s

0
−λφp

(
vn(ξ)

)
dξ

)
ds,

and

v′n(t) =
τn

εn
φ−1

(
a(−λψ(un)) +

∫ t

0
−λψ(un(ξ))dξ

)

+ (1 − τn)φ−1
p

(
ap

(−λφp(vn)
)
+

∫ s

0
−λφp

(
vn(ξ)

)
dξ

)
.

Now, we show that {v′n} is uniformly bounded. Since ∥vn∥0 = 1,∫ t
0 −λφp(vn(ξ))dξ ≤ λ . Moreover, there exists C1 such that ap(-ljp(vn)) ≤ C1. These

results imply the uniform boundedness of φ−1
p

(
ap(−λφp(vn)) +

∫ t
0 −λφp(vn(ξ))dξ

)
.
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Let

qn(t) =
1
εn

φ−1
(
a(−λψ(un) +

∫ t

0
−λψ(un(ξ))dξ

)
,

and

dn(t) =
∫ t

0
λψ(un(ξ))dξ .

Then dn Î C[0, 1], and

||dn||0 = maxt∈[0,1]|
∫ t

0
λψ(un(ξ))dξ | ≤

∫ 1

0
λψ(||un||0)dξ ≤ λψ(εn).

Since
∫ 1
0 φ−1

(
a(−λψ(un)) − dn(s)

)
ds = 0 , we have

|a(−λψ(un))| ≤ λψ(εn).

Otherwise,
∫ 1
0 φ−1

(
a(−λψ(un)) − dn(s)

)
ds < 0 (or > 0). Now, we show that

1
εn

φ−1(2λψ(εn)) is bounded. Indeed, suppose that it is not true, i.e.,

1
εn

φ−1(2λψ(εn)) → ∞ as n ® ∞. Then, for arbitrary A > 0, there exists N0 Î N such

that
1
εn

φ−1(2λψ(εn)) ≥ A , for all n >N0. This implies that 2λ ≥ φ(Aεn)
ψ(εn)

for all n >N0.

However,
φ(Aεn)
ψ(εn)

→ φp(A) as n ® ∞. This is a contradiction. Thus by the above

inequality, we get

1
εn

φ−1
(
a(−λψ(un)) +

∫ t

0
−λψ(un(ξ))dξ

)
≤ 1

εn
φ−1 (

2λψ(εn)
) ≤ C2,

for some C2 > 0. Therefore, {v′n} is uniformly bounded. By the Arzela-Ascoli Theo-

rem, {vn} has a uniformly convergent subsequence in C[0,1] relabeled as the original

sequence so let limn® ∞, vn = v. Now, we claim that qn(t) ® q(t), where

q(t) = φ−1
p

(
ap(−λφp(v)) +

∫ t

0
−λφp(v(ξ))dξ

)
.

Clearly,

qn(t) =
1
εn

φ−1
(
a(−λψ(un)) +

∫ t

0
−λψ(un(ξ))dξ

)

=
φ−1

((
a(−λψ(un))

φ(εn)
+

∫ t
0 −λ

ψ(un(ξ)εn)
φ(εn)

dξ
)

φ(εn)
)

ψ−1(φ(εn))
ψ−1(φ(εn))
φ−1(φ(εn))

.

Since |a(−λψ(un))| ≤ λψ(εn),
a(−λψ(un))

φ(εn)
has a convergent subsequence. Without

loss of generality, we say that the sequence { a(−λψ(un))
φ(εn)

} converges to d. Also by the
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facts that
ψ(vn(ξ)εn)

φ(εn)
→ φp(v(ξ)) as n ® ∞, j(εn) ® 0 and (i) of Lemma 2.1, we

obtain

qn(t) → φp

(
d +

∫ t

0
−λφp(v(ξ))dξ

)
.

Since
∫ 1
0 φ−1

(
a(−λψ(un)) +

∫ s
0 −λψ(un(ξ))dξ

)
ds = 0 ,

1
εn

∫ 1

0
φ−1

(
a(−λψ(un)) +

∫ s

0
−λψ(un(ξ))dξ

)
ds = 0.

