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Abstract

In this article, we prove the existence of common coupled coincidence and coupled
fixed point of generalized contractive type mappings in the context of two
generalized metric spaces. These results generalize several comparable results from
the current literature. We also provide illustrative examples in support of our new
results.
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1 Introduction and preliminaries
The study of common fixed points of mappings satisfying certain contractive condi-

tions has been at the center of rigorous research activity [1-5]. Mustafa and Sims [4]

generalized the concept of a metric space and call it a generalized metric space.

Based on the notion of generalized metric spaces, Mustafa et al. [5-9] obtained some

fixed point theorems for mappings satisfying different contractive conditions. Abbas

and Rhoades [10] initiated the study of common fixed point theory in generalized

metric spaces (see also [11]). Saadati et al. [12] proved some fixed point results for

contractive mappings in partially ordered G-metric spaces. Abbas et al. [13] obtained

some periodic point results in generalized metric spaces. Shatanawi [14] obtained

some fixed point results for contractive mappings satisfying F-maps in G-metric

spaces (see also [15]).

Bhashkar and Lakshmikantham [16] introduced the concept of a coupled fixed point

of a mapping F : X × X ® X (a nonempty set) and established some coupled fixed

point theorems in partially ordered complete metric spaces. Later, Lakshmikantham

and Ćirić [3] proved coupled coincidence and coupled common fixed point results for

nonlinear mappings F : X × X ® X and g : X ® X satisfying certain contractive condi-

tions in partially ordered complete metric spaces. Recently, Abbas et al. [17] obtained

some coupled common fixed point results in two generalized metric spaces. Choudh-

ury and Maity [18] also proved the existence of coupled fixed points in generalized

metric spaces. Recently, Aydi et al. [19] generalized the results of Choudhury and

Maity [18]. For other works on G-metric spaces, we refer the reader to [20,21].

The aim of this article is to prove some common coupled coincidence and coupled

fixed points results for mappings defined on a set equipped with two generalized
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metrics. It is worth mentioning that our results do not rely on continuity of mappings

involved therein. Our results extend and unify various comparable results in [17,22,23].

Consistent with Mustafa and Sims [4], the following definitions and results will be

needed in the sequel.

Definition 1.1. Let X be a nonempty set. Suppose that a mapping G : X × X × X ®
R+ satisfies:

(a) G(x, y, z) = 0 if x = y = z;

(b) 0 <G(x, y, z) for all x, y Î X, with x ≠ y;

(c) G(x, x, y) ≤ G(x, y, z) for all x, y, z Î X, with y ≠ z;

(d) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables); and

(e) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a Î X.

Then, G is called a G-metric on X and (X, G) is called a G-metric space.

Definition 1.2. A sequence {xn} in a G-metric space X is:

(i) a G-Cauchy sequence if, for any ε > 0, there is an n0 Î N (the set of natural

numbers) such that for all n, m, l ≥ n0, G(xn, xm, xl) <ε,

(ii) a G-convergent sequence if, for any ε > 0, there is an x Î X and an n0 Î N, such

that for all n, m ≥ n0, G(x, xn, xm) <ε.

A G-metric space on X is said to be G-complete if every G-Cauchy sequence in X is

G-convergent in X. It is known that {xn} G-converges to x Î X if and only if G(xm, xn,

x) ® 0 as n, m ® ∞ [4].

Proposition 1.3. [4] Let X be a G-metric space. Then, the following are equivalent:

1. {xn} is G-convergent to x.

2. G(xn, xn, x) ® 0 as n ® ∞.

3. G(xn, x, x) ® 0 as n ® ∞.

4. G(xn, xm, x) ® 0 as n, m ® ∞.

Definition 1.4. [16] An element (x, y) Î X × X is called:

(C1) a coupled fixed point of mapping T : X × X ® X if x = T (x, y) and y = T (y, x);

(C2) a coupled coincidence point of mappings T : X × X ® X and f : X ® X if f(x) =

T(x,y) and f(y) = T(y,x), and in this case (fx,fy) is called coupled point of coincidence;

(C3) a common coupled fixed point of mappings T : X × X ® X and f : X ® X if x =

f(x) = T(x, y) and y = f(y) = T(y, x).

Definition 1.5. An element (x, y) Î X × X is called:

(CC1) a common coupled coincidence point of the mappings T, S : X × X ® X and f

: X ® X if T(x, y) = S(x, y) = fx and T(y, x) = S(y, x) = fy, and in this case (fx, fy) is

called a common coupled point of coincidence;

(CC2) a common coupled fixed point of mappings T, S : X × X ® X and f :

X → X if T(x, y) = S(x, y) = f (x) = x and T(y, x) = S(y, x) = f (y) = y.

Definition 1.6. [22] Mappings T : X × X ® X and f : X ® X are called

(W1) w-compatible if f(T(x, y)) = T(fx,fy) whenever f(x) = T(x,y) and f(y) = T(y, x);
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(W2) w*-compatible if f(T(x,x)) = T(fx, fx) whenever f(x) = T(x,x).

2 Common coupled fixed points
We extend some recent results of Abbas et al. [17,22] and Sabetghadam [23] to the

setting of two generalized metric spaces.

