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Abstract
A Hilbert space operator T belongs to ∗-class A if |T2| – |T∗|2 ≥ 0. The famous
Fuglede-Putnam theorem is as follows: the operator equation AX = XB implies
A∗X = XB∗ when A and B are normal operators. In this paper, firstly we prove that if T is
a contraction of ∗-class A operators, then either T has a nontrivial invariant subspace
or T is a proper contraction and the nonnegative operator D = |T2| – |T∗|2 is a strongly
stable contraction; secondly, we show that if X is a Hilbert-Schmidt operator, A and
(B∗)–1 are ∗-class A operators such that AX = XB, then A∗X = XB∗.
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1 Introduction
Let H be a complex Hilbert space and let C be the set of complex numbers. Let B(H)
denote the C∗-algebra of all bounded linear operators acting on H. For operators T ∈
B(H), we shall write kerT and ranT for the null space and the range of T , respectively.
Also, let σ (T) denote the spectrum of T .
Recall that T ∈ B(H) is called p-hyponormal for p >  if (T∗T)p – (TT∗)p ≥  [];

when p = , T is called hyponormal. And T is called paranormal if ‖Tx‖ ≤ ‖Tx‖‖x‖
for all x ∈ H [, ]. And T is called normaloid if ‖Tn‖ = ‖T‖n for all n ∈ N (equivalently,
‖T‖ = r(T), the spectral radius of T ). In order to discuss the relations between paranormal
and p-hyponormal and log-hyponormal operators (T is invertible and logT∗T ≥ logTT∗),
Furuta et al. [] introduced a very interesting class of operators: class A defined by
|T| – |T | ≥ , where |T | = (T∗T)  which is called the absolute value of T ; and they
showed that the class A is a subclass of paranormal and contains p-hyponormal and log-
hyponormal operators. Recently Duggal et al. [] introduced ∗-class A operators (i.e.,
|T| – |T∗| ≥ ) and ∗-paranormal operators (i.e., ‖T∗x‖ ≤ ‖Tx‖‖x‖ for all x ∈ H);
and they proved that a ∗-class A operator is a generalization of hyponormal operator and
∗-class A operators form a subclass of the class of ∗-paranormal operators.
A contraction is an operator T such that ‖T‖ ≤ . A contraction T is said to be a proper

contraction if ‖Tx‖ < ‖x‖ for every nonzero x ∈ H. A strict contraction is an operator T
such that ‖T‖ < . A strict contraction is a proper contraction, but a proper contraction is
not necessary a strict contraction, although the concepts of strict and proper contractions
coincide for compact operators. A contractionT is of classC· if ‖Tnx‖ →  when n→ ∞
for every x ∈ H (i.e., T is a strongly stable contraction) and it is said to be of class C· if
limn→∞ ‖Tnx‖ >  for every nonzero x ∈H. Classes C· and C· are defined by considering
T∗ instead of T , and we define the class Cαβ for α,β = ,  by Cαβ = Cα· ∩C·β . An isometry
is a contraction for which ‖Tx‖ = ‖x‖ for every x ∈H.
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In this paper, firstly we prove that if T is a contraction of ∗-class A operators, then either
T has a nontrivial invariant subspace or T is a proper contraction and the nonnegative
operator D = |T| – |T∗| is a strongly stable contraction; secondly, we show that if X is a
Hilbert-Schmidt operator, A and (B∗)– are ∗-class A operators such that AX = XB, then
A∗X = XB∗.

2 On ∗-class A contractions
Theorem . If T is a contraction of ∗-class A operators, then the nonnegative operator
D = |T|– |T∗| is a contraction whose power sequence {Dn} converges strongly to a projec-
tion P, and T∗P = .