Thus
∫ 1
0 φ−1

p

(
d +

∫ s
0 −λφp(v(ξ))dξ

)
ds = 0 and by the definition of ap, d = ap(- ljp

(v)). Therefore, we can easily see that

v(t) =
∫ t

0
φ−1
p

(
ap(−λφp(v)) +

∫ s

0
−λφp(v(ξ))dξ

)
ds,

and

∫ 1

0
φ−1
p

(
ap(−λφp(v)) +

∫ s

0
−λφp(v(ξ))dξ

)
ds = 0.

Consequently, v is a solution of (Ep). Since λ�∈{λn(p)} , v ≡ 0 and this fact yields a

contradiction. By the properties of the Leray-Schauder degree, we get

deg
(
I − Tλ

p ,B(0, ε), 0
)
= deg

(
I − Tλ(·, 0),B(0, ε), 0)

= deg
(
I − Tλ(·, 1),B(0, ε), 0)

= deg
(
I − Tλ

φψ ,B(0, ε), 0
)

and the proof is completed by Lemma 2.2.

3 Existence of unbounded continuum
We begin with this section recalling what we mean by bifurcation at zero and at infi-

nity. Let X be a Banach space with norm ∥ · ∥, and let F : X × I → X be a completely

continuous operator, where I is some real interval. Consider the equation

u = F(u,λ) (9)

Definition 3.1. Suppose that F(0,λ) = 0 for all l in I, and that λ̂ ∈ I . We say that

(0, λ̂) is a bifurcation point of (9) at zero if in any neighborhood of (0, λ̂) in X × I, there

is a nontrivial solution of (9). Or equivalently, if there exist sequences {xn ≠ 0} and {ln}

with (||xn||,λn) → (0, λ̂)and such that (xn, ln) satisfies (9) for each n Î N.

Definition 3.2. We say that (∞, λ̂) is a bifurcation point of (9) at infinity if in any

neigh-borhood of (∞, λ̂) in X × I, there is a nontrivial solution of (9). Equivalently, if

there exist sequences {xn ≠ 0} and {ln} with (||xn||,λn) → (∞, λ̂)and such that (xn, ln)

satisfies (9) for each n Î N.
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Let u be a solution of problem (P). Define F(u,λ) by

F(u,λ)(t) =
∫ t

0
φ−1

(
a(−λψ(u) − f (·, u,λ)) +

∫ s

0
−λψ(u(ξ)) − f (ξ , u,λ)dξ

)
ds. (10)

We note that (P) is written as u = F(u,λ) . It is clear that

F : C1
0[0, 1] × R → C1

0[0, 1] is a completely continuous operator.

Lemma 3.3. (i) Assume (F1) and (F1). if (0, λ̂) is a bifurcation point of (P), then

λ̂ = λn(p) for some p Î N.

(ii) Assume (F2) and (F2). if (∞, λ̂) is a bifurcation point of (P), then λ̂ = λn(q) for

some q Î N.

Proof: We prove assertion (i). Suppose that (∞, λ̂) is a bifurcation point of (P).

Then there exists a sequence {(un, ln)} in C1
0[0, 1] × R with (un,λn) → (0, λ̂) and

such that (un, ln) satisfies un = F(un,λn) for each n Î N. Equivalently, (un, ln) satisfies

un(t) =
∫ t

0
φ−1

(
a(−λnψ(un) − f (·, un,λn)) +

∫ s

0
−λnψ(un(ξ)) − f (ξ , un,λn)dξ

)
ds

with
∫ 1
0 φ−1

(
a(−λnψ(un) − f (·, un,λn)) +

∫ s
0 −λnψ(un(ξ)) − f (ξ , un,λ)dξ

)
ds = 0.

Let εn = ∥un∥0 and vn(t) =
un(t)
εn

. Then

vn(t) =
1
εn

∫ 1

0
φ−1

(
a(−λnψ(un) − f (·, un,λn)) +

∫ s

0
−λnψ(un(ξ)) − f (ξ , un,λ)dξ

)
ds,

and

v′n(t) =
1
εn

φ−1
(
a(−λnψ(un) − f (·, un,λn)) +

∫ s

0
−λnψ(un(ξ)) − f (ξ , un,λ)dξ

)
.