Theorem 2.1. Let G1 and G2 be two G-metrics on X such that G2(x,y, z) ≤ G1(x, y, z)

for all x, y, z Î X, S,T : X × X ® X, and f : X ® X be mappings satisfying

G1
(
S(x, y),T(u, v),T(s, t)

)
≤ a1G2

(
fx, fu, fs

)
+ a2G2

(
S

(
x, y

)
, fx, fx

)
+ a3G2

(
T (x, v) , fu, fs

)
+a4G2

(
fy, fv, ft

)
+ a5G2

(
S

(
x, y

)
, fu, fs

)
+ a6G2

(
T (u, v) ,T (s, t) , fx

) (2:1)

for all x, y, u, v, s, t Î X, where ai ≥ 0, for i = 1, 2,..., 6 and a1 + a4 + a5 + 2(a2 + a3
+ a6) < 1. If S(X × X) ⊆ f(X), T(X × X) ⊆ f(X), f(X) is G1-complete subset of X, then S,

T, and f have a unique common coupled coincidence point. Moreover, if S or T is w*

-compatible with f, then f, S, and T have a unique common coupled fixed point.

Proof. As S, T, and f satisfy condition (2.1), so for all x, y, u, v Î X, we have

G1
(
S(x, y),T(u, v),T(s, v)

)
≤ a1G2

(
fx, fu, fs

)
+ a2G2

(
S

(
x, y

)
, fx, fx

)
+ a3G2

(
T (x, v) , fu, fu

)
+a4G2

(
fy, fv, fv

)
+ a5G2

(
S

(
x, y

)
, fu, fu

)
+ a6G2

(
T (u, v) ,T (u, v) , fx

)
.

(2:2)

Let x0,y0 Î X. We choose x1,y1 Î X such that fx1 = S(x0, y0) and fy1 = S(y0, x0), this

can be done in view of S(X × X) ⊆ f(X). Similarly, we can choose x2,y2 Î X such that

fx2 = T(x1, y1) and fy2 = T(y1,x1) since T(X × X) ⊆ f(X). Continuing this process, we

construct two sequences {xn} and {yn} in X such that

f x2n+1 = S
(
x2n, y2n

)
, f x2n+2 = T

(
x2n+1, y2n+1

)
(2:3)

and

f y2n+1 = S
(
y2n, x2n

)
, f y2n+2 = T

(
y2n+1, x2n+1

)
. (2:4)

From (2.2), we have

G1
(
f x2n+1, f x2n+2, f x2n+2

)
= G1

(
S

(
x2n, y2n

)
,T

(
x2n+1, y2n+1

)
,T

(
x2n+1, y2n+1

))
≤ a1G2

(
f x2n, f x2n+1, f x2n+1

)
+ a2G2

(
S

(
x2n, y2n

)
, f x2n, f x2n

)
+ a3G2

(
T

(
x2n+1, y2n+1

)
, f x2n+1, f x2n+1

)
+ a4G2

(
f y2n, f y2n+1, f y2n+1

)
+ a5G2

(
S

(
x2n, y2n

)
, f x2n+1, f x2n+1

)
+ a6G2

(
T

(
x2n+1, y2n+1

)
,T

(
x2n+1, y2n+1

)
, f x2n

)
= a1G2

(
f x2n, f x2n+1, f x2n+1

)
+ a2G2

(
f x2n+1, f x2n, f x2n

)
+ a3G2

(
f x2n+2, f x2n+1, f x2n+1

)
+ a4G2

(
f y2n, f y2n+1, f y2n+1

)
+ a5G2

(
f x2n+1, f x2n+1, f x2n+1

)
+ a6G2

(
f x2n+2, f x2n+2, f x2n

)
≤ (a1 + 2a2 + a6)G2

(
f x2n, f x2n+1, f x2n+1

)
+ (2a3 + a6)G2

(
f x2n+1, f x2n+2, f x2n+2

)
+ a4G2

(
f y2n, f y2n+1, f y2n+1

)
,

which implies that

G1(f x2n+1, f x2n+2, f x2n+2)

≤ 1
1 − 2a3 − a6

[(a1 + 2a2 + a6)G2(f x2n+1, f x2n+1, f x2n+1) + a4G2(f y2n, f y2n+1, f y2n+1)].
(2:5)
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Similarly, we obtain

G1(f y2n+1, f y2n+2, f y2n+2)

≤ 1
1 − 2a3 − a6

[(a1 + 2a2 + a6)G2(f y2n, f y2n+1, f y2n+1) + a4G2(f x2n, f x2n+1, f x2n+1)].
(2:6)

Now, from (2.5) and (2.6), we obtain

G1(f x2n+1, f x2n+2, f x2n+2) + G1(f y2n+1, f y2n+2, f y2n+2)

≤ λ[G2(f x2n, f x2n+1, f x2n+1) + G2(f y2n, f y2n+1, f y2n+1)],

where λ =
a1 + a4 + 2a2 + a6
1 − 2a3 − a6

. Obviously, 0 ≤ l < 1.

In a similar way, we obtain

G1(f x2n, f x2n+1, f x2n+1) + G1(f y2n, f y2n+1, f y2n+1)

≤ λ[G2(f x2n−1, f x2n, f x2n) + G2(f y2n−1, f y2n, f y2n)].

Thus, for all n ≥ 0,

G1(f xn, f xn+1, f xn+1) + G1(f yn, f yn+1, f yn+1)

≤ λ[G2(f xn−1, f xn, f xn) + G2(f yn−1, f yn, f yn)].