Proof Suppose that T is a contraction of ∗-class A operators, then D = |T| – |T∗| ≥ .
Let R =D 

 . Then for every x ∈H,

〈
Dn+x,x

〉
=

∥∥Rn+x
∥∥ =

〈
DRnx,Rnx

〉

=
〈∣∣T∣∣Rnx,Rnx

〉
–

〈∣∣T∗∣∣Rnx,Rnx
〉

=
∥∥∣∣T∣∣ 

Rnx
∥∥ –

∥∥∣∣T∗∣∣Rnx
∥∥

≤ ∥∥Rnx
∥∥ –

∥∥T∗Rnx
∥∥

≤ ∥∥Rnx
∥∥

=
〈
Dnx,x

〉
.

Thus R (and so D) is a contraction and {Dn} is a decreasing sequence of nonnegative
contractions. Hence {Dn} converges strongly to a projection P. Moreover,

m∑

n=

∥∥T∗Rnx
∥∥ ≤

m∑

n=

(∥∥Rnx
∥∥ –

∥∥Rn+x
∥∥) = ‖x‖ – ∥∥Rm+x

∥∥ ≤ ‖x‖

for all nonnegative integersm and every x ∈H. Therefore ‖T∗Rnx‖ →  as n→ ∞, hence
we have

T∗Px = T∗ lim
n→∞Dnx = lim

n→∞T∗Rnx = 

for every x ∈H. So that T∗P = . �

Theorem. Let T be a contraction of ∗-class A operators. If T has no nontrivial invariant
subspace, then

(i) T is a proper contraction;
(ii) the nonnegative operator D = |T| – |T∗| is a strongly stable contraction (so that

D ∈ C).

Proof (i) Suppose that T is a ∗-class A operator, then |T∗| ≤ |T|. We have

∥∥T∗x
∥∥ =

〈∣∣T∗∣∣x,x
〉 ≤ 〈∣∣T∣∣x,x

〉 ≤ ∥∥∣∣T∣∣x
∥∥‖x‖ = ∥∥Tx

∥∥‖x‖
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for every x ∈H. By [] Theorem ., we have that

T∗Tx = ‖T‖x if and only if ‖Tx‖ = ‖T‖‖x‖.

Put U = {x ∈ H : ‖Tx‖ = ‖T‖‖x‖} = ker(|T | – ‖T‖), which is a subspace of H. In the
following, we shall show that U is an invariant subspace of T . For every x ∈ U , we have

∥∥T(Tx)
∥∥ ≤ ‖T‖‖Tx‖ = ‖T‖‖x‖ = ‖‖T‖x‖ = ∥∥T∗Tx

∥∥

≤ ∥∥TTx
∥∥‖Tx‖ = ‖TTx‖‖T‖‖x‖, (.)

where the second inequality holds since T is a ∗-class A operator. So, we have that

‖T‖‖x‖ ≤ ∥∥TTx
∥∥‖T‖‖x‖,

that is, ‖T‖‖x‖ ≤ ‖TTx‖. Hence we have

‖T‖‖x‖ = ∥∥TTx
∥∥. (.)

By (.), we have

‖T‖‖x‖ = ∥∥TTx
∥∥ ≤ ‖T‖∥∥T(Tx)∥∥, (.)

that is, ‖T‖‖x‖ ≤ ‖T(Tx)‖. Hence

‖T‖‖x‖ = ∥∥T(Tx)
∥∥. (.)

Hence by (.) and (.), we have

∥∥TTx
∥∥‖T‖‖x‖ = ∥∥T(Tx)

∥∥.

So, we have that ‖T(Tx)‖ = ‖T‖‖Tx‖. That is, U is an invariant subspace of T . Now sup-
pose T is a contraction of ∗-class A operators. If T is a strict contraction, then it is trivially
a proper contraction. If T is not a strict contraction (i.e., ‖T‖ = ) and T has no nontriv-
ial invariant subspace, then U = {x ∈ H : ‖Tx‖ = ‖x‖} = {} (actually, if U =H, then T is
an isometry, and isometries have nontrivial invariant subspaces). Thus, for every nonzero
x ∈H, ‖Tx‖ < ‖x‖, so T is a proper contraction.
(ii) Let T be a contraction of ∗-class A operators. By Theorem . we haveD is a contrac-

tion, {Dn} converges strongly to a projection P, and T∗P = . So, PT = . Suppose T has no
nontrivial invariant subspace. Since kerP is a nonzero invariant subspace for T whenever
PT =  and T 
= , it follows that kerP =H. Hence P =  and soDn converges strongly to ,
that is, D = |T| – |T∗| is a strongly stable contraction. D is self-adjoint, so that D ∈ C.