Now, define dn(t) =
∫ t
0 −λnψ(un(ξ)) − f (ξ , un,λn)dξ . Since f(t, u, l) = o(|ψ(u)|) near

zero, uniformly for t and l, for some constants K1 and K2.

||dn||0 = maxt∈[0,1]|
∫ t

0
λnψ(un(ξ)) + f (ξ , un,λn)dξ |

≤ maxt∈[0,1]
∫ t

0
|λnψ(un(ξ))| + |f (ξ , un,λn)|dξ

≤
∫ 1

0
λnψ(||un||0) + K1ψ(||un||0)dξ

≤ K2ψ(εn).

Since
∫ 1
0 φ−1

(
a(−λnψ(un) − f (·, un,λn)) − dn(s)

)
ds = 0 , we have

|a(−λnψ(un) − f (·, un,λn))| ≤ K2ψ(εn).

Otherwise,
∫ 1
0 φ−1

(
a(−λnψ(un) − f (·, un,λn)) − dn(s)

)
ds > 0 or < 0. Now, let us

verify that 1
εn

φ−1(2K2ψ(εn)) is bounded. If 1
εn

φ−1(2K2ψ(εn)) → ∞ as n ® ∞ then for

arbitrary A > 0, there exists N0 Î N such that
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1
εn

φ−1(2K2ψ(εn)) ≥ A, for all n ≥ N0.

This implies that 2K2 ≥ φ(Aεn)
ψ(εn)

, for all n ≥ N0. This is impossible. Thus

1
εn

φ−1
(
a(−λnψ(un) − f (·, un,λn)) +

∫ t

0
−λnψ(un(ξ)) − f (ξ , un,λn)dξ

)
≤ K3.

Consequently, {v′n} is uniformly bounded and by the Arzela-Ascoli Theorem, {vn} has

a uniformly convergent subsequence in C[0,1]. Let vn ® v in C[0,1]. Now claim that

v(t) =
∫ t

0
φ−1
p

(
ap(−λ̂φp(v)) +

∫ s

0
−λ̂φp(v(ξ))dξ

)
ds.

Clearly,

v′n(t) =
1
εn

φ−1
(
a(−λnψ(un) − f (·, un,λn)) +

∫ t

0
−λnψ(un(ξ)) − f (ξ , un,λn)dξ

)

=
φ−1(hn(t)ψ(εn))

ψ−1(ψ(εn))
,

where hn(t) =
a(−λnψ(un) − f (·, un,λn))

ψ(εn)
+

∫ t

0
−λn

ψ(un(ξ))φ(εn)
φ(εn)ψ(εn)

− f (ξ , un,λn)
ψ(εn)

dξ .

Since
a(−λnψ(un) − f (·, un,λn))

ψ(εn)
is bounded, considering a subsequence if necessary,

we may assume that sequence
{
a(−λnψ(un) − f (·, un,λn))

ψ(εn)

}
converges to d as n ®

∞. This implies that

v′n(t) → φ−1
p

(
d +

∫ t

0
−λ̂φp(v(ξ))dξ

)
as n → ∞,

and thus v(t) =
∫ t
0 φ−1

p

(
d +

∫ s
0 −λ̂φp(v(ξ))dξ

)
ds . Since vn(1) = 0 for all

n, d = ap
(
−λ̂φp(v)

)
and v is a solution of (Ep). Consequently, λ̂ must be an eigenva-

lue of the p-Laplacian operator.

The converse of first part of Theorem 3.3 is true in our problem.

Lemma 3.4. Assume (F1) and (F1). If μ is an eigenvalue of (Ep), then (0, μ) is a bifur-

cation point.