Repetition of above process n times gives

G1(f xn, f xn+1, f xn+1) + G1(f yn, f yn+1, f yn+1)

≤ λ[G2(f xn−1, f xn, f xn) + G2(f yn−1, f yn)]

≤ λ2[G2(f xn−2, f xn−1, f xn−1) + G2(f yn−2, f yn−1, f yn−1)]

≤ · · · ≤ λn[G2(f x0, f x1, f x1) + G2(f y0, f y1, f y1)].

For any m >n ≥ 1, repeated use of property (e) of G-metric gives

G1(f xn, f xm, f xm) + G1(f yn, f ym, f ym)

≤ G2(f xn, f xn+1, f xn+1) + G2(f xn+1, xx+2, xn+2) + G2(f yn, f yn+1, f yn+1)

+G2(f xy+1, xy+2, xy+2) + · · · + G2(f xm−1, f xm, f xm) + G2(f ym−1, f ym, f ym)

≤ (λn + λn+1 + · · · + λm−1)[G2(f x0, f x1, f x1) + G2(f y0, f y1, f y1)]

≤ λn

1 − λ
[G2(f x0, f x1, f x1) + G2(f y0, f y1, f y1)],

and so G1(fxn,fxm, fxm) + G1(fyn, fym, fym) ® 0 as n, m ® ∞. Hence, {fxn} and {fyn}

are G1-Cauchy sequences in f(X). By G1-completeness of f(X), there exists fx, fy Î f(X)

such that {fxn} and {fyn} converge to fx and fy, respectively.

Now, we prove that S(x,y) = fx and T(y,x) = fy. Using (2.2), we have

G1(fx,T(x, y),T(x, y))

≤ G1(f x2n+1,T(x, y),T(x, y)) + G1(fx, f x2n+1, f x2n+1)

= G1(S(s2n, y2n),T(x, y),T(x, y)) + G1(f x2n+1, f x2n+1, fx)

≤ a1G2(f x2n, fx, fx) + a2G2(S(x2n, y2n), f x2n, f x2n) + a3G2(T(x, y), fx, fx)

+a4G2(f y2n, fy, fy) + a5G2(S(x2n, y2n), fx, fx)

+a6G2(T(x, y),T(x, y), f x2n) + G1(f x2n+1, f x2n+1, fx)

≤ a1G2(f x2n, fx, fx) + a2G1(f x2n+1, f x2n, f x2n) + 2a3G3(T(x, y),T(x, y), fx)

+a4G2(f y2n, fy, fy) + a5G2(f x2n+1, fx, fx)

+a6G2(T(x, y),T(x, y), f x2n) + G1(f x2n+1, f x2n+1, fx),
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which further implies that

G1(fx,T(x, y),T(x, y))

≤ 1
1 − 2a3

[a1G2(f x2n, fx, fx) + a2G2(f x2n, f x2n) + a4G2(f y2n, fy, fy)

+a5G2(f x2n+1, fx, fx) + a6G2(T(x, y),T(x, y), f x2n) + G1(f x2n+1, f x2n+1, fx)].

Taking limit as n ® ∞, we have

G1(fx,T(x, y),T(x, y)) ≤ a6
1 − 2a3

G1(T(x, y),T(x, y), fx).

As
a6

1 − 2a3
< 1, so we have G1(fx, T(x, y), T (x, y)) = 0, and T (x, y) = fx.

Again from (2.2), we have

G1(S(x, y), fx, fx)

= G1(S(x, y),T(x, y),T(x, y))

≤ a1G2(fx, fx, fx) + a2G2(S(x, y), fx, fx) + a3G2(T(x, y), fx, fx)

+a4G2(fy, fy, fy) + a5G2(S(x, y), fx, fx)

+a6G2(T(x, y),T(x, y), fx)

= (a2 + a5)G2(S(x, y), fx, fx)

≤ (a2 + a5)G1(S(x, y), fx, fx).

That is G1(S(x,y), fx, fx) = 0, and S(x,y) = fx. Thus, T(x,y) = S(x,y) = fx. Similarly, it

can be shown that T(y, x) = S(y, x) = fy. Thus, (fx, fy) is a coupled point of coincidence

of mappings f, S, and T.

To show that fx = fy, we proceed as follows: Note that

G1(f x2n+1, f y2n+2, f y2n+2)

= G1(S(x2n, y2n),T(y2n+1, x2n+1),T(y2n+1, x2n+1)

≤ a1G2(f x2n, f y2n+1, f y2n+1) + a2G2(S(x2n, y2n), f x2n, f x2n)

+a3G2(T(y2n+1, x2n+1), f y2n+1, f y2n+1) + a4G2(f y2n, f x2n+1, f x2n+1)

+a5G2(S(x2n, y2n), f y2n+1, f y2n+1) + a6G2(T(y2n+1, x2n+1),T(y2n+1, x2n+1), f x2n)

= a1G2(f x2n, f y2n+1, f y2n+1) + a2G2(f x2n+1, f x2n, f x2n)

+a3G2(f y2n+2, f y2n+1, f y2n+1) + a4G2(f y2n, f x2n+1, f x2n+1)

+a5G2(f x2n+1, f y2n+1, f y2n+1) + a6G2(f y2n+2, f y2n+2, f x2n).