�

Since a self-adjoint operator T is a proper contraction if and only if T is a C-
contraction, we have the following corollary by Theorem ..
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Corollary . Let T be a contraction of ∗-class A operators. If T has no nontrivial in-
variant subspace, then both T and the nonnegative operator D = |T| – |T∗| are proper
contractions.

3 The Fuglede-Putnam theorem for ∗-class A operators
The famous Fuglede-Putnam theorem is as follows [, , ].

Theorem . Let A and B be normal operators and X be an operator such that AX = XB,
then A∗X = XB∗.

The Fuglede-Putnam theoremwas first proved in the caseA = B by Fuglede [] and then
a proof in the general case was given by Putnam []. Berberian [] proved that the Fuglede
theorem was actually equivalent to that of Putnam by a nice operator matrix derivation
trick. Rosenblum [] gave an elegant and simple proof of the Fuglede-Putnam theorem
by using Liouville’s theorem. There were various generalizations of the Fuglede-Putnam
theorem to nonnormal operators; we only cite [–]. For example, Radjabalipour []
showed that the Fuglede-Putnam theorem holds for hyponormal operators; Uchiyama
and Tanahashi [] showed that the Fuglede-Putnam theorem holds for p-hyponormal
and log-hyponormal operators. If let X ∈ B(H) be Hilbert-Schmidt class, Mecheri and
Uchiyama [] showed that normality in the Fuglede-Putnam theorem can be replaced by
A and B∗ class A operators. In this paper, we show that if X is a Hilbert-Schmidt operator,
A and (B∗)– are ∗-class A operators such that AX = XB, then A∗X = XB∗.
Let C(H) denote theHilbert-Schmidt class. For each pair of operatorsA,B ∈ B(H), there

is an operator �A,B defined on C(H) via the formula �A,B(X) = AXB in []. Obviously,
‖�A,B‖ ≤ ‖A‖‖B‖. The adjoint of �A,B is given by the formula �∗

A,B(X) = A∗XB∗; see de-
tails [].
Let A ⊗ B denote the tensor product on the product space H ⊗H for non-zero A, B ∈

B(H). In [], Duggal et al. give a necessary and sufficient condition forA⊗B to be a ∗-class
A operator.

Lemma . (see []) Let A,B ∈ B(H) be non-zero operators. Then A⊗B belongs to ∗-class
A operators if and only if A and B belong to ∗-class A operators.

Theorem . Let A and B ∈ B(H). Then �A,B is a ∗-class A operator on C(H) if and only
if A and B∗ belong to ∗-class A operators.

Proof The unitary operator U : C(H) → H ⊗ H by a map (x ⊗ y)∗ → x ⊗ y induces the
∗-isomorphism � : B(C(H)) → B(H ⊗ H) by a map X → UXU∗. Then we can obtain
�(�A,B) = A⊗ B∗; see details []. This completes the proof by Lemma .. �

Lemma . (see []) Let T ∈ B(H) be a ∗-class A operator. If λ 
=  and (T – λ)x =  for
some x ∈H, then (T – λ)∗x = .

Now we are ready to extend the Fuglede-Putnam theorem to ∗-class A operators.

Theorem . Let A and (B∗)– be ∗-class A operators. If AX = XB for X ∈ C(H), then
A∗X = XB∗.
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Proof Let � be defined on C(H) by �Y = AYB–. Since A and (B–)∗ = (B∗)– are ∗-class A
operators, we have that � is a ∗-class A operator on C(H) by Theorem .. Moreover, we
have �X = AXB– = X because of AX = XB. Hence X is an eigenvector of �. By Lemma .
we have �∗X = A∗X(B–)∗ = X, that is, A∗X = XB∗. The proof is complete. �
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