Proof: Suppose that (0, μ) is not a bifurcation point of (P). Then there is a neighbor-

hood of (0, μ) containing no nontrivial solutions of (P). In particular, we may choose

an ε-ball Bε such that there are no solutions of (P) on ∂Bε × [μ - ε, μ + ε] and μ is the

only eigenvalue of (Ep) on [μ - ε, μ + ε]. Let 
(u,λ) = u − F(u,λ) . Then deg(F(·, l), B
(0,ε), 0) is well-defined for l with |l-μ| ≤ ε. Moreover, from the homotopy invariance

theorem,

deg(
(·,λ),B(0, ε), 0) ≡ constant, for all λ with|λ − μ| ≤ ε.
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Now, we claim that

deg(
(·,μ − ε),B(0, ε), 0) = deg(
p(·,μ − ε),B(0, ε), 0),

where 
p(u,μ − ε) = u − Tμ−ε
p (u) . Define Hμ−ε : C1

0[0, 1] × [0, 1] → C1
0[0, 1] by

Hμ−ε(u, τ )(t) = τF(u,μ − ε)(t) + (1 − τ )Tμ−ε
p (u)(t).

We know that F(·,μ − ε) and Tμ−ε
p are completely continuous. To apply the homo-

topy invariance theorem, we need to show that 0 ∉ u - Hμ-ε(u, τ)(∂Bε) to guarantee

well-definedness of deg(I-Hμ-ε(∙, τ), B(0, ε), 0). Suppose that this is not the case, then

there exist sequences {un}, {τn} and {εn} with εn ® 0 and ||un||0 = εn such that un =

Hμ-ε(un, τn), i.e.,

un(t) = τn

∫ t

0
φ−1 (

a(−(μ − ε)ψ(un) − f (·, un,μ − ε))

+
∫ s

0
−(μ − ε)ψ(un(ξ)) − f (ξ , un,μ − ε)dξ

)
ds

+(1 − τn)
∫ t

0
φ−1
p

(
ap(−(μ − ε)φp(un)) +

∫ s

0
−(μ − ε)φp(un(ξ))dξ

)
ds.

Setting vn(t) =
un(t)
εn

, we have that ∥vn∥0 = 1 and

vn(t) =
τn

εn

∫ t

0
φ−1 (

a(−(μ − ε)ψ(un) − f (·, un,μ − ε))

+
∫ s

0
−(μ − ε)ψ(un(ξ)) − f (ξ , un,μ − ε)dξ

)
ds

+(1 − τn)
∫ t

0
φ−1
p

(
ap(−(μ − ε)φp(vn)) +

∫ s

0
−(μ − ε)φp(vn(ξ))dξ

)
ds.

Hence, we Obtain that

v′n(t) =
τn

εn

∫ t

0
φ−1 (

a(−(μ − ε)ψ(un) − f (·, un,μ − ε))

+
∫ s

0
−(μ − ε)ψ(un(ξ)) − f (ξ , un,μ − ε)dξ

)

+(1 − τn)φ−1
p

(
ap(−(μ − ε)φp(vn)) +

∫ s

0
−(μ − ε)φp(vn(ξ))dξ

)
,

and we see that {v′n} is uniformly bounded. Therefore, by the Arzela-Ascoli Theo-

rem, {vn} has a uniformly convergent subsequence in C[0,1]. Without loss of generality,

let vn ® v. Moreover, using the fact that

1
εn

φ−1
(
a(−(μ − ε)ψ(un) − f (·, un,μ − ε)) +

∫ t

0
−(μ − ε)ψ(un(ξ)) − f (ξ , un,μ − ε)dξ

)

→ φ−1
p

(
ap(−(μ − ε)φp(υ)) +

∫ t

0
−(μ − ε)φp(υ(ξ))dξ

)
,
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we can obtain that

v(t) =
∫ t

0
φ−1
p

(
ap(−(μ − ε)φp(v)) +

∫ s

0
−(μ − ε)φp(v(ξ))dξ

)
ds.

This implies v ≡ 0 and this is a contradiction. Consequently, deg(I - Hμ-ε(·, τ), B(0, ε),

0) is well defined. Therefore, by the homotopy invariance theorem,

deg(
(·,μ − ε),B(0, ε), 0) = deg(
p(·,μ − ε),B(0, ε), 0).

Similarly,

deg(
(·,μ + ε),B(0, ε), 0) = deg(
p(·,μ − ε),B(0, ε), 0).