Taking limit as n ® ∞, we obtain

G1(fx, fy, fy) ≤ (a1 + a5 + a6)G2(fx, fy, fy) + a4G2(fx, fx, fy).

This implies that

G1(fx, fy, fy) ≤ a4
1 − (a1 + a5 + a6)

G1(fx, fx, fy). (2:7)

In the similar way, we can show that

G1(fy, fx, fx) ≤ a4
1 − (a1 + a5 + a6)

G1(fy, fy, fx). (2:8)
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Since
a4

1 − (a1 + a5 + a6)
< 1, from (2.7) and (2.8), we must have G1(fx, fy, fy) = 0. So

that fx = fy. Thus, (fx, fx) is a coupled point of coincidence of mappings f, S and T.

Now, if there is another x* Î X such that (fx*,fx*) is a coupled point of coincidence of

mappings f, S, and T, then

G1(fx, f x∗, f x∗)
= G1(S(x, x),T(x∗, x∗),T(x∗, x∗))
≤ a1G2(fx, f x∗, f x∗) + a2G2(S(x, x), fx, fx)

+a3G2(T(x∗, x∗), f x∗, f x∗) + a4G2(fx, f x∗, f x∗)
+a5G2(S(x, x), f x∗, f x∗) + a6G2(T(x∗, x∗),T(x∗, x∗), fx)

= a1G2(fx, f x∗, f x∗) + a2G2(fx, fx, fx)

+a3G2(f x∗, f x∗, f x∗) + a4G2(fx, f x∗, f x∗)
+a5G2(fx, f x∗, f x∗) + a6G2(f x∗, f x∗, fx)

≤ (a1 + a4 + a5 + a6)G2(fx, f x∗, f x∗)

implies that G1(fx,fx*,fx*) = 0 and so fx* = fx. Hence, (fx, fx) is a unique coupled

point of coincidence of mappings f, S, and T.

Now, we show that f, S, and T have common coupled fixed point.

For this, let f(x) = u. Then, we have u = fx = T(x, x). By w*-compatibility of f and T,

we have

f (u) = f (fx) = f (T(x, x)) = T(fx, fx) = T(u, u).

Then, (fu, fu) is a coupled point of coincidence of f, S, and T. By the uniqueness of

coupled point of coincidence, we have fu = fx. Therefore, (u, u) is the common

coupled fixed point of f, S, and T.

To prove the uniqueness, let v Î X with u ≠ v such that (v, v) is the common

coupled fixed point of f, S, and T. Then, using (2.2),

G1 (u, v, v)

= G1 (s (u, u) ,T (v, v) ,T (v, v))

≤ a1G2
(
fu, fv, fv

)
+ a2G2

(
S (u, u) , fu, fu

)
+ a3G2

(
T (v, v) , fv, fv

)
+a4G2

(
fu, fv, fv

)
+ a5G2

(
S (u, u) , fv, fv

)
+ a6G2

(
T (v, v) ,T (v, v) , fu

)
= (a1 + a4 + a5 + a6)G2

(
fu, fv, fv

)
= (a1 + a4 + a5 + a6)G2 (u, v, v)

≤ (a1 + a4 + a5 + a6)G1 (u, v, v) .

Since a1 + a4 + a5 + a6 < 1, so that G1(u, v, v) = 0 and u = u*. Thus, f, S, and T have

a unique common coupled fixed point.

In Theorem 2.1, take S = T, to obtain Theorem 2.1 of Abbas et al. [22] as the follow-

ing corollary.

Corollary 2.2. Let G1 and G2 be two G-metrics on X such that G2(x, y, z) ≤ G1(x, y,

z), for all x, y, z Î X, T : X × X ® X, and f : X ® X be mappings satisfying

G1
(
T

(
x, y

)
,T (u, v) ,T (s, t)

)
≤ a1G2

(
fx, fu, fs

)
+ a2G2

(
T

(
x, y

)
, fx, fx

)
+ a3G2

(
T (u, v) , fu, fs

)
+a4G2

(
fy, fv, ft

)
+ a5G2

(
T

(
x, y

)
, fu, fs

)
+ a6G2

(
T (u, v) ,T (s, t) , fx

) (2:9)
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for all x, y, u, v, s, t Î X, where ai ≥ 0, for i = 1, 2,..., 6 and a1 + a4 + a5 + 2(a2+a3 +

a6) < 1. If T(X × X) ⊆ f(X), f(X) is G1-complete subset of X, then T and f have a unique

common coupled coincidence point. Moreover, if T is w*-compatible with f, then T

and f have a unique common coupled fixed point.

In Theorem 2.1, take s = u and t = v, to obtain the following corollary which extends

and generalizes the corresponding results of [17,22,23].

