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Abstract
LetA be the class of functions that are analytic in the unit disk D = {z ∈C : |z| < 1}
and normalized by f (0) = f ′(0) – 1 = 0. In this work we investigate conditions under
which |zf ′(z)/f (z) – δ| < δ. Next we also estimate |Arg{f ′(z)/z}|, |Arg{f (z)/z2}| and
|Arg{zf ′(z)/f (z)}| for functions of the form f (z) = z2 + a3z3 + · · · in the unit disc |z| < 1,
which satisfy |f ′′(z) – 2| < 2. Furthermore, some geometric consequences of these
results are given.
MSC: Primary 30C45; secondary 30C80
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1 Introduction
Let A be the class of functions that are analytic in the unit disk D = {z ∈ C : |z| < } and
normalized by f () = f ′() –  = . The subclasses of A consisting of functions that are
univalent in D, starlike with respect to the origin and convex will be denoted by S , S∗ and
C , respectively. The class S∗

α of starlike functions of order α <  may be defined as

S∗
α =

{
f ∈A :Re

zf ′(z)
f (z)

> α, z ∈ U
}
.

The class S∗
α and the class Cα of convex functions of order α < 

Kα : =
{
f ∈A :Re

(
 +

zf ′′(z)
f ′(z)

)
> α, z ∈ U

}

=
{
f ∈A : zf ′ ∈ S∗

α

}
were introduced by Robertson in []. If α ∈ [; ), then a function in either of these sets
is univalent. The convexity in one direction (it implies the univalence) of functions con-
vex of negative order –/ was proved by Ozaki []. In [] Pfaltzgraff et al. established
that the constant –/ is, in a certain sense, the best possible. A lot of the other equiva-
lent/sufficient conditions for univalence or for the starlikeness, or more, for the convexity
in one direction, one can find in []. In this work we consider a similar problem, namely
find α, β such that

Re

(
 +

zf ′′(z)
f ′(z)

)
< α ⇒

∣∣∣∣zf ′(z)
f (z)

– β

∣∣∣∣ < β .

If β ∈ (, ], it implies also the starlikeness of f .
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2 Preliminaries
The following lemma is a simple generalization of Nunokawa’s lemma [], which together
with the lemma from [] has a surprising number of important applications in the theory
of univalent functions.

Lemma . [] Let p(z) =  +
∑∞

n=m≥ cnzn be an analytic function in D. Suppose also that
there exists a point z ∈D such that

Re
{
p(z)

}
>  for |z| < |z|

and

Re
{
p(z)

}
=  and p(z) �= .

Then we have

zp′(z)
p(z)

= ik,

where k is a real number and

k ≥ m


(
a +


a

)
≥m≥  when Arg

{
p(z)

}
=

π



and

k ≤ –
m


(
a +


a

)
≤ –m≤ – when Arg

{
p(z)

}
= –

π


,

where |p(z)| = a.

3 Main results
Theorem . Assume that δ ≥ / and m is a positive integer such that m > δ – . If
f (z) = z +

∑∞
n=m anzn, and zf ′(z)/f (z) are analytic in the unit disc D with zf ′(z) �= δf (z),

f ′(z) �= , z ∈D and

Re

{
 +

zf ′′(z)
f ′(z)

}

<

⎧⎪⎨
⎪⎩
δ + (δ – /)(m – ) for δ ∈ [/, ) and m ≥ δ/( – δ),m ∈N,
m–

(δ–) for δ ≥  and m > δ – ,m ∈N,
m–

(δ–) for δ ∈ [/, ) and δ –  <m < δ/( – δ),m ∈ N,
(.)

then we have∣∣∣∣zf ′(z)
f (z)

– δ

∣∣∣∣ < δ for |z| < .

Proof The function zf ′(z)/f (z) is analytic in D, thus we can define the function p by

zf ′(z)
f (z)

– δ = δ
p(z) +  – δ
p(z) –  + δ

for |z| < , (.)

where p() = , and p(z) =  + pm–zm– + pmzm + · · · , z ∈D.
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Then it follows that

 +
zf ′′(z)
f ′(z)

=
δp(z)

p(z) –  + δ
+

δ – 
p(z) –  + δ

zp′(z)
p(z)

. (.)

If there exists a point z ∈D such that

∣∣∣∣zf ′(z)
f (z)

– δ

∣∣∣∣ < δ for |z| < |z|

and
∣∣∣∣zf ′(z)
f (z)

– δ

∣∣∣∣ = δ,

then by (.)