Let μ is k-th eigenvalue of (Ep). Then by Lemma 2.2, we get

deg(
(·,μ − ε),B(0, ε), 0) = (−1)k−1 and deg(
p(·,μ + ε),B(0, ε), 0) = (−1)k.

This is a contradiction to the fact deg(F(∙, μ - ε), B(0,ε),0) = deg(F(∙, μ + ε), B(0, ε),

0).

Thus (0, μ) is a bifurcation point of (P).

Now, we shall adopt Rabinowitz’s standard arguement [11]. Let S denote the clo-

sure of the set of nontrivial solutions of (P) and S+
k denote the set u ∈ C1

0[0, 1] such

that u has exactly k - 1 simple zeros in (0,1), u > 0 near 0, and all zeros of u in [0,1]

are simple. Let S−
k = −S+

k and Sk = S+
k ∪ S−

k . We note that the sets S+
k ,S−

k and Sk

are open in C1
0[0, 1]. Moreover, let Ck denote the component of S which meets (0,

μk), where μk = lk(p). By the similar argument of Theorem 1.10 in [11], we can show

the existence of two types of components C emanating from (0, μ) contained in S ,

when μ is an eigenvalue of (Ep); either it is unbounded or it contains (0, μ̂) , where

μ̂( �= μ) is an eigenvalue of (Ep). The existence of a neighborhood Ok of (0, μk) such

that (u,λ) ∈ S ∩ Ok and u �≡ 0 imply u ∈ Sk is also proved in [11]. Actually, only the

first alternative is possible as shall be shown next.

Lemma 3.5. Assume (F1), (F2), and (F1). Then, Ck is unbounded in Sk × R .

Proof: Suppose Ck ⊂ (Sk × R) ∪ {(0,μk)} . Then since Sk ∩ Sj = ∅ for j ≠ k, it fol-

lows from the above facts, Ck must be unbounded in Sk × R . Hence, Lemma 3.5 will

be established once we show Ck �⊂ (Sk × R) ∪ {(0,μk)} is impossible. It is clear that

Ck ∩ Ok ⊂ (Sk × R) ∪ {(0,μk)} . Hence if Ck �⊂ (Sk × R) ∪ {(0,μk)} , then there exists

(μ,λ) ∈ Ck ∩ (∂Sk × R) with (u,λ) �= (0,μk) and (u, l) = limn ® ∞(un, ln), un ∈ Sk . If

u ∈ ∂Sk , u ≡ 0 because u dose not have double zero. Henceforth l = μj, j ≠ k. But

then, (un,λn) ∈ (Sk × R) ∩ Oj for large n which is impossible by the fact that

(un,λn) ∈ S ∩ Oj implies un ∈ Sj . The proof is complete.

Lemma 3.6. Assume (F1), (F2), (F1), and (F3). Then for each k Î N, there exists a

constant Mk Î (0, ∞) such that l ≤ Mk for every l with (u,λ) ∈ Ck .
Proof: Suppose it is not true, then there exists a sequence {(un,λn)} ⊂ Ck such that

ln ® ∞. Let ρjn be the jth zero of un. Then there exists j Î {1,..., k - 1} such that

|ρ(j+1)n − ρjn | ≥ 1
k . Thus for each n, there exists σjn ∈ (ρjn ,ρ(j+1)n) such that

u′
n(σjn) = 0 . Let un(t) > 0 for all t ∈ (

ρjn ,ρ(j+1)n

)
. Suppose σjn ∈

(
ρjn ,

ρjn + 3ρ(j+1)n

4

)
.
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Then by integrating the equation in (P) from σjn to t ∈ [
σjn ,ρ(j+1)n

]
, we see that un

satisfies

un(t) =
∫ ρ(j+1)n

t
φ−1

(∫ s

σjn

λnψ(un(ξ)) + f (ξ , un,λn)dξ

)
ds.