Corollary 2.3 Let G1 and G2 be two G-metrics on X such that G2(x, y, z) ≤ G1(x, y,

z), for all x, y, z Î X, S, T :X × X ® X, and f : X ® X be mappings satisfying

G1
(
S

(
x, y

)
,T (u, v) ,T (u, v)

)
≤ a1G2

(
fx, fu, fu

)
+ a2G2

(
S

(
x, y

)
, fx, fx

)
+ a3G2

(
T (u, v) , fu, fu

)
+a4G2

(
fy, fv, fv

)
+ a5G2

(
S

(
x, y

)
, fu, fu

)
+ a6G2

(
T (u, v) ,T (s, t) , fx

) (2:10)

for all x, y, u, v Î X, where ai ≥ 0, for i = 1, 2,..., 6 and a1 + a4 + a5 + 2(a2 + a3 +

a6) < 1. If S(X × X) ⊆ f(X), T(X × X) ⊆ f(X), f(X) is G1-complete subset of X, then S, T,

and f have a unique common coupled coincidence point. Moreover, if S or T is w*-

compatible with f, then f, S, and T have a unique common coupled fixed point.

Example 2.4. Let X = 0,1, G-metrics G1 and G2 on X be given as (in [22]):

G1 (a, b, c) = |a − b| + |b − c |+| c − a|
G2 (a, b, c) =

1
2

|a − b| + |b − c |+| c − a| .

Define S, T : X × X ® X and f : X ® X as

S(x, y) =
x2

8
,

T
(
x, y

)
= 0 and

f (x) = x2 for all x, y ∈ X.

For x, y, u, v Î X, we have

G1
(
S

(
x, y

)
,T (u, v) ,T (u, v)

)
= G1

(
x2

8
, 0, 0

)

=
x2

4

=
1
4

(
1
2

(
2x2

))

=
1
4
G2

(
0, 0, x2

)

=
1
4
G2

(
T (u, v) ,T (u, v) , fx

)
.

Thus, (2.10) is satisfied with a1 = a2 = a3 = a4 = a5 = 0 and a6 =
1
4
, where a1 + a2 +

a3 + a4 + a5 + a6 < 1. It is obvious to note that S is w*-compatible with f. Hence, all

the conditions of Corollary 2.4 are satisfied. Moreover, (0, 0) is the unique common

coupled fixed point of S, T, and f.

If we take a = a1, b = a4, g = a5, and a2 = a3 = a6 = 0 in Theorem 2.1, then the fol-

lowing corollary is obtained which extends and generalizes the comparable results of

[17,22,23].
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Corollary 2.5. Let G1 and G2 be two G-metrics on X such that G2(x, y, z) ≤ G1(x, y,

z), for all x, y, z Î X, and S, T : X × X ® X, f : X ® X be mappings satisfying

G1
(
S

(
x, y

)
,T (u, v) ,T (s, t)

)
≤ αG2

(
fx, fu, fs

)
+ βG2

(
fy, fv, ft

)
+ γG2

(
S

(
x, y

)
, fu, fs

) (2:11)

for all x, y, u, v, s, t Î X, where a, b, g ≥ 0, and a + b + g < 1. If S(X × X) ⊆ f(X), T

(X × X) ⊆ f(X), f(X) is G1-complete subset of X, then S, T, and f have a unique com-

mon coupled coincidence point. Moreover, if S or T is w*-compatible with f, then f, S,

and T have a unique common coupled fixed point.

Corollary 2.6. Let G1 and G2 be two G-metrics on X such that G2(x, y, z) ≤ G1(x, y,

z), for all x, y, z Î X, T : X × X ® X, and f : X ® X be mappings satisfying

G1
(
T

(
x, y

)
,T (u, v) ,T (s, t)

)
≤ αG2

(
fx, fu, fs

)
+ βG2

(
fy, fv, ft

)
+ γG2

(
S

(
x, y

)
, fu, fs

)

for all x, y, u, v, s, t Î X, where a, b, g ≥ 0, and a + b + g < 1. If T(X × X) ⊆ f(X), f

(X) is G1-complete subset of X, then T and f have a unique common coupled coinci-

dence point. Moreover, if T is w*-compatible with f, then f and T have a unique com-

mon coupled fixed point.

Example 2.7. Let X = [0,1], and two G-metrics G1, G2 on X be given as (in [22]):

G1 (a, b, c) = |a − b| + |b − c |+| c − a| and

G2 (a, b, c) =
1
2

|a − b| + |b − c |+| c − a| .

Define T : X × X ® X and f : X ® X as

T(x, y) =
x + y
16

and

f (x) =
x
2

for all x, y ∈ X.

Now, for x, y Î X,

G1
(
T

(
x, y

)
,T (u, v) ,T (s, t)

)
=

1
16

[∣∣x + y − (u + v)
∣∣ + ∣∣u + v − (s + t)

∣∣ + ∣∣s + t − (x + y)
∣∣]

≤ 1
16

[|x − u| + ∣∣y − v
∣∣ + |u − s| + |v − t| + |s − x| + ∣∣t − y

∣∣]

≤ 1
16

[|x − u| + ∣∣y − v
∣∣ + |u − s| + |v − t| + |s − x| + ∣∣t − y

∣∣
+

∣∣∣x + y
9

− u
∣∣∣ + |u − s| +

∣∣∣s − x + y
8

∣∣∣]

=
1
16

[|x − u| + |u − s| + |s − x| + ∣∣y − v
∣∣ + |v − t| + ∣∣t − y

∣∣
+

∣∣∣x + y
8

− u
∣∣∣ + |u − s| +

∣∣∣s − x + y
8

∣∣∣]

=
1
4

[
1
2

(
1
2

|x − u| + 1
2

|u − s| + 1
2

|s − x|
)]