Re
{
p(z)

}
>  for |z| < |z|

and

Re
{
p(z)

}
= 

and p(z) �=  by (.). Then applying Lemma ., we have

zp′(z)
p(z)

= ik,

where

k ≥ (m – )(a + )
a

when Arg
{
p(z)

}
=

π


(.)

and

k ≤ –
(m – )(a + )

a
when Arg

{
p(z)

}
= –

π


,

and where p(z) = ±ia and  < a. For the case Arg{p(z)} = π/, p(z) = ia and  < a it
follows from (.) that

Re

{
 +

zf ′′(z)
f ′(z)

}

=Re
δia

ia –  + δ
+Re

(δ – )ik
ia –  + δ

=
aδ

a + (δ – )
+

(δ – )ak
a + (δ – )

=
aδ + (δ – )ak
a + (δ – )

.
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Therefore, we have from (.)

Re

{
 +

zf ′′(z)
f ′(z)

}

≥ aδ + (δ – )am–


a+
a

a + (δ – )

=
aδ + (δ – )(m – )(a + )

(a + (δ – ))

= δ + (δ – /)(m – ) + δ(δ – )
(m – )( – δ) – (δ – )

a + (δ – )
for a > .

In the last expression, the numerator (m – )( – δ) – (δ – ) is nonnegative if and only if
δ ∈ [/, ) and m ≥ δ/( – δ) but this expression tends to + when a → ∞. Therefore, in
this case we have

Re

{
 +

zf ′′(z)
f ′(z)

}
≥ δ + (δ – /)(m – ) for δ ∈ [/, ) andm > δ/( – δ). (.)

Furthermore, the numerator (m – )( – δ) – (δ – ) is negative if and only if δ ≥  and
m ∈ N or δ ∈ [/, ) and m < δ/( – δ). In this case the quotient decreases when a → +.
Therefore, in this case we have

Re

{
 +

zf ′′(z)
f ′(z)

}

≥ δ + (δ – /)(m – ) +
δ{(m – )( – δ) – (δ – )}

δ – 

=
m – 

(δ – )
. (.)

We have assumed thatm > δ – to have the right-hand side in (.) greater to . So in this
case we have

δ –  <m <
δ

 – δ
for δ ∈ [/, ). (.)

Therefore, we can write (.) in the form

Re

{
 +

zf ′′(z)
f ′(z)

}

≥ m – 
(δ – )

{
either for δ ≥  andm > δ – ,m ∈N,
or for δ ∈ [/, ) and δ –  <m < δ/( – δ).

(.)

Inequalities (.) and (.) contradict the hypothesis of Theorem ., and therefore we
have

Re
{
p(z)

}
>  for |z| < . (.)

Furthermore, from (.) and (.) we obtain
∣∣∣∣zf ′(z)
f (z)

– δ

∣∣∣∣ =
∣∣∣∣δ p(z) +  – δ
p(z) –  + δ

∣∣∣∣ < δ for |z| < . (.)
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For the case Arg{p(z)} = –π/, p(z) = –ia and  < a, applying the same method as
above, we also have (.). Therefore, we get (.), which completes the proof of Theo-
rem .. �

Substituting δ =  in Theorem . leads to the following corollary.

Corollary . If f (z) = z +
∑∞

n=m anzn is analytic in the unit disc D and

Re

{
 +

zf ′′(z)
f ′(z)

}
<
m – 


,

then we have∣∣∣∣zf ′(z)
f (z)

– 
∣∣∣∣ <  for |z| < .

Substituting δ = /,m =  in Theorem . gives the following corollary.

Corollary . If f (z) = z +
∑∞

n= anzn is analytic in the unit disc D and

Re

{
 +

zf ′′(z)
f ′(z)

}
<


,

then we have∣∣∣∣zf ′(z)
f (z)

–



∣∣∣∣ < 


for |z| < .

Substituting δ = /,m =  in Theorem . gives the following corollary.

Corollary . If f (z) = z +
∑∞

n= anzn is analytic in the unit disc D and

Re

{
 +

zf ′′(z)
f ′(z)

}
<


,

then we have∣∣∣∣zf ′(z)
f (z)

–



∣∣∣∣ < 


for |z| < .