For t ∈
[

ρjn+4ρ(j+1)n
5 ,

ρjn+5ρ(j+1)n
6

]
,

un(t) ≥
∫ ρ(j+1)n

ρjn+5ρ(j+1)n

6

φ−1

(∫ t

σjn

λnψ(un(t))dξ

)
ds

≥
∫ ρ(j+1)n

ρjn+5ρ(j+1)n

6

φ−1

⎛
⎝∫ ρjn+4ρ(j+1)n

5
ρjn+3ρ(j+1)n

4

λnψ(un(t))dξ

⎞
⎠ ds

=
ρ(j+1)n − ρjn

6
φ−1

(
ρ(j+1)n − ρjn

20
λnψ(un(t))

)

≥ 1
6k

φ−1
(

1
20k

λnψ(un(t))
)
.

Thus

φ(6kun(t))
ψ(un(t))

≥ λn

20k
, (11)

The left side of (11) is bounded and independent on n, but the right side goes to ∞

as n ® ∞. This is impossible. Now, if σjn ∈
(

ρjn+3ρ(j+1)n
4 ,ρ(j+1)n

)
, then by integrating the

equation in (P) from t ∈ [ρjn , σjn ] to σjn , we see that un satisfies

un(t) =
∫ t

ρjn

φ−1
(∫ σjn

s
λnψ(un(t)) + f (ξ , un,λn)dξ

)
ds.

For t ∈
[

ρjn+ρ(j+1)n
2 ,

ρjn+2ρ(j+1)n
3

]

un(t) ≥
∫ t

ρjn

φ−1
(∫ σjn

t
λnψ(un(t))dξ

)
ds

≥
∫ ρjn+ρ(j+1)n

2

σjn

φ−1

⎛
⎝∫ ρjn+3ρ(j+1)n

4
ρjn+2ρ(j+1)n

3

λnψ(un(t))dξ

⎞
⎠ ds

=
ρ(j+1)n − ρjn

2
φ−1

(
ρ(j+1)n − ρjn

12
λnψ(un(t))

)

≥ 1
2k

φ−1
(

1
12k

λnψ(un(t))
)
.

From the above argument, we get

φ(2kun(t))
ψ(un(t))

≥ λn

12k
. (12)

This is impossible because the left side is bounded and independent on n, but the

right side goes to infinity as n goes to infinity. We can get similar results when un(t) <
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0. Indeed, if σjn ∈
(

ρjn ,
ρjn + 3ρ(j+1)n

4

)
, then we have

φ(6k|un(t)|)
ψ(|un(t)|) ≥ λn

20k
. (13)

Also if σjn ∈
(

ρjn+3ρ(j+1)n
4 ,ρ(j+1)n

)
, then we have

φ(2k|un(t)|)
ψ(|un(t)|) ≥ λn

12k
. (14)

Since both (13) and (14) are impossible, there is no sequence {(un,λn)} ⊂ Ck satisfy-

ing ln ® ∞. Consequently, there exists an Mk Î (0, ∞) such that l ≤ Mk.

Proof of Theorem 1.1

By Lemmas 3.3, 3.4, and 3.5, for any j Î N, there exists an unbounded connected

component Cj of the set of nontrivial solutions emanating from (0, lj(p)) such that

(u, λ) ∈ Cj implies u has exactly j - 1 simple zeros in (0,1). From Lemma 3.6, there is

an Mj such that (u, λ) ∈ Cj implies that l ≤ Mj, and there are no nontrivial solutions

of (P) for l = 0, it follows that for any M > 0, there is (u, λ) ∈ Cj such that ∥u∥1 >M.

Hence, we can choose subsequence {(un,λn)} ⊂ Cj such that λn → λ̂ and ∥un∥1 ® ∞.

Thus, (∞, λ̂) is a bifurcation point and λ̂ = λj(q) .

4 Application and some examples
Proof of Theorem 1.2

Let us consider the bifurcation problem{−(φ(u′(t)))′ = λφ(u(t)) + g(t, u), t ∈ (0, 1),
u(0) = u(1) = 0

Put f(t,u,l) = -μj(u) + g(t, u). We can easily see that f(t,u,l) = o(|j(u)|) near zero
uniformly for t and l in bounded intervals. The equation in (Ag) can be equivalently

changed into the following equation{−(φ(u′(t)))′ = (λ + μ)φ(u(t)) + f (t, u,λ), t ∈ (0, 1),
u(0) = u(1) = 0.