+
1
4

[
1
2

(
1
2

∣∣y − v
∣∣ + 1

2
|v − t| + 1

2

∣∣t − y
∣∣)]

+
1
4

[
1
2

(
1
2

∣∣∣x + y
8

− u
∣∣∣ + 1

2
|u − s| + 1

2

∣∣∣s − x + y
8

∣∣∣
)]

= αG2

( x

2
,
u
2
,
s
2

)
+ βG2

(
y

2
,
v
2
,
t
2

)
+ γG2

(x + y

16
,
u
2
,
s
2

)

= αG2
(
fx, fu, fs

)
+ βG2

(
fy, fv, ft

)
+ γG2

(
T

(
x, y

)
, fu, fs

)
.
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Thus, (2.11) is satisfied with α = β = γ = 1
4 where a + b + g < 1. It is obvious to note

that T is w*-compatible with f. Hence, all the conditions of Corollary 2.5 are satisfied.

Moreover, (0,0) is the unique common coupled fixed point of T and f.

Corollary 2.8. Let G1 and G2 be two G-metrics on X with G2(x, y, z) ≤ G1(x, y, z),

for all x, y, z Î X and S,T : X × X ® X, f : X ® X be two mappings such that

G1
(
S

(
x, y

)
,T (u, v) ,T (u, v)

)
≤ αG2

(
fx, fu, fs

)
+ βG2

(
fy, fv, fu

)
+ γG2

(
S

(
x, y

)
, fu, fu

) (2:12)

for all x, y, u, v Î X, where a, b, g ≥ 0 and a + b + g < 1. If S(X × X) ⊆ f(X), T(X ×

X) ⊆ f(X), f(X) is G1-complete subset of X, then S, T, and f have a unique common

coupled coincidence point. Moreover, if S or T is w*-compatible with f, then f, S, and

T have a unique common coupled fixed point.

Theorem 2.9. Let G1 and G2 be two G-metrics on X such that G2(x, y, z) ≤ G1(x, y,

z), for all x, y, z Î X, and S, T : X × X ® X, f : X ® X be mappings satisfying

G1
(
S

(
x, y

)
,T (u, v) ,T (s, t)

)
≤ kmax

{
G2

(
fx, fu, fs

)
+ G2

(
fy, fv, ft

)
+ G2

(
S

(
x, y

)
, fu, fs

)} (2:13)

for all x, y, u, v, s, t Î X, where 0 ≤ k < 1
2. If S(X × X) ⊆ f (X), T(X × X) ⊆ f(X), f(X)

is G1-complete subset of X, then S, T, and f have a unique common coupled coinci-

dence point. Moreover, if S or T is w*-compatible with f, then f, S, and T have a

unique common coupled fixed point.

Proof. Let x0, y0 Î X. We choose x1, y1 Î X such that fx1 = S(x0, y0) and fy1 = S(y0,

x0), this can be done in view of S(X × X) ⊆ f(X). Similarly, we can choose x2, y2 Î X

such that fx2 = T(x1, y1) and fy2 = T(y1,x1) since T(X × X) ⊆ f(X). Continuing this pro-

cess, we construct two sequences {xn} and {yn} in X such that

f x2n+1 = S
(
x2n, y2n

)
, f x2n+2 = T

(
x2n+1, y2n+1

)

and

f y2n+1 = S
(
y2n, x2n

)
, f y2n+2 = T

(
y2n+1, x2n+1

)
.

Now,

G1
(
f x2n+1, f x2n+2, f x2n+2

)
= G1

(
S

(
x2n, y2n

)
,T

(
x2n+1, y2n+1

)
,T

(
x2n+1, y2n+1

))
≤ kmax

{
G2

(
f x2n, f x2n+1, f x2n+1

)
,G2

(
f y2n, f y2n+1, f y2n+1

)
,

G2
(
S

(
x2n, y2n

)
, f x2n+1, f x2n+1

)}
= kmax

{
G2

(
f x2n, f x2n+1, f x2n+1

)
,G2

(
f y2n, f y2n+1, f y2n+1

)
,

G2
(
f x2n+1, f x2n+1, f x2n+1

)}
,

which implies that

G1
(
f x2n+1, f x2n+2, f x2n+2

)
≤ kmax

{
G2

(
f x2n, f x2n+1, f x2n+1

)
,G2

(
f y2n, f y2n+1, f y2n+1

)}
.

(2:14)
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Similarly, we can show that

G1
(
f y2n+1, f y2n+2, f y2n+2

)
≤ kmax

{
G2

(
f y2n, f y2n+1, f y2n+1

)
,G2

(
f x2n, f x2n+1, f x2n+1

)}
.

(2:15)

Now, from (2.14) and (2.15), we obtain

G1
(
f x2n+1, f x2n+2, f x2n+2

)
+ G1

(
f y2n+1, f y2n+2, f y2n+2

)
≤ k

[
max

{
G2

(
f x2n, f x2n+1, f x2n+1

)
,G2

(
f y2n, f y2n+1, f y2n+1

)}
+max

{
G2

(
f y2n, f y2n+1, f y2n+1

)
,G2

(
f x2n, f x2n+1, f x2n+1

)}]
≤ 2k

[
G2

(
f x2n, f x2n+1, f x2n+1

)
+ G2

(
f y2n, f y2n+1, f y2n+1

)]
.