As a supplement to the above results recall here the known result [, p.] that if f (z) =
z +

∑∞
n= anzn is analytic in the unit disc D and

Re

{
 +

zf ′′(z)
f ′(z)

}
≺ R,(z) =

 + z
 – z

+
z

 – z
,

then

Re
zf ′(z)
f (z)

>  for |z| < .

Note that the open door function R,(z) maps D onto the complex plane with slits along
the half-linesRe{w} = , and |Im{w}| ≥ √

.Nextwe give the bounds for |Arg{zf ′(z)/f (z)}|.

http://www.journalofinequalitiesandapplications.com/content/2013/1/593
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Theorem . Let f (z) = z +
∑∞

n= anzn be analytic in the unit disc D. If

∣∣f ′′(z) – 
∣∣ <  for |z| < , (.)

then
∣∣∣∣ f ′(z)

z
– 

∣∣∣∣ <  for |z| < . (.)

Proof By the Schwarz lemma we have

∣∣f ′′(teiϕ)
– 

∣∣ ≤ t, t ∈ [, ).

Let z = reiϕ , r ∈ [, ), and let ϕ be fixed. Using this we obtain

∣∣∣∣ f ′(z)
z

– 
∣∣∣∣ = |f ′(z) – z|

|z|

=
| ∫ z

 (f
′′(u) – )du|

|z|

=
| ∫ r

 (f
′′(teiϕ) – )d(teiϕ)|

|reiϕ |

=
| ∫ r

 e
iϕ(f ′′(teiϕ) – )dt|

|reiϕ |

≤
∫ r
 |eiϕ(f ′′(teiϕ) – )|dt

|reiϕ |

≤
∫ r
 t dt
r

=
r

r
= r < .

Therefore, we obtain (.). �

For the function f (z) = z/ + z, condition (.) is satisfied while (.) becomes |z| < 
in the unit disc, which shows that the constant  in (.) cannot be replaced by a smaller
one. A simple geometric observation yields the following corollary.

Corollary . Let f (z) = z +
∑∞

n= anzn be analytic in the unit disc D. If

∣∣f ′′(z) – 
∣∣ <  for |z| < , (.)

then
∣∣∣∣Arg

{
f ′(z)
z

}∣∣∣∣ < π


for |z| < . (.)

Using the same method as in the proof of Theorem ., we can obtain the following
result.
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Theorem . Let f (z) = z +
∑∞

n= anzn be analytic in the unit disc D. If

∣∣f ′′(z) – 
∣∣ <  for |z| < , (.)

then ∣∣∣∣ f (z)z
– 

∣∣∣∣ < 


for |z| < . (.)

For the function f (z) = z/+ z, condition (.) is satisfied while (.) becomes |z/| <
/ in the unit disc, which shows that the constant / in (.) cannot be replaced by a
smaller one. A simple geometric observation yields the following corollary.

Corollary . Let f (z) = z +
∑∞

n= anzn be analytic in the unit disc D. If

∣∣f ′′(z) – 
∣∣ <  for |z| < , (.)

then ∣∣∣∣Arg
{
f (z)
z

}∣∣∣∣ < sin–



for |z| < . (.)

Using Corollaries . and . together, we obtain the next one.

Corollary . Let f (z) = z +
∑∞

n= anzn be analytic in the unit disc D. If

∣∣f ′′(z) – 
∣∣ <  for |z| < , (.)

then ∣∣∣∣Arg
{
zf ′(z)
f (z)

}∣∣∣∣ < π


+ sin–




≈ . for |z| < . (.)

Proof From (.) and from (.), we have

∣∣∣∣Arg
{
zf ′(z)
f (z)

}∣∣∣∣ =
∣∣∣∣Arg

{
f ′(z)
z

z

f (z)

}∣∣∣∣
≤

∣∣∣∣Arg
{
f ′(z)
z

}∣∣∣∣ +
∣∣∣∣Arg

{
f (z)
z

}∣∣∣∣
<

π


+ sin–




≈ .. �

Recall the class SS∗(β) of strongly starlike functions of order β ,  < β ≤ ,

SS∗(β) :=
{
f ∈A :

∣∣∣∣Argzf ′(z)
f (z)

∣∣∣∣ < βπ


, z ∈U

}
,

which was introduced in [] and []. Therefore, Corollary . says that if f satisfies the
assumptions, then it is -valently strongly starlike of order at least ..
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