(Af )

By the similar argument in the proof of Theorem 1.1, for each k ≤ j ≤ n, there is a

connected branch Cj of solutions to (Af) emanating from (0, lj(p) - μ) which is

unbounded in C1
0[0, 1] × R and such that (u, λ) ∈ Cj implies that u has exactly j - 1

simple zeros in (0,1). From the fact ug(t, u) ≥ 0, it can be proved that there is an Mj >

0 such that (u, λ) ∈ Cj implies that l ≤ Mj, by the same argument as in the proof of

Lemma 3.6. Since there is a constant Kg > 0 such that g(t, s) ≤ Kgj(s) for all (t, s) Î
[0,1] × ℝ, if (u, λ) ∈ Cj , then l > -Kg. Hence Cj will bifurcate from infinity also, which

can only happen for l = lj(q) - ν. Since lj(q) - ν < 0 <lj(p) - μ and Cj is connected,

there exists u ≠ 0 such that (u, 0) ∈ Cj . This u is a solution of (A). Since this is true

for every such j, (A) has at least n - k + 1 nontrivial solutions.

Finally, we illustrate several examples of Theorems 1.1 and 1.2.
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Example 4.1. Define j, ψ, f by

φ(u) =
{
u + u2 + u3, if u ≥ 0,
u − u2 + u3, if u < 0,

ψ(u) =
{
u + 2u2 + u3, if u ≥ 0,
u − 2u2 + u3, if u < 0,

f (t, u,λ) =
{

λu2, if u ≥ 0,
−λu2, if u < 0.

Then j and ψ are odd increasing homeomorphisms of ℝ and

lim
u→0

φ(σu)
ψ(u)

= σ = φ2(σ ), lim
|u|→∞

φ(σu)
ψ(u)

= σ 3 = φ4(σ ).

Moreover, f satisfies f(t, u, l) = o(|ψ(u)|) near zero and infinity, uniformly in t and l,
and uf(t,u, l) ≥ 0. Therefore, all hypotheses of Theorem 1.1 are satisfied.

Example 4.2. Define j, g by

φ(u) =
{
u + u2, if u ≥ 0,
u − u2, if u < 0,

g(t, u) =
{

πu + π3u2, if u ≥ 0,
πu − π3u2, if u < 0.

Then j is odd increasing homeomorphism of ℝ and

lim
u→0

φ(σu)
φ(u)

= σ = φ2(σ ), lim
|u|→∞

φ(σu)
φ(u)

= σ 2 = φ3(σ ).

Moreover, ug(t,u) ≥ 0 and

lim
u→∞

g(t, u)
φ(u)

= π , lim
|u|→∞

g(t, u)
φ(u)

= π3.

Thus we can check on the fact that

lim
u→∞

g(t, u)
φ(u)

< λ1(2) = π2 < λ1(3) =

(
4
√
3π

9

)3

< lim
|u|→∞

g(t, u)
φ(u)

All hypotheses of Theorem 1.2 for k = n = 1 are satisfied so that (A) possesses at

least one nontrivial solution.

Example 4.3. Define j, g by

φ(u) =
{

u2 ln(u + 1), if u ≥ 0,
−u2 ln(−u + 1), if u < 0,

g(t, u) =
{

210u2 ln(u + 1)tan−1u, if u ≥ 0,
210u2 ln(−u + 1)tan−1u, if u < 0.

Then j is odd increasing homeomorphism of ℝ and

lim
u→0

φ(σu)
φ(u)

= σ 3 = φ4(σ ), lim
|u|→∞

φ(σu)
φ(u)

= σ 2 = φ3(σ ).

Moreover, ug(t,u) ≥ 0 and

lim
u→∞

g(t, u)
φ(u)

= 0, lim
|u|→∞

g(t, u)
φ(u)

= 29π .
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Thus we can check on the fact that

lim
u→∞

g(t, u)
φ(u)

< λ1(4) =

(√
2π

2

)4

< λ3(3) =

(
4
√
3π

3

)3

< lim
|u|→∞

g(t, u)
φ(u)

All hypotheses of Theorem 1.2 for k = 1 and n = 3 are satisfied so that (A) possesses

at least three nontrivial solutions.
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