In a similar way, we can obtain

G1
(
f x2n, f x2n+1, f x2n+1

)
+ G1

(
f y2n, f y2n+1, f y2n+1

)
≤ 2k

[
G2

(
f x2n−1, f x2n, f x2n

)
+ G2

(
f y2n−1, f y2n, f y2n

)]
.

Thus, for all n ≥ 0,

G1
(
f xn, f xn+1, f xn+1

)
+ G1

(
f yn, f yn+1, f yn+1

)
≤ 2k

[
G2

(
f xn−1, f xn, f xn

)
+ G2

(
f yn−1, f yn, f yn

)]
.

Since 0 ≤ 2� < 1. Therefore, repetition of above process n times gives

G1
(
f xn, f xn+1, f xn+1

)
+ G1

(
f yn, f yn+1, f yn+1

)
≤ 2k

[
G2

(
f xn−1, f xn, f xn

)
+ G2

(
f yn−1, f yn, f yn

)]
≤ (2k)2

[
G2

(
f xn−2, f xn−1, f xn−1

)
+ G2

(
f yn−2, f yn−1, f yn−1

)]
≤ ... ≤ (2k)n

[
G2

(
f x0, f x1, f x1

)
+ G2

(
f y0, f y1, f y1

)]
.

For any m >n ≥ 1, repeated use of property (e) of G-metric gives

G1
(
f xnf xm, f xm

)
+ G1

(
f yn, f ym, f ym

)
≤ G2

(
f xn, f xn+1, f xn+1

)
+ G2

(
f xn+1, xx+2, xn+2

)
+ G2

(
f yn+1, f yn+1

)
+G2

(
f xy+1, xy+2, xy+2

)
+ ... + G2

(
f xm−1, f xm, f xm

)
+ G2

(
f ym−1, f ym, f ym

)
≤

(
(2k)n + (2k)n+1 + ... + (2k)m−1

) [
G2

(
f x0, f x1, f x1

)
+ G2

(
f y0, f y1, f y1

)]

≤ (2k)n

1 − 2k

[
G2

(
f x0, f x1, f x1

)
+ G2

(
f y0, f y1, f y1

)]

and so G1(fxn, fxm, fxm) + G1(fyn,fym,fym) ® 0 as n, m ® ∞. Hence, {fxn} and {fyn} are

G1-Cauchy sequences in f(X). By G1-completeness of f(X), there exists fx, fy Î f(X)

such that {fxn} and {fyn} converges to fx and fy, respectively.

Now, we prove that S(x,y) = fx and T(y,x) = fy. Using (2.13), we have

G1
(
fx,T(x, y),T(x, y)

)
≤ G1

(
f x2n+1,T(x, y),T(x, y)

)
+ G1

(
fx, f x2n+1, f x2n+1

)
= G1

(
S

(
x2n, y2n

)
,T(x, y),T(x, y)

)
+ G1

(
f x2n+1, f x2n+1, fx

)
≤ kmax

{
G2

(
f x2n, fx, fx

)
,G2

(
f y2n, fy, fy

)
,G2

(
S

(
x2n, y2n

)
, fx, fx

)}
+G1

(
f x2n+1, f x2n+1, fx

)
= kmax

{
G2

(
f x2n, fx, fx

)
,G2

(
f y2n, fy, fy

)
,G2

(
f x2n+1, f xn, fx

)}
+G1

(
f x2n+1, f x2n+1, fx

)
.
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Taking limit as n ® ∞, implies that G1(fx, T(x, y), T(x, y)) = 0, and T(x, y) = fx.

Also, further from (2.13), we have

G1
(
S(x, y), fx, fx

)
= G1

(
S(x, y),T(x, y),T(x, y)

)
≤ kmax

{
G2

(
fx, fx, fx

)
,G2

(
fy, fy, fy

)
,G2

(
S(x, y), fx, fx

)}
= kG2

(
S(x, y), fx, fx

)
≤ kG1

(
S(x, y), fx, fx

)
,

that is G1(S(x, y), fx, fx) = 0, and S(x, y) = fx. Thus, T(x, y) = S(x, y) = fx. Similarly, it

can be shown that T(y, x) = S(y, x) = fy. Thus, (fx, fy) is coupled point of coincidence

of mappings f, S, and T.

Now, we shall show that fx = fy. So that

G1
(
f x2n+1, f y2n+2, f y2n+2

)
= G1

(
S

(
x2n, y2n

)
,T

(
y2n+1, x2n+1

)
,T

(
y2n+1, x2n+1

))
≤ kmax

{
G2

(
f x2n, f x2n+1, f x2n+1

)
,G2

(
f y2n, f y2n+1, f y2n+1

)
,

G2
(
S

(
x2n, y2n

)
, f y2n+1, f y2n+1

)}
≤ kmax

{
G2

(
f y2n, f y2n+1, f y2n+1

)
,G2

(
f x2n, f x2n+1, f x2n+1

)
,

G2
(
f x2n+1, f y2n+1, f y2n+1

)}
.

On taking the limit as n ® ∞, we obtain that

G1
(
fx, fy, fy

) ≤ kmax
{
G2

(
fx, fy, fy

)
,G2

(
fx, fx, fy

)}
= kG2

(
fx, fx, fy

) ≤ kG1
(
fx, fx, fy

)
.

(2:16)

In the similar way, we can show that

G1
(
fy, fx, fx

) ≤ kG1
(
fy, fy, fx

)
. (2:17)

From (2.16) and (2.17), we must have G1(fx, fy, fy) = 0 which implies that fx = fy.

Thus, (fx, fx) is a coupled point of coincidence of mappings f, S, and T. Now, if there

is another x* Î X such that (fx*,fx*) is a coupled point of coincidence of mappings f, S,

and T, then

G1(fx, f x∗, f x∗)
= G1(S(x, x),T(x∗, x∗),T(x∗, x∗))
≤ kmax

{
G2

(
fx, fx∗, fx∗) ,G2

(
fx, fx∗, fx∗) ,G2

(
S(x, x), fx∗, fx∗)}

= kG2
(
fx, fx∗, fx∗)

implies that G1(fx, fx*, fx*) = 0 and so fx* = fx. Hence, (fx, fx) is a unique coupled

point of coincidence of mappings f, S, and T.

Now, we show that f, S, and T have common coupled fixed point.

For this, let f(x) = u. Then, we have u = fx = T(x, x). By w*-compatibility of f and T,

we have

f (u) = f (fx) = f
(
T(x, x)

)
= T(fx, fx) = T(u, u). (2:18)

That is, (fu, fu) is a coupled point of coincidence of f, S, and T. By the uniqueness of

coupled point of coincidence, we have fu = fx. Therefore, (u, u) is the common

coupled fixed point of f, S, and T.
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To prove the uniqueness, we proceed as follows: let v Î X with u ≠ v such that (v, v)

is the common coupled fixed point of f, S and T. Using (2.13), we have

G1(u, v, v)

= G1
(
S(u, u),T(v, v),T(u, v)

)
≤ kmax

{
G2(fu, fv, fv),G2(fu, fv, fv),G2

(
S(u, u), fv, fv

)}
= kG2(fu, fv, fv) = kG2(u, v, v)

≤ kG1(u, v, v),

so that G1(u, v, v) = 0 and u = u*. Thus, f, S, and T have a unique common coupled

fixed point.

In Theorem 2.9, take S = T, to obtain the following Theorem 2.6 of [22].

Corollary 2.10. Let G1 and G2 be two G-metrics on X such that G2(x, y, z) ≤ G1(x, y,

z), for all x, y, z Î X, T : X × X ® X, and f : X ® X be mappings satisfying

G1
(
T(x, y),T(u, v),T(s, t)

)
≤ kmax

{
G2(fx, fu, fs),G2(fy, fv, ft),G2(T(x, y), fu, fs)

} (2:19)

for all x, y, u, v, s, t Î X, where 0 ≤ k < 1
2. If T(X × X) ⊆ f(X), f(X) is G1-complete

subset of X, then T and f have a unique common coupled coincidence point. More-

over, if T is w*-compatible with f, then T and f have a unique common coupled fixed

point.

In Theorem 2.9, take s = u and t = v, to obtain the following corollary which extends

and generalizes the corresponding results of [17,22,23].

Corollary 2.11 Let G1 and G2 be two G-metrics on X such that G2(x, y, z) ≤ G1(x, y,

z), for all x, y, z Î X, S, T : X × X ® X, and f : X ® X be mappings satisfying

G1
(
S

(
x, y

)
,T (u, v) ,T (s, v)

)
≤ kmax

{
G2

(
fx, fu, fu

)
+ G2

(
fy, fv, fv

)
+ G2

(
S

(
x, y

)
, fu, fv

)} (2:20)

for all x, y, u, v Î X, where 0 ≤ k < 1
2. If S(X × X) ⊆ f(X), T(X × X) ⊆ f(X), f(X) is G1-

complete subset of X, then S, T, and f have a unique common coupled coincidence

point. Moreover, if S or T is w*-compatible with f, then f, S, and T have a unique com-

mon coupled fixed point.

Corollary 2.12. Let G1 and G2 be two G-metrics on X such that G2(x, y, z) ≤ G1(x, y,

z), for all x, y, z Î X, S, T : X × X ® X, and f : X ® X be mappings satisfying

G1
(
S(x, y),T(u, v),T(s, t) ≤ hG2(fx, fu, fs)

)
(2:21)

for all x, y, u, v, s, t Î X, where 0 ≤ h < 1. If S(X × X) ⊆ f(X), T(X × X) ⊆ f(X), f(X) is

G1-complete subset of X, then S, T, and f have a unique common coupled coincidence

point. Moreover, if S or T is w*-compatible with f, then f, S, and T have a unique com-

mon coupled fixed point.

Remark 2.13. By the equivalence of some metrics and cone metric fixed point

results in [24]:

(a) Theorem 2.1 can be viewed as an extension and generalization of (i) Theorem

2.2, Corollary 2.3, Theorem 2.6, Corollary 2.7 and Corollary 2.8 in [23],

(ii) Theorem 2.1, Corollary 2.2, Corollary 2.5 and Corollary 2.5 in [22], (iii) Theo-

rem 2.4 and Corollary 2.5 in [17].
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(b) Theorem 2.9 is a generalization and improvement of (i) Theorem 2.2 and Cor-

ollary 2.3 in [23], Theorem 2.6, Corollary 2.7 and Corollary 2.8 in [22